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Abstract

Text-to-SQL aims to automate the process of
generating SQL queries on a database from
natural language text. In this work, we propose
"SQLPrompt", tailored to improve the few-
shot prompting capabilities of Text-to-SQL
for Large Language Models (LLMs). Our
methods include innovative prompt design,
execution-based consistency decoding strategy
which selects the SQL with the most consis-
tent execution outcome among other SQL pro-
posals, and a method that aims to improve
performance by diversifying the SQL propos-
als during consistency selection with different
prompt designs ("MixPrompt") and founda-
tion models ("MixLLMs").We show that SQL-
Prompt outperforms previous approaches for
in-context learning with zero labeled data by a
large margin, closing the gap with finetuning
state-of-the-art with thousands of labeled data.

1 Introduction

Text-to-SQL enables natural language interfaces
for databases via SQL query generation. It is cru-
cial for enhancing database accessibility without
SQL expertise, and enabling the development of
conversational agents with data analysis ability.
Language models (LM) have shown to be promis-
ing for Text-to-SQL. Notable previous work on
finetuning, including PICARD (Scholak et al.,
2021), UnifiedSKG (Xie et al., 2022), and
RESDSQL-3B + NatSQL(Li et al., 2023), achieve
impressive results by leveraging customized SQL-
specific syntax knowledge and training on a large
number of (text, SQL) paired data samples. Re-
cently, large language models (LLMs) such as
GPT-3 (Brown et al., 2020), PaLM (Chowdhery
et al., 2022), and ChatGPT1(Stiennon et al., 2020)
have demonstrated promising few-shot abilities via
prompting(Wei et al., 2022). By only providing a
few demonstrations in the prompt, LLMs are able

1https://chat.openai.com/chat.

to follow the demonstrations and generate reason-
able answers (“in-context learning”). For Text-to-
SQL, few-shot prompting is beneficial as it does
not require expensive training, lowers adaptation
data requirements, reduces out-of-distribution is-
sues (e.g. for unseen phrases), and reduces the risk
of over-fitting and poor generalization.
In this paper, we introduce “SQLPrompt”, a few-
shot prompting approach for Text-to-SQL. The
approach is comprised of execution-based consis-
tency decoding and execution error filtering, “Mix-
Prompt” and “MixLLMs” to enhance diversity
of SQL proposals. In few-shot prompting, self-
consistency decoding (Wang et al., 2022), which
samples a diverse set of reasoning paths and selects
the most consistent answer, has shown remarkable
performance improvements across different tasks.
Here we propose a novel variant of consistency de-
coding for Text-to-SQL, “execution-based consis-
tency decoding and execution error filtering”. The
proposed decoding is tailored to be SQL-execution
specific – we marginalize over SQLs, and con-
duct majority vote on execution outcome, whereas
the original self consistency approach marginalizes
over chain-of-thought thinking path, and conduct
majority vote on the final answer.
Furthermore, the improvement brought by self-
consistency’ decoding using the same prompt and
same LLMs saturate beyond a certain number of
samples. Because the diversity of SQL candidates
are limited with the same prompt and same LLM.
Here we propose employing diverse prompt de-
signs ("MixPrompt") and LLMs ("MixLLMs") to
obtain more diverse LLM outputs. "MixPrompt"
applies different prompt designs, which changes
the interface of query and LLMs, leading to more
diverse LLM’s outputed SQLs. "MixLLMs" holds
the assumption that different LLMs pretrained on
diverse set of knowledge, can yield different out-
comes. Finally, the answer is the consistent answer
across different prompt designs and LLMs.
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2 Methods

2.1 Problem setup for Text-to-SQL
Let q be natural language query and Dq be
the database information. Text-to-SQL task
is to convert query q into SQL. The database
Dq = {S,Kp,Kf} includes database schema
S, primary keys Kp, and foreign keys Kf .
S usually contains multiple tables Tt: S =
{T1, T2, ...Tt...}. Each table Tt has table name
Nt, column names cj and column data types tj :
Tt = {Nt, (ct1, tt1), (ct2, tt2), (ctj , ttj)...}) Pri-
mary keys Kp uniquely identifying rows of each
table, and foreign keys Kf join multiple tables.

2.2 Prompt design: database schema and
content and primary/foreign keys

The prompt should include all necessary infor-
mation needed for humans to generate SQL. The
prompt is comprised of database schema, primary
and foreign keys, and the database content. We
reflect database content (entry values) as proposed
in (Lin et al., 2020; Wang et al., 2020), where
only values that are relevant to the question are in-
cluded (refer to Appendix A for more discussion).
Furthermore, we present the above information in
different formats, with the goal of making them
different from each other to encourage diverse out-
puts.
Concise prompts we linearize information in a
table as “Table1 name: column name 1, column
name 2 (relevant database content) | Table2 name:
column1 ...” (Figure 1, Concise. Full example in
Appendix B.1). This way describes table structure
clearly, but can be less straightforward for LLMs
to understand the syntax. Verbose prompts we de-
scribe databases with human understandable words
and emphasize on the information LLMs need to
know: e.g. “Table “CarNames” contains three
columns. The column names and their types are
: MakeID (number), Model (string) ..”; “Foreign
keys are .. Use foreign keys to join Tables”. See
Appendix B.2 for an example.

2.3 Refinement based on execution-based
consistency with MixPrompt and
MixLLMs

We use few-shot prompting with execution-based
consistency decoding and error filtering. We apply
various prompt designs ("MixPrompt") to encour-
age LLMs to generate diverse SQL outputs Sup-
pose F = {f1, f2, ...} is a collection of prompt

design functions, e.g. f1 is verbose, f2 is concise.
When we fix the LLMs, we have MixPrompt with
the following prediction objectives:

p(sql|LLM, q) =
∑

f

p(sql|LLM, f, q)p(f), (1)

where p(f) is mixing coefficient. We evenly mix
the prompts, hence, p(f) = 1/nF , where nF is
the number of design functions. p(sql|LLM, f, q)
is the sampling probability of generating sql.

Algorithm 1: Refinement based on execu-
tion and consistency with MixPrompt

Data: Require: Query questions Qtest; Database
Dtest; Prompt design function collections F ;
B is consistency sample numbers

Result: SQL output of test set: SQLtest

while q in Qtest do
Dq ← Dtest[q];
while f in F do

Promptqf ← f(qi, Dq) ; eq (2)
M = [];
O = [];
while b in B do

sqlqfb ∼
i.i.d

LLM(Promptqf ) ; eq (3)

Oqfb = Exec(sqlqfb, Dq) ;
if "error" NOT in Oq then

M ← sqlqfb;
O ← Oqfb;

end
end

end
sqlselect = {sqlq : Oq = Majority(O), q ∈
M} ; eq (9)

SQLtest ← sqlselect
end

MixPromt is overviewed in Fig 1. For each design
function f , we generate prompts using database
Dq and the query q. The trained LLMs specify
the distribution ` : q → sql, where we can draw
sample from:

Promptqf = f(q,Dq) (2)

sqlqf ∼
i.i.d

LLM(Promptqf ) (3)

We sample B times from the LLM with the same
prompt Promptq to get SQL collections by Eq 3:

Mqf = {sql1qf , ...sqlbqf}B (4)

We then execute the generated SQLs using the en-
gine Exec (i.e. sqlite3), which yields the outputs
O as the execution result of SQL on the provided
database.

Oqf = {Ob
qf : Ob

qf = Exec(sqlbqf , Dq), sql
b
q ∈Mqf}

(5)
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SELECT Count(*) FROM singer 
WHERE Country = "France"

Prompt 
Design 1
(Concise)

SELECT Count(*) FROM singer 
WHERE Country = "French"

Prompt 
Design 2
(Verbose)

SELECT Count(*) FROM singer AS 
T1 JOIN country AS T2 ON 
T1.Country = T2.Code WHERE 
T2.Name = 'France'

SELECT Count(*) FROM singer 
WHERE Country = "France"

Singer_ID
(Kp) Name  Country Age

1 Tribal King France 25

2 Timbaland
United 
States 32

3
Rose 
White France 43

How many French singers?

LLM

0

2

N/A

2

Schema (S) & query questions (q)                                                        

  Exec 
outcome

1

1

2

Consistency 
selection

No values “French”

No table 
“country”

M
ajority Vote

2

  Exec 
Filtering

0

2

2

Generated SQL                                                       

0

2

N/A

2

Table (T): Singer 

Figure 1: SQLPrompt Overview: (Left) Prompt Design: Concise prompt design (up) and Verbose prompt design
(down). (Right) MixPrompt in SQLPrompt generates multiple prompts using database and query question, to query
LLMs. For each query, LLMs are sampled twice, and two SQLs are generated and executed on the database with
errors filtered out. The execution outcomes of both prompt designs are combined to select the most consistent SQL.
Without MixPrompt, the true answer cannot be selected with only one prompt (blue) due to a tie situation.

We further exclude outputs Oqf that yield errors
and only keep the valid output, therefore, ob-
tain final (SQL, outcome) pairs for prompt de-
sign f : Rqf = (Mqf , Oqf ) = {(M b

qf , O
b
qf ) :

Ob
qf 6= errors}. We repeat the above process

for each prompt design function f and generate
Rq = {Rq1, ...Rqf , ..}nF , by concatenating all the
results across multiple designs and obtain:

Mq = [Mq1, ...,Mqf ...,MnF ] (6)

Qq = [Oq1, ..., Oqf ..., OnF ] (7)

Following self-consistency, we select the SQL out-
puts that give the execution outcome consisted with
the majority of the execution outcomes Oq gener-
ated by all Mq.

sqlselect = {sqlkq : Ok
q = Majority(Oq) (8)

Ok
q ∈ Qq, sql

k
q ∈Mq}, (9)

where k is the index across multiple prompt design
and consistency repeats. The overall process is de-
scribed in Algorithm 1.
MixLLMs With the goal of increasing diversity of
the SQL proposals in consistency decoding, we fur-
ther expand our method to not only use one LLM,
but rather a mixture of LLMs. The consistency
samples include resource from different prompt
designs and different LLMs:

p(sql|q) =
∑

LLM

∑

f

p(sql|LLM, f, q)p(f)p(LLM)

(10)

Similar to the combination idea in MixPrompt,
"MixLLM" combines outputs across multiple
LLMs, in addition to multiple prompt designs.
We note that our method differs from generic Mix-
ture of Expert (MoE) (Chen et al., 2022; Zhou
et al., 2022) approaches as we instantiate MoE in
few-shot prompting setup, where experts are vari-
ous prompt designs. Moreover, rather than simple
averaging, we combine results based on execution
outcomes.

3 Experiments

Tasks and datasets: We consider the cross-
domain large-scale Text-to-SQL benchmark, Spi-
der (Yu et al., 2018) that contains 7000 training
samples across 166 databases and 1034 evaluation
samples (‘Dev split’) across 20 databases.

Models: PaLM FLAN 540B is a PaLM model
variant (Chowdhery et al., 2022) with 540 bil-
lion parameters fine-tuned on a collection of tasks
phrased as instructions. FLAN (Chung et al., 2022)
is a reference to the way of fine-tuning that reflects
instructions being given in the prompt. PaLM-
62B is a PaLM variant with 62 billion parameters
trained on 1.3T tokens following the (Hoffmann
et al., 2022) PaLM FLAN 62B is FLAN fine-tuned
variant. Quantization is applied to above mod-
els with qntz, that reduces the precision albeit in-
creased inference efficiency.
Fine-tuning baselines: PICARD (Scholak et al.,
2021) employs incremental parsing to constrain
auto-regressive decoding. RASAT (Qi et al.,
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Methods SPIDER
EX TS

Fine-tuning
T5-3B + PICARD 79.3 69.4
RASAT + PICARD 80.5 70.3
RESDSQL-3B + NatSQL 84.1 73.5

In-context learning

GPT-3 ada (0-shot) 2.3 0.3
GPT-3 babbage (0-shot) 5.7 3.9
GPT-3 curie (0-shot) 12.6 8.3
GPT-3 davinci (0-shot) 26.3 21.7
Codex cushman (0-shot) 63.7 53.0
Codex davinci (0-shot) 67.0 55.1
ChatGPT (0-shot) 70.1 60.1
SQLPrompt (0-shot) 76.6 68.0
SQLPrompt (4-shot) 77.1 68.6

Table 1: Performance on the Spider Dev set, measured in execution accuracy (EX) and test-suite accuracy (TS). GPT3 and
CodeX results are from (Rajkumar et al., 2022) and ChatGPT results are from (Liu et al., 2023).

Table 2: Ablation study on prompt design approaches in 0-
shot setting. MixPrompt improves concise or verbose prompt
design approaches with different LLMs. We only mark TS
Acc. changes, not EX, because TS is more accurate evaluation.

Models
Concise Verbose MixPrompt

EX TS EX TS EX TS
PaLM FLAN 62B qntz 67.7 61.3 70.8 62.9 70.5 63.2 (↑ 0.3)
PaLM FLAN 540B qntz 72.3 64.1 71.6 61.3 74.0 65.5 (↑ 1.4)

Table 3: Ablation Study: Few-shots

Models
Concise Verbose MixPrompt

EX TS EX TS EX TS
PaLM FLAN 62B qntz 65.9 59.6 71.8 63.8 74.7 66.6 (↑ 2.8)
PaLM FLAN 540B qntz 71.2 63.2 70.7 61.1 74.7 65.2 (↑ 2.0)

2022) is a transformer model that integrates
relation-aware self-attention and constrained auto-
regressive decoders. RESDSQL (Li et al., 2023)
decouples schema linking and skeleton parsing
using a ranking-enhanced encoding and skeleton-
aware decoding framework.
In-context learning baselines: (Rajkumar et al.,
2022) comprehensively evaluate the Text-to-SQL
ability of CodeX and GPT3, while (Liu et al., 2023)
conduct a comprehensive evaluation on ChatGPT.

Evaluation: We consider two commonly-used
evaluation metrics: execution accuracy (EX) and
test-suite accuracy (TS) (Zhong et al., 2020), where
EX measures if SQL execution outcome matches
ground truth. TS assesses each query by run-
ning multiple tests against randomly generated
database with same schema (EX only evaluates on
one test). So TS reduces false positives from EX
and hence can be more precise. Exact match eval-
uation is not performed, as multiple correct SQLs
exist for one query.

4 Results
Table-1 presents the comparison between SQL-
Prompt and the previous methods for in-context
learning and fine-tuning. For in-context learning,
SQLPrompt outperforms ChatGPT (with their rec-

Table 4: Ablation Study of SQLPrompt (without Mix LLMs)

EX TS
SQLPrompt (Prompt Design
+ Consistency
+ Execution Filtering
+MixPrompt)

70.5 63.2

No MixPrompt 67.7 61.3 (↓ 1.9)
Only Schema (No primary,
No foreignkeys, no DB content)

66.4 57.3 (↓ 5.9)

No Consistency 55.9 49.6 (↓ 13.6)
No Execution Filtering 55.2 48.7 (↓ 14.5)

Table 5: Ablation Study: SQLprompt with Mix LLMs

Num of Mixture
Zero-shots Few-shots
2 4 6 16

EX 74 76.6 77.3 77.1
TS 65.5 68.0 68.3 68.6

ommended prompts) by a large margin: ↑ 7% for
execution accuracy (EX) and ↑ 8.1% for test suite
accuracy (TS). Examples of SQL generated by
SQLPrompt are provided in Table 7 in Appendix.

Ablation study SQLPrompt consists of multi-
ple components: prompt design, execution-based
consistency decoding, MixPrompt, and MixLLMs.
The effect of MixPrompt prompt is shown in Ta-
ble 3, leading to 2%+ improvement over single
prompt. The effect of mixing LLMs is shown in Ta-
ble 5, leading to additional 3% over single LLM in
test suite accuracy (details description of mixLLMs
are provided in Appendix F).
To shed light into the impact of these components,
ablation studies are presented in Table 4. All listed
components are observed to be useful, yielding
2 ∼ 15% improvements. Notably, without consis-
tency decoding and keeping all others unchanged,
the performance decreases by 13.6%; that is it con-
tributes by 13.6%; Without "execution error fil-
tering" and keeping other components unchanged,
the results decrease by 14.5%. "MixPrompt" con-
tributes by 2% and adding "Primary Keys/Foreign
Keys/DB content" contributes by 5.9%.
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Limitations

The limitation of this work is that the method
queries multiple prompt designs and LLMs, that
can be expensive and time consuming. Although
combining multiple prompt designs and LLMs are
promising to improve performance, future work
can explore more efficient and effective ways to
combine them to save cost.
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A Text-to-SQL challenges and prompt
design with primary/foreign keys and
database content

Fig. 2 shows a Text-to-SQL example from Spider.
Fig. 2 demonstrates the necessity of including pri-
mary and foreign keys, and content of database.
The data schema contains multiple tables. Each
table has multiple columns. Primary keys are the
columns that uniquely identify a row in a table. Pri-
mary keys are important, as some columns might
specifically be challenging and it might be benefi-
cial to include them specifically as prompts, such
as in Query 1 of Fig. 2 where "t2.makeid" may be
mistakenly written as "t2.id" without proper em-
phasis. Foreign key is a column or combination of
columns that is used to establish and enforce a link
between the data in two tables. For example, in
Fig 2 , Column Maker of Table Model list is equiv-
alent to Column ID of Car Maker. By including for-
eign keys into prompt, LLMs can know how to join
different tables. Otherwise, it can be ambiguous
to link multiple tables, especially for complex data
schema or schema with confusing column names.
For example, Column Maker in Table Model list is
not the same as Column Maker in Table Car Maker.
Although they both called column "Maker", one
is number and the other is string. Instead due to
foreign keys, we known Column Maker of Table
Model List is equivalent to Column ID in Table Car
maker. Additionally, including relevant database
content value, as seen in (Xie et al., 2022; Scholak
et al., 2021), is necessary as they help identify
which columns are relevant to key words in the
query question, such as in Fig. 2, Query1’s key
information is "amc honrnet sportabout (sw)", how-
ever, without adding database content value, we
do not know which columns contain the value of
the key information. e.g. is it Column Maker of
Table Model List? Is it Column Maker of Table Car
Maker? or Is it Column Make of Table Car Names?
Only by including database content values, LLM
can know it should use The column of Make of
Table Car Names. Note that the database content
values are questions depended. Only content val-
ues that are related with questions is included into
prompt. See Fig 3. Note not all the content values
are included. So there is not problem if the number
of database contents is very large. As for how to
extract relevant database content values regarding
the query questions, we follow (Xie et al., 2022;
Scholak et al., 2021), where all the content values

are compared against the query questions, and only
top few ones that match the query question the best
are included.

Figure 2: One database schema with two query ques-
tions and true SQL as demo. Dark red are primary keys.
Dark green arrows are foreign keys joining different ta-
bles. Light gray is the context (values) in database (or
table). Both primary key and foreign keys are given in
the database schema. The highlighted (yellow or cyan)
are the part of schema that are used to solve Query 1
and 2 respectively. Colors are simply for easy visual-
ization. Same color, same table.

B Prompt design examples

We show the prompt design for a example in Spider
dataset.

B.1 Concise prompt design
"This is a task converting text into SQL statement.
We will first given the dataset schema and then ask
a question in text. You are asked to generate SQL
statement. Here is the test question to be anwered:
Convert text to SQL: [Schema (values)]: | car_1 |
continents : contid , continent | countries : coun-
tryid , countryname , continent | car_makers : id
, maker ( amc ) , fullname , country | model_list
: modelid , maker , model ( amc ) | car_names
: makeid , model ( amc ) , make ( amc hornet ,
amc hornet sportabout (sw) ) | cars_data : id , mpg ,
cylinders , edispl , horsepower , weight , accelerate ,
year; [Column names (type)]: continents : contid
(number) | continents : continent (text) | countries :
countryid (number) | countries : countryname (text)
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Figure 3: Example of database with content: exam-
ples in Fig 2. Highlighted are database content for dif-
ferent queries. Following previous work (Xie et al.,
2022; Scholak et al., 2021), only the relevant database
content values are included. So different query ques-
tions have different database content value.

| countries : continent (number) | car_makers : id
(number) | car_makers : maker (text) | car_makers
: fullname (text) | car_makers : country (text) |
model_list : modelid (number) | model_list : maker
(number) | model_list : model (text) | car_names
: makeid (number) | car_names : model (text) |
car_names : make (text) | cars_data : id (num-
ber) | cars_data : mpg (text) | cars_data : cylinders
(number) | cars_data : edispl (number) | cars_data :
horsepower (text) | cars_data : weight (number) |
cars_data : accelerate (number) | cars_data : year
(number); [Primary Keys]: continents : contid |
countries : countryid | car_makers : id | model_list :
modelid | car_names : makeid | cars_data : id; [For-
eign Keys]: countries : continent equals continents
: contid | car_makers : country equals countries :
countryid | model_list : maker equals car_makers :
id | car_names : model equals model_list : model
| cars_data : id equals car_names : makeid [Q]:
What is the accelerate of the car make amc hornet
sportabout (sw)?; [SQL]: "

B.2 Verbose prompt design

"This is a task converting text into SQL statement.
We will first given the dataset schema and then
ask a question in text. You are asked to generate
SQL statement. Here is the test question to be an-
wered: Let us take a question and turn it into a
SQL statement about database tables. There are
6 tables. Their titles are: continents, countries,
car_makers, model_list, car_names, cars_data. Ta-
ble 1 is continents, and its column names and types
are: ContId (Type is number), Continent (Type is
text). Table 2 is countries, and its column names
and types are: CountryId (Type is number), Coun-

tryName (Type is text), Continent (Type is number).
Table 3 is car_makers, and its column names and
types are: Id (Type is number), Maker (Type is
text), FullName (Type is text), Country (Type is
text). Table 4 is model_list, and its column names
and types are: ModelId (Type is number), Maker
(Type is number), Model (Type is text). Table 5
is car_names, and its column names and types are:
MakeId (Type is number), Model (Type is text),
Make (Type is text). Table 6 is cars_data, and its
column names and types are: Id (Type is num-
ber), MPG (Type is text), Cylinders (Type is num-
ber), Edispl (Type is number), Horsepower (Type
is text), Weight (Type is number), Accelerate (Type
is number), Year (Type is number). The primary
keys are: contid from Table continents, countryid
from Table countries, id from Table car_makers,
modelid from Table model_list, makeid from Table
car_names, id from Table cars_data. The foreign
keys are: continent from Table countries is equiv-
alent with contid from Table continents, country
from Table car_makers is equivalent with countryid
from Table countries, maker from Table model_list
is equivalent with id from Table car_makers, model
from Table car_names is equivalent with model
from Table model_list, id from Table cars_data is
equivalent with makeid from Table car_names. Use
foreign keys to join Tables. Columns with relevant
values: Table car_makers Column maker have val-
ues: amc; Table model_list Column model have
values: amc; Table car_names Column model have
values: amc; Table car_names Column make have
values: amc hornet, amc hornet sportabout (sw);
Only use columns with relevant values to generate
SQL. Let us take a text question and turn it into a
SQL statement about database tables. The question
is: What is the accelerate of the car make amc hor-
net sportabout (sw)? The corresponding SQL is:
"

C ChatGPT’s default prompt design

"Complete sqlite SQL query only and with
no explanation Sqlite SQL tables, with their
properties: continents(ContId, Continent);
countries(CountryId, CountryName, Con-
tinent); car_makers(Id,Maker, FullName,
Country); mode_list(ModelId, Maker, Model);
car_names(MakeId, Model, Make); car_data(Id,
MPG, Cylinders, Edispl, Horsepower, Weight,
Accelerate, Year). What is the accelerate of the car
make amc hornet sportabout (sw)? SELECT"
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Table 6: Additional few-shot learning results.

Methods/Datasets
Concise Verbose MixPrompt

EX TS EX TS EX TS
PaLM FLAN 62B q 68.1 61.7 71.9 64.3 74.5 66.7

SQLPrompt output

We show a list of real output generated by
SQLPrompt. See Table 7

D Selection of few-shot examples

We also provide results in few-shot learning set-
ting with a different set of examples. Compared to
Table 3 (e.g. 66.6), the two results are very close,
indicating changing the few-shot examples doesn’t
improve performance when using the same prompt
design.

E Experiment details

Querying LLMs might not require TPU or GPU –
a CPU would suffice. We use the number of consis-
tency repeats of 32 and the sampling temperature
of 0.5.

F MixLLMs implementation

The effect of MixLLMs of SQLPrompt shows in
Table 5. When the number of mixture is less than 4,
we use zero-shot results from Table 2. For example,
with 4 mixtures, we combine all the 4 models in
Table 2: PaLM FLAN 62B q: Concise or Verbose
prompt design; PaLM FLAN 540B q: Concise or
Verbose. When number of mixture is greater than 4,
we include few-shot results. Note that most of the
components in SQLPrompt can be applied to other
in-context learning methods. We consider LLMs
with different few-shot examples as a “different
models”, as few-shot demonstrations can influence
the behaviors of LLMs.
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Question What are the names of the singers whose birth years are either 1948 or 1949?
Ground Truth SELECT Name FROM singer WHERE Birth_Year = 1948 OR Birth_Year = 1949
LLM Generation SELECT name FROM singer WHERE birth_year = 1948 OR birth_year = 1949
Execution Accuracy 1
Question What is the name of the singer with the largest net worth?
Ground Truth SELECT Name FROM singer ORDER BY Net_Worth_Millions DESC LIMIT 1
LLM Generation SELECT T1.name FROM singer AS T1 ORDER BY T1.net_worth_millions Desc LIMIT 1
Execution Accuracy 1
Question What is the name of the singer who is worth the most?
Ground Truth SELECT Name FROM singer ORDER BY Net_Worth_Millions DESC LIMIT 1
LLM Generation SELECT T1.name FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id ORDER BY T1.net_worth_millions Desc LIMIT 1
Execution Accuracy 1
Question Show different citizenship of singers and the number of singers of each citizenship.
Ground Truth SELECT Citizenship , COUNT(*) FROM singer GROUP BY Citizenship
LLM Generation SELECT T1.citizenship , count(*) FROM singer AS T1 GROUP BY T1.citizenship
Execution Accuracy 1
Question For each citizenship, how many singers are from that country?
Ground Truth SELECT Citizenship , COUNT(*) FROM singer GROUP BY Citizenship
LLM Generation SELECT Citizenship , count(*) FROM singer GROUP BY Citizenship
Execution Accuracy 1
Question Please show the most common citizenship of singers.
Ground Truth SELECT Citizenship FROM singer GROUP BY Citizenship ORDER BY COUNT(*) DESC LIMIT 1
LLM Generation SELECT citizenship FROM singer GROUP BY citizenship ORDER BY count(*) DESC LIMIT 1
Execution Accuracy 1
Question What is the most common singer citizenship ?
Ground Truth select citizenship from singer group by citizenship order by count(*) desc limit 1
LLM Generation SELECT citizenship FROM singer GROUP BY citizenship ORDER BY count(*) DESC LIMIT 1
Execution Accuracy 1
Question Show different citizenships and the maximum net worth of singers of each citizenship.
Ground Truth SELECT Citizenship , max(Net_Worth_Millions) FROM singer GROUP BY Citizenship
LLM Generation SELECT T1.citizenship , max(T1.net_worth_millions) FROM singer AS T1 GROUP BY T1.citizenship
Execution Accuracy 1
Question For each citizenship, what is the maximum net worth?
Ground Truth SELECT Citizenship , max(Net_Worth_Millions) FROM singer GROUP BY Citizenship
LLM Generation SELECT T1.citizenship , max(T1.net_worth_millions) FROM singer AS T1 GROUP BY T1.citizenship
Execution Accuracy 1
Question Show titles of songs and names of singers.
Ground Truth SELECT T2.Title , T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID
LLM Generation SELECT T1.title , T2.name FROM song AS T1 JOIN singer AS T2 ON T1.singer_id = T2.singer_id
Execution Accuracy 1
Question What are the song titles and singer names?
Ground Truth SELECT T2.Title , T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID
LLM Generation SELECT T1.title , T2.name FROM song AS T1 JOIN singer AS T2 ON T1.singer_id = T2.singer_id
Execution Accuracy 1
Question Show distinct names of singers that have songs with sales more than 300000.
Ground Truth SELECT DISTINCT T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID WHERE T2.Sales > 300000
LLM Generation SELECT DISTINCT T1.name FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id WHERE T2.sales > 300000
Execution Accuracy 1
Question what are the different names of the singers that have sales more than 300000?
Ground Truth SELECT DISTINCT T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID WHERE T2.Sales > 300000
LLM Generation SELECT T1.name FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id WHERE T2.sales > 300000
Execution Accuracy 1
Question Show the names of singers that have more than one song.
Ground Truth SELECT T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID GROUP BY T1.Name HAVING COUNT(*) > 1
LLM Generation SELECT T1.name FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id GROUP BY T1.singer_id HAVING COUNT(*) > 1
Execution Accuracy 1
Question What are the names of the singers that have more than one songs?
Ground Truth SELECT T1.Name FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID GROUP BY T1.Name HAVING COUNT(*) > 1
LLM Generation SELECT T1.name FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id GROUP BY T1.singer_id HAVING COUNT(*) > 1
Execution Accuracy 1
Question Show the names of singers and the total sales of their songs.
Ground Truth SELECT T1.Name , sum(T2.Sales) FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID GROUP BY T1.Name
LLM Generation SELECT T1.name , sum(T2.sales) FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id GROUP BY T1.name
Execution Accuracy 1
Question For each singer name, what is the total sales for their songs?
Ground Truth SELECT T1.Name , sum(T2.Sales) FROM singer AS T1 JOIN song AS T2 ON T1.Singer_ID = T2.Singer_ID GROUP BY T1.Name
LLM Generation SELECT T1.name , sum(T2.sales) FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id GROUP BY T1.name
Execution Accuracy 1
Question List the name of singers that do not have any song.
Ground Truth SELECT Name FROM singer WHERE Singer_ID NOT IN (SELECT Singer_ID FROM song)
LLM Generation SELECT name FROM singer WHERE singer_id NOT IN ( SELECT singer_id FROM song )
Execution Accuracy 1
Question What is the sname of every sing that does not have any song?
Ground Truth SELECT Name FROM singer WHERE Singer_ID NOT IN (SELECT Singer_ID FROM song)
LLM Generation SELECT T1.name FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id WHERE T2.singer_id IS NULL
Execution Accuracy 0
Question Show the citizenship shared by singers with birth year before 1945 and after 1955.
Ground Truth SELECT Citizenship FROM singer WHERE Birth_Year < 1945 INTERSECT SELECT Citizenship FROM singer WHERE Birth_Year > 1955
LLM Generation SELECT T1.citizenship FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id WHERE T1.birth_year < 1945 INTERSECT SELECT

T1.citizenship FROM singer AS T1 JOIN song AS T2 ON T1.singer_id = T2.singer_id WHERE T1.birth_year > 1955
Execution Accuracy 0
Question What are the citizenships that are shared by singers with a birth year before 1945 and after 1955?
Ground Truth SELECT Citizenship FROM singer WHERE Birth_Year < 1945 INTERSECT SELECT Citizenship FROM singer WHERE Birth_Year > 1955
LLM Generation SELECT citizenship FROM singer WHERE birth_year < 1945 INTERSECT SELECT citizenship FROM singer WHERE birth_year > 1955
Execution Accuracy 1
Question How many available features are there in total?
Ground Truth SELECT count(*) FROM Other_Available_Features
LLM Generation SELECT count(*) FROM other_available_features
Execution Accuracy 1
Question What is the feature type name of feature AirCon?
Ground Truth SELECT T2.feature_type_name FROM Other_Available_Features AS T1 JOIN Ref_Feature_Types AS T2 ON T1.feature_type_code =

T2.feature_type_code WHERE T1.feature_name = "AirCon"
LLM Generation SELECT T1.feature_type_name FROM ref_feature_types AS T1 JOIN other_available_features AS T2 ON T1.feature_type_code =

T2.feature_type_code WHERE T2.feature_name = "AirCon"
Execution Accuracy 1
Question Show the property type descriptions of properties belonging to that code.
Ground Truth SELECT T2.property_type_description FROM Properties AS T1 JOIN Ref_Property_Types AS T2 ON T1.property_type_code = T2.property_type_code

GROUP BY T1.property_type_code
LLM Generation SELECT property_type_description FROM ref_property_types WHERE property_type_code IN (SELECT property_type_code FROM properties)
Execution Accuracy 1
Question What are the names of properties that are either houses or apartments with more than 1 room?
Ground Truth SELECT property_name FROM Properties WHERE property_type_code = "House" UNION SELECT property_name FROM Properties WHERE prop-

erty_type_code = "Apartment" AND room_count > 1
LLM Generation SELECT property_name FROM properties WHERE property_type_code = ’House’ OR property_type_code = ’Apartment’ AND room_count > 1
Execution Accuracy 1

Table 7: SQLPrompt: randomly sampled generated SQL from LLM
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