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Abstract

Deep neural networks have demonstrated their
capacity in extracting features from speech in-
puts. However, these features may include
non-linguistic speech factors such as timbre
and speaker identity, which are not directly re-
lated to translation. In this paper, we propose a
content-centric speech representation disentan-
glement learning framework for speech transla-
tion, CCSRD, which decomposes speech rep-
resentations into content representations and
non-linguistic representations via representa-
tion disentanglement learning. CCSRD con-
sists of a content encoder that encodes linguis-
tic content information from the speech input, a
non-content encoder that models non-linguistic
speech features, and a disentanglement module
that learns disentangled representations with a
cyclic reconstructor, feature reconstructor and
speaker classifier trained in a multi-task learn-
ing way. Experiments on the MuST-C bench-
mark dataset demonstrate that CCSRD achieves
an average improvement of +0.9 BLEU in two
settings across five translation directions over
the baseline, outperforming state-of-the-art end-
to-end speech translation models and cascaded
models.

1 Introduction

End-to-end (E2E) speech-to-text translation (ST)
aims to translate a source speech input into a target
translation. Compared with traditional cascaded
ST models, E2E ST models avoid the issue of error
propagation and exhibit low inference latency. Re-
cent works have made significant progress in E2E
ST, which enables it to even outperform traditional
cascaded systems on language pairs like En-De and
En-Ru (Ye et al., 2022; Fang et al., 2022; Du et al.,
2022a).

Despite the remarkable progress, E2E ST is still
confronted with challenges in learning desirable
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speech representations. Speech inputs to ST en-
compass not only content information that is essen-
tial for translation but also non-linguistic factors
such as pitch, timbre, prosody, speaker identity
and so on. As a result, the speech encoder en-
codes not only the content information but also
a range of non-linguistic speech elements. Such
non-linguistic factors may benefit translation, e.g.,
prosody as mentioned by (Sperber and Paulik,
2020). However, they may also introduce spuri-
ous correlations between speech inputs and target
translations, undermining speech translation gener-
alization.

To mitigate this issue, we propose to explore
speech representation disentanglement learning in
the context of speech translation, which aims to
separate content from non-linguistic factors (e.g.,
prosody, timbre). Previous studies have consis-
tently demonstrated the efficacy of representation
disentanglement in improving model generaliza-
tion (Chen et al., 2016; Sanchez et al., 2020; Chan
and Ghosh, 2022; Mohamed et al., 2022). Given
the highly complex nature of speech features and
the modality gap between text and speech, we argue
that representation disentanglement could enable
ST to focus on content, reducing the negative influ-
ence from non-linguistic factors on speech transla-
tion modeling.

Specifically, we propose a Content-Centric
Speech Representation Disentanglement learning
framework, termed as CCSRD, for end-to-end
speech translation. We re-function the original
encoder as the content encoder that encodes lin-
guistic content information contained in the speech
input. We introduce an additional encoder, non-
content encoder, to encode non-linguistic speech
features. The decomposition of the speech input
into content and non-linguistic factors for the two
encoders is completed by a disentanglement mod-
ule. The disentanglement module is trained in
a multi-task learning way, which leverages three
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tasks: a cyclic reconstruction task to reduce the
mutual information between content representation
and non-content representation, a feature recon-
struction task to ensure the retention of speech in-
formation, and a speaker classifier task to guide
the training of the non-content encoder. Addition-
ally, we also employ a masking strategy to further
improve disentanglement.

It is noteworthy that our method does not require
transcription to achieve representation disentangle-
ment. Therefore it can be used in scenarios that are
short of transcription data or do not have transcrip-
tion data at all. Our work is hence significantly
different from most previous works that heavily
depend on transcription for speech translation.

Although disentangled speech representation
learning is not new in the community of speech
processing (Xie et al., 2021; Wang et al., 2021;
Abeßer and Müller, 2021), to the best of our knowl-
edge, this is the first attempt to learn disentangled
speech representations for end-to-end speech trans-
lation. In a nutshell, our contributions are listed as
follows.

• We propose CCSRD for end-to-end ST, which
learns speech representation disentanglement
to separate content from non-linguistic fea-
tures.

• The proposed disentanglement module con-
sists of cyclic reconstruction, feature recon-
struction and speaker classifier. It does not
require any transcription data for disentangle-
ment learning.

• We conduct extensive experiments on the
MuST-C benchmark with five language pairs.
CCSRD achieves an average improvement of
+0.9 BLEU in a setting without using any tran-
scription data and +0.9 BLEU in ST with the
multi-task (MTL) setting using transcription
data.

2 Related Work

End-to-End Speech Translation To avoid er-
ror propagation in cascaded ST and reduce infer-
ence latency, Bérard et al. (2016) and Weiss et al.
(2017) propose end-to-end ST that directly trans-
lates speech in the source language into text in the
target language, without relying on the intermedi-
ate transcriptions. However, due to the inherent
complexity and variation of speech signals and the

scarcity of high-quality E2E ST data, achieving sat-
isfactory performance remains challenging. Over
the years, a variety of approaches have been pro-
posed to address these issues, such as pre-training
(Wang et al., 2020b; Tang et al., 2021b; Dong et al.,
2021), multi-task learning (Vydana et al., 2021; Ye
et al., 2021; Tang et al., 2022), data augmentation
(Jia et al., 2019; Lam et al., 2022), contrastive learn-
ing (Li et al., 2021; Ye et al., 2022) and knowledge
distillation (Tang et al., 2021a; Zhao et al., 2021).
Most of these approaches focus on using the tran-
scription data in speech data triplets to perform
MT/ASR tasks, pretrain model components and
mitigate the modality gap between speech and text.
Significantly different from them, we attempt to
improve translation quality by efficiently exploring
the speech representation disentanglement to learn
content-centric speech representations for ST.

Representation Disentanglement Representation
disentanglement refers to a learning paradigm in
which models represent input signals through mul-
tiple separated dimensions or embeddings. There-
fore, it is always advantageous in obtaining repre-
sentations that carry certain attributes or extract dis-
criminative features. Reconstruction based training
(Gonzalez-Garcia et al., 2018; Zhang et al., 2019;
Bertoin and Rachelson, 2022) is widely adopted in
disentanglement learning and used to obtain disen-
tangled representations. The application of repre-
sentation disentanglement is extensive, including
speech (Chan and Ghosh, 2022; Chan et al., 2022),
computer vision (Gonzalez-Garcia et al., 2018; Lee
et al., 2021) and natural language precessing (Bao
et al., 2019; Cheng et al., 2020). Since speech
often contains multiple factors, disentangled rep-
resentation learning provides a way to extract dif-
ferent representations for different tasks like voice
conversion (Du et al., 2022b), automatic speech
recognition (Chan and Ghosh, 2022) and speaker
recognition (Kwon et al., 2020). Our approaches
are partially motivated by these efforts but are sig-
nificantly different from them in two aspects. First,
we make the first step to use representation disen-
tanglement during the training stage of E2E ST and
propose CCSRD. Second, we focus on the quality
of the content representation for ST, removing the
additional encoder and disentanglement module
during inference, while the previous works focus
on the disentanglement of different speech factors
for various speech tasks.
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Figure 1: Diagram of the proposed content-centric speech representation disentanglement learning framework for
E2E ST. Left: The overall architecture, where the text embedding layer is only used during the training under the
MTL setting. The red arrow lines denote the data flow at inference. Right: Details of disentanglement module. It
has three parallel tasks: cyclic reconstruction, speaker classifier and feature reconstruction.

3 CCSRD

In this section, we first introduce the overall model
architecture of CCSRD and subsequently elaborate
disentanglement learning, training and inference of
CCSRD.

3.1 Model Architecture

Our E2E ST model adopts the encoder-decoder
ST backbone. As shown in Figure 1, it consists
of five essential components: speech encoder, con-
tent encoder, non-content encoder, disentanglement
module and translation decoder.
Speech Encoder is to extract low-level features
from speech signals. It contains Wav2vec2.0
(Baevski et al., 2020) and two additional convo-
lutional layers, which are added to shrink the ex-
tracted speech features by a factor of 4.
Content Encoder employs the same configuration
as the original Transformer (Vaswani et al., 2017)
encoder. The input of the content encoder is the
output of the speech encoder for both ASR and ST
tasks while the embeddings of the transcription are
for MT task. The content encoder is trained to learn
decomposed content representations.
Non-content Encoder employs the same config-
urations as the content encoder. The input of the
non-content encoder is the output of the speech

encoder. The non-content encoder is trained to
learn non-linguistic representations separated from
content representations.

Translation Decoder employs the base configura-
tions as the original Transformer (Vaswani et al.,
2017) decoder, which is shared by ASR, MT and
ST. It yields either speech transcription or target
translation based on the output of the content en-
coder.

Disentanglement Module is composed of four net-
works: content feature predictor network that pre-
dicts content representations from non-content fea-
tures, and non-content feature predictor network
that predicts non-content representations from con-
tent features, speaker classifier network that pre-
dicts the speaker IDs based on non-content repre-
sentations and feature reconstruction network that
predicts speech features from the speech encoder
based on both content and non-content representa-
tions.

The speech encoder, content encoder and trans-
lation decoder are the same as those used by Ye
et al. (2021). The non-content encoder and disen-
tanglement module are additionally incorporated
into CCSRD, which are removed during the infer-
ence stage.

The training data of ST usually contains speech-
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transcription-translation triples, which can be de-
noted as D = {(s, x, y)}. With these training
instances, E2E ST can be trained in two ways. Sim-
ilar to standard neural machine translation, it can
be trained in the way of being treated as a single
ST task:

LST = −
∑

(s,y)∈D
logP (y|s) (1)

As |D| is usually not large, E2E ST is often trained
in a multi-task learning way (Ye et al., 2021).
Additional ASR and MT tasks are incorporated
into the training of ST with speech-transcription
pairs {(s,x)} and transcription-translation pairs
{(x,y)} to facilitate knowledge transfer:

LASR = −
∑

(s,x)∈D
logP (x|s) (2)

LMT = −
∑

(x,y)∈D
logP (y|x) (3)

3.2 Speech Representation Disentanglement
Learning

In the training stage of CCSRD, we attempt to de-
compose representations from the speech encoder
into two distinct components: content represen-
tations that are essential for translation, and non-
content representations that encode non-linguistic
speech factors. To achieve this, we propose three
training strategies: (1) encouraging the content en-
coder to encode only linguistic content information,
(2) encouraging the non-content encoder to encode
non-linguistic speech factors other than linguistic
content, (3) minimizing the mutual information
between the content and the non-content represen-
tations. For the first training strategy, we mainly
force the content encoder to learn content-centric
representations to reduce ST loss. For the second
and third strategies, we propose cyclic reconstruc-
tion, feature reconstruction, and speaker classifier
tasks.
Cyclic Reconstruction To effectively disentangle
speech representations, we employ the cyclic recon-
struction method proposed by Bertoin and Rachel-
son (2022) to reduce the mutual information be-
tween the content and non-content representations
in an unsupervised learning setting. Specifically,
after the extraction of content and non-content rep-
resentations from the content and non-content en-
coder respectively, we stack two sub-networks: the
content feature predictor ϕcontent and non-content

feature predictor ϕnon−content to cyclically recon-
struct the content and non-content representations.
Particularly, we train the content and non-content
feature predictor with the following two reconstruc-
tion losses LCON and LNCON respectively:

LCON =

|D|∑

i=1

||Hc
i − ϕcontent(H

s
i )||22 (4)

LNCON =

|D|∑

i=1

||Hs
i − ϕnon−content(H

c
i )||22 (5)

where Hc
i and Hs

i represent the representation for
ith speech input from content and non-content en-
coder respectively. These two sub-networks are
connected to the overall architecture through Gra-
dient Reversal layers (GRLs) (Ganin et al., 2016).
GRLs invert the gradient sign during the backward
pass, thus pushing the parameters to maximize the
losses. As such, the model is constrained to pro-
duce content and non-content representations that
are hard to reconstruct each other, which means
minimal information is shared between the two
types of representations (as their distance is maxi-
mized by Eq. (4) and (5)).
Feature Reconstruction We employ the recon-
struction feature predictor network to predict the
original speech features output by the speech en-
coder based on non-content representations learned
by the non-content encoder and content representa-
tions learned by the content encoder. The training
objective for this sub-network is defined as:

LREC =

|D|∑

i=1

||Hi − ϕrec(H
c
i ⊕Hs

i )||22 (6)

where Hi represents the representation for ith

speech input output from the speech encoder, ϕrec

is the feature reconstruction network which tries to
recover the speech representation from both content
representation Hc

i and non-content representation
Hs

i .
Speaker Classifier Minimizing the mutual infor-
mation between the content and non-content repre-
sentations may be not sufficient as the non-content
encoder is not fully constrained and goal-oriented.
To address this issue, we make full use of speaker
ID information in the dataset. The speaker ID
can be considered as a label for non-linguistic
factors. We believe that the non-content encoder
should fully model this information. Modeling non-
linguistic factors would benefit the decoupling of
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Algorithm 1: CCSRD in the MTL setting
Input :A batch of training set (s, x, y)
Output :Loss

1 while not converged do
2 get s′ from s by applying the masking

strategy;
3 get H for s′ from the speech encoder;
4 get Hs and Hc for s′ from the

non-content and content encoder;
5 get LSRD in Eq. (9) from the

disentanglement module with the input
H, Hs and Hc;

6 do ST task with Hc and y, get LST;
7 do ASR task with Hc and x, get LASR;
8 get Hc for x from the content encoder;
9 do MT task with Hc and y, get LMT;

10 get LMTL in Eq. (10);
11 end

non-linguistic information from content informa-
tion. We train the speaker classifier network with
the following objective:

LSPK = −
|D|∑

i=1

logP (spki | Hs
i ) (7)

where spki represents the speaker ID for the ith

speech input.

3.3 Masking Strategy

Recent studies have demonstrated that the masking
operation can significantly improve the robustness
of models and benefit speech representation dis-
entanglement in multiple speech tasks (Chan and
Ghosh, 2022; Lin et al., 2023). As shown in Figure
1, during the training stage, we modify the input
waveform s of the speech encoder to mask consec-
utive segments and obtain the masked waveform s′.
Then we take s′ as the input to the model. Specif-
ically, for each speech input, it is chosen to be
masked with a probability p. The selected speech
input is then masked for at least n spans, and each
span contains at least m consecutive frames. In
our experiments, we set p to 0.75, n to 2 and m to
3600.

3.4 Training and Inference

CCSRD can be trained either in the ST task setting
or in the multi-task setting with both MT and ASR
tasks. In the ST task setting, the overall training

objective is:

L = LST + LSRD (8)

where

LSRD = LCON + LNCON + LREC + LSPK (9)

In the multi-task setting, the training process
overall training objective is:

LMTL = LST + LASR + LMT + LSRD (10)

The training process for the multi-task setting is
demonstrated in Algorithm 1. During the inference
stage, only the speech encoder, content encoder
and translation decoder are used, which is consis-
tent with previous works. Hence, our method does
not introduce any additional inference latency com-
pared with previous methods.

4 Experiments

4.1 Datasets
We conducted experiments on the widely-used
MuST-C multilingual speech translation dataset
(Di Gangi et al., 2019). We carried out experiments
on English-to-German (DE), English-to-Spanish
(ES), English-to-Russian (RU), English-to-French
(Fr) and English-to-Italian (It). dev was used to de-
velop and analyze our approaches, tst-COMMON
was used for testing. See Appendix A for detailed
dataset statistics.

4.2 Settings
Model Configurations We used Wav2vec2.0 in
the speech encoder, which is only pretrained on au-
dio data from Librispeech (Panayotov et al., 2015)
without performing any downstream finetuning.
The kernel, stride and hidden size of the two CNN
layers stacked over Wav2vec2.0 were set to 5, 2
and 512. The used content encoder and decoder
follow the base configuration of Transformer, with
6 layers, 512 hidden sizes and 8 attention heads.
The non-content encoder follows the same config-
uration as the content encoder. For the network
architecture of the disentanglement module in the
experiments, both the content feature predictor net-
work and non-content feature predictor network
consist of three fully connected (FC) layers fol-
lowed by ReLU activation and one FC layer fol-
lowed by Tanh activation. The feature reconstruc-
tion network utilizes the same architecture as the
feature predictor network, except for the different
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Models En-De En-Es En-Ru En-Fr En-It Avg.

Training in the ST setting w/o using transcription data

Fairseq ST (Wang et al., 2020a) 22.7 27.2 15.3 32.9 22.7 24.2
Self-training (Pino et al., 2020) 25.2 - - 34.5 - -
SpecRec (Chen et al., 2021) 20.8 25.3 13.1 30.3 20.5 22.0
Revisit ST (Zhang et al., 2022) 23.0 28.0 15.6 33.5 23.5 24.7
W2V2-Transformer (Fang et al., 2022) 24.1 29.4 16.3 35.0 24.8 25.9

ST baseline 24.5 29.4 16.1 34.8 24.9 25.9
CCSRD 25.4** 30.2** 16.9** 35.8** 25.8** 26.8

Training in the MTL setting w/ using transcription data

XSTNet (Ye et al., 2021) 25.5 29.6 16.9 36.0 25.5 26.7
SATE (Xu et al., 2021) 25.2 - - - - -
Mutual-learning (Zhao et al., 2021) - 28.7 - 36.3 - -
STEMM (Fang et al., 2022) 25.6 30.3 17.1 36.1 25.6 26.9
ConST (Ye et al., 2022) 25.7 30.4 17.3 36.8 26.3 27.3

MTL baseline 25.5 30.0 17.0 36.0 25.7 26.8
CCSRD 26.1** 31.0** 17.8** 37.1** 26.4** 27.7

Table 1: BLEU scores of different models on the MuST-C tst-COMMON set. "ST baseline" and "MTL baseline"
are the implemented strong baselines using the same architecture as our model, excluding the disentanglement
module and non-content encoder. ** denotes that the improvements over W2V2-Transformer baseline is statistically
significant (p < 0.01).

input dimensions, since the input of the network
is the concatenation of content and non-content
representation. The classifier network comprises
three FC layers with ReLU activation, an adaptive
average pooling layer and a log softmax layer.
Experiment Details We used the raw 16-bit 16
kHz mono-channel audio wave as speech input
and removed utterances of which the duration is
longer than 300K frames. For each translation di-
rection, we used a unigram SentencePiece (Kudo
and Richardson, 2018) model to learn a vocabu-
lary on the text data from the dataset, which is the
same as Ye et al. (2021, 2022)’s setup. For eval-
uation, we computed case-sensitive detokenized
BLEU using sacreBLEU (Post, 2018) on MuST-
C tst-COMMON set. Appendix B contains more
detailed settings.
Baselines We compared our model with multiple
strong E2E ST baselines including: (1) Fairseq ST
(Wang et al., 2020a), (2) Self-training (Pino et al.,
2020), (3) SpecRec (Chen et al., 2021), (4) Revisit
ST (Zhang et al., 2022), (5) W2V2-Transformer
(Fang et al., 2022), (6) XSTNet (Ye et al., 2021),
(7) SATE (Xu et al., 2021), (8) Mutual-learning
(Zhao et al., 2021), (9) STEMM (Fang et al., 2022)
and (10) ConST (Ye et al., 2022). Additionally,

we compared with a strong baseline "ST baseline"
that uses the same neural architecture with W2V2-
Transformer (excluding the proposed non-content
encoder and disentanglement module). We also
compared against a strong "MTL baseline" that
uses the same neural architecture as the ST baseline
but is trained in the MTL setting, which is the same
as XSTNet (Ye et al., 2021).

4.3 Main Results

Comparison to End-to-End Baselines We com-
pared our model with baselines for five language
pairs on the MuST-C benchmark dataset. Results
are shown in Table 1. In the ST setting that does not
use transcriptions in the MUST-C data triples, our
model achieves a substantial improvement of 0.9
BLEU over the ST baseline on average and outper-
forms the strongest baseline, W2V2-Transformer,
in all translation directions. Since MTL models
have achieved state-of-the-art results in recent stud-
ies, we also implemented the proposed CCSRD in
the MTL setting that employs transcriptions to per-
form MT and ASR tasks. Our model achieves a 0.9
BLEU improvement over the MTL baseline, and
even the strong model, ConST. These validate the
effectiveness of our proposed approach in enhanc-
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Models En-De En-Ru

Cascaded
Espnet 23.6 16.4

(Ye et al., 2021) 25.2 17.0

End-to-end
CCSRD 26.1 17.8

Table 2: Comparison to the cascaded baselines on the
MuST-C En-De and En-Ru tst-COMMON set. "Cas-
caded" is the implemented strong cascaded baselines.

Models En-De En-It

CCSRD 25.4 25.8
w/o masking 25.1 25.5
w/o LCON and LNCON 24.7 25.1
w/o LSPK and LREC 24.5 24.9

Table 3: Ablation study results on the MuST-C En-De
tst-COMMON set.

ing ST performance using speech representation
disentanglement. Notably, even not being trained
in the MTL setting, our model achieves the same
BLEU score as the baseline model trained in the
MTL setting, but with a reduced training time.
Comparison to Cascaded Baselines We compared
our method with several cascaded baselines. Espnet
(Inaguma et al., 2020) and the model proposed by
Ye et al. (2021) are two strong cascaded systems
trained using MuST-C and external ASR and MT
data. From Table 2, we find that as an end-to-
end model, our model outperforms these strong
cascaded models even not using any external data.

4.4 Ablation Study

To gain a deep understanding of the effect of com-
ponents deployed in our proposed model, we con-
ducted an ablation study by progressively removing
the masking strategy, the cyclic reconstruction loss
LCON and LNCON, and the speaker classifier loss
LSPK and feature recontruction loss LREC. Results
are shown in Table 3, which indicate that the mask-
ing strategy contributes to an average improvement
of 0.3 BLEU. Besides, CCSRD without masking
strategy can significantly enhance the translation
performance, with an improvement of 0.6 BLUE
achieved both in the En-De and En-It translation
directions. Moreover, the cyclic reconstruction task
plays an extremely important role in speech repre-
sentation disentanglement, without which the per-
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Figure 2: Bivariate KDE contour of the speech and
text representations. Blue curves are text representa-
tions while orange curves represent speech represen-
tations. Samples are drawn from the MuST-C En-De
tst-COMMON set.

Models w/o Noise w/ Noise

ST baseline 24.5 24.2
CCSRD 25.4 25.3

Table 4: BLEU scores on the MuST-C En-De tst-
COMMON set while artificially noisy is introduced
during training.

formance drops substantially. Experimental results
convincingly demonstrate the effectiveness of these
approaches in improving ST performance.

5 Analysis

5.1 Can CCSRD Learn Content-Centric
Representations?

To empirically demonstrate the effectiveness of our
model in learning content-centric representations,
we plot the bivariate kernel density estimation
(KDE) (Parzen, 1962) contour of speech and text
dim-reduced representations to visualize their dis-
tributions Figure 2, where t-SNE (Van der Maaten
and Hinton, 2008) is used to reduce the dimension
of representations into 2D. Ideally, if the representa-
tions of speech have less non-linguistic information,
their KDEs will be similar to the representations
of text, resulting in the contour lines overlapping
as much as possible. As illustrated in Figure 2,
without CCSRD, the overlap between speech rep-
resentation distribution and text representation dis-
tribution is small. In contrast, when CCSRD is
applied, representations of different modalities be-
come closer compared with those learned by the
baseline. This suggests that speech representations
contain more content information similar to that of
text representations, which is beneficial to ST.
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Figure 3: Visualization of cross-attention learned by
CCSRD vs. ST baseline by averaging all heads of the
last cross-attention layer.

We also conducted experiments to analyze the
disentanglement ability of CCSRD. We trained
CCSRD and ST baseline on data with artificially-
generated noise and compared their performance.
Noise data were obtained by adding part of the in-
formation of another speech to the original speech
input. Specifically, for a speech input si, we ran-
domly selected another speech sj from the training
set as noise, and add it to the si according to the
preset weight of 0.15 to obtain a new noisy data:
s
′
i = si + 0.15 ∗ sj . Results of these experiments

are shown in Table 4. We observe that the perfor-
mance of CCSRD degrades slightly while the per-
formance of the ST baseline drops substantially. It
validates that our method is able to achieve success-
ful disentanglement and that the content encoder
is capable of learning high-quality content-centric
representations.

To further compare the efficacy of our ap-
proach against the baseline, we visualize the cross-
attention matrices of the ST baseline and CCSRD
in Figure 3. We obtain the attention matrix by av-
eraging all heads of the last cross-attention layer.
Our model confidently aligns target tokens to their
corresponding speech frames respectively as in Fig-
ure 3, where the baseline model yields an incorrect
translation with inappropriate attention weights.

5.2 Dose External MT Data Further Improve
CCSRD ?

Many previous studies regard “leveraging exter-
nal MT data” to be one of the advantages of their
models and achieve better performance in the MTL
setting. Therefore we further investigated CCSRD
trained with external WMT16 En-De dataset. Re-
sults are shown in Table 5. We observe that CCSRD

External MT MTL baseline CCSRD

25.5 26.0
✓ 27.2 28.1

Table 5: BLEU scores of CCSRD vs. MTL baseline on
the MuST-C En-De tst-COMMON set while external
MT data is used during training.
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Figure 4: BLEU scores on the MuST-C En-De tst-
COMMON set when the amount of speech data used
for training is varying from 50K to 408K hours.

trained with external MT data in the MTL setting
achieves a further improvement of 2.1 BLUE while
the MTL baseline obtains an improvement of 1.7
BLUE. We conjecture that with the external MT
data for training the MT task in the MTL setting,
CCSRD is able to learn more on content-to-target-
translation alignment and hence to generate better
translations.

5.3 CCSRD in Low-Resource Scenarios

We extend the proposed CCSRD to ST in low-
resource scenarios in the ST setting to investigate
if it is still able to improve translation quality. We
conducted experiments using different hours of
speech data from the training dataset, simulating
low-resource conditions. The results are shown
in Figure 4. We reduced the ST data to 50 and
100 hours, corresponding to around 25K and 50K
sentences. We observe that CCSRD is particularly
helpful when the amount of speech data is small.

6 Conclusions

In this work, we have presented CCSRD, an E2E
ST framework that explores speech representation
disentanglement learning to capture content rep-
resentations for ST. Experimental results validate
the effectiveness of the proposed framework under
both the ST task setting and the multi-task setting.
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In-depth analyses demonstrate that CCSRD is ca-
pable of disentangling linguistic content from non-
linguistic speech factors. We would like to employ
more speech factors to guide the training of the
non-content encoder and explore the disentangled
non-content representations for improving ST in
the future.

Limitations

Although the proposed method facilitates ST to
learn content-centric representation, and obtains
significant improvements over previous methods,
it still has some limitations: (1) We need labels
of non-linguistic speech factors (e.g., speaker IDs,
prosody labels) to guide the training of the non-
content encoder. (2) It is difficult to analyze the
non-content representation since they may be re-
lated to many different speech factors. (3) Non-
content representations could also be used to im-
prove ST, which we leave to our future work.
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A Statistics of all datasets

Languages Hours Sents

En→De 408 234K
En→Es 504 270K
En→Fr 492 280K
En→It 465 258K
En→Ru 489 270K

Table 6: Statistics of the used MuST-C datasets.

B Experimental Details

Training and Implementation Details We im-
plemented our model based on the fairseq toolkit
and trained all models on 8 A6000 GPUs. During
the training stage, we used Adam optimizer with
β1 = 0.9, β2 = 0.98, and learning rate = 1e−4

with warmup 25k steps during training. During
the inference stage, we saved the checkpoints with
the highest BLEU and averaged the last 10 check-
points. For decoding, following previous studies
(Ye et al., 2022), we used a beam size of 10 and a
length penalty of 0.7 for German, 0.1 for Spanish,
0.5 for Italian and 0.4 for Russian. For the experi-
ments in Table 5, we followed the previous works
(Ye et al., 2021, 2022) and used the WMT16 En-De
datasets as the external MT dataset, which contains
4.6M sentences.
Baseline Model Details In Table 1, we compared
our method with end-to-end baseline models under
the setting of no transcription data being used (i.e.,
only training the ST task):

• Fairseq ST (Wang et al., 2020a): a re-
implemented model based on the Fairseq took-
lit, which is trained with only the ST task data.

• Self-training (Pino et al., 2020): a model
trained with pseudo-labels.

• SpecRec (Chen et al., 2021): a model trained
with a spectrogram reconstruction technique.

• Revisit ST (Zhang et al., 2022): a model that
trained with several techniques like parame-
terized distance penalty and CTC-based regu-
larization.

• W2V2-Transformer (Fang et al., 2022): a
model that has the same structure as our ST
baseline.

We also compared our method against the fol-
lowing baseline models under the MTL setting us-
ing transcription data, (i.e., using the transcription
data).:

• XSTNet (Ye et al., 2021): a model that has the
same structure as W2V2-Transformer but is
adopted to the multi-task fine-tuning strategy.

• STEMM (Fang et al., 2022): a model
that bridges the modality representation gap
by mixing up the speech representation se-
quences and text transcription embedding se-
quences.

• ConST (Ye et al., 2022): a model that applies
contrastive learning to bridge the modality gap
between speech and transcriptions.

• Mutual-learning (Zhao et al., 2021): a model
that introduces a mutual-learning paradigm
to iteratively learn and share the knowledge
between MT and ST task.

• SATE (Xu et al., 2021): a model that leverages
an adapter to incorporate pre-trained ASR and
MT models into E2E ST.

C Case Analysis

We present two translation examples yielded by
CCSRD in comparison to those by the ST baseline
model in Table 7. We observe that ST baseline
cannot accurately translate some phrases, whereas
CCSRD successfully conveys the meaning, and
translates more accurately than ST baseline. This
improvement might be due to the ability of CCSRD
in capturing content representations.
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Models

Example 1

Ref.
src: And the motives of online criminals are very easy to understand.
tgt: Und die Motive von Online-Kriminellen sind sehr leicht zu verstehen.

ST baseline tgt: Und die Motive von Online-erbrechern ist sehr leicht zu verstehen.

CCSRD tgt: Und die Motive von Online-Kriminellen sind sehr leicht zu verstehen.

Example 2

Ref.

src: If we want this institution to work for us, we’re going to have to make bureau-
cracy sexy.
tgt: Wenn wir wollen, dass diese Institution für uns arbeitet, müssen wir Bürokratie
sexy machen.

ST baseline
tgt: Wenn wir wollen, dass diese Einrichtung für uns funktioniert, müssen wir die
Bürokratie sexy machen.

CCSRD
tgt: Wenn wir wollen, dass diese Institution für uns arbeitet, müssen wir Bürokratie
sexy machen.

Table 7: Translation examples from the En-De tst-COMMON set, yielded by the ST baseline and CCSRD.
Underlined fragments are grammatically incorrect or inaccurate translations.
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