
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 5972–5984
December 6-10, 2023 ©2023 Association for Computational Linguistics

Transformer Working Memory Enables Regular Language Reasoning
And Natural Language Length Extrapolation
Ta-Chung Chi

Carnegie Mellon University
tachungc@andrew.cmu.edu

Ting-Han Fan
Princeton University

tinghanf@princeton.edu

Alexander I. Rudnicky
Carnegie Mellon University

air@cs.cmu.edu

Peter J. Ramadge
Princeton University

ramadge@princeton.edu

Abstract

Unlike recurrent models, conventional wis-
dom has it that Transformers cannot per-
fectly model regular languages. Inspired
by the notion of working memory, we pro-
pose a new Transformer variant named Regu-
larGPT. With its novel combination of Weight-
Sharing, Adaptive-Depth, and Sliding-Dilated-
Attention, RegularGPT constructs working
memory along the depth dimension, thereby
enabling efficient and successful modeling of
regular languages such as PARITY. We fur-
ther test RegularGPT on the task of natural
language length extrapolation and surprisingly
find that it rediscovers the local windowed at-
tention effect deemed necessary in prior work
for length extrapolation.

1 Introduction

It is long believed that Working Memory (WM),
a term coined in 1960s to liken human minds to
computers, plays an important role in humans’ rea-
soning ability and the guidance of decision-making
behavior (Baddeley and Hitch, 1974; Baddeley,
1992; Ericsson and Kintsch, 1995; Cowan, 1998;
Miyake et al., 1999; Oberauer, 2002; Diamond,
2013; Adams et al., 2018). While no single defini-
tion encompasses all applications of WM (Adams
et al., 2018), the following one should be shared by
all of the theories of interest:

Working memory is a system of compo-
nents that holds a limited amount of in-
formation temporarily in a heightened
state of availability for use in ongoing
processing. - Adams et al. (2018)

WM is instantiated in the two major driving
forces of sequence modeling: Recurrent neu-
ral networks’(RNN) (Elman, 1990; Jordan, 1997;
Hochreiter and Schmidhuber, 1997) short term
memory modulated by their recurrent nature and
gate design (Rae and Razavi, 2020a; Nematzadeh

et al., 2020; Armeni et al., 2022), and Transform-
ers’ (Vaswani et al., 2017) salient tokens height-
ened by self-attention.

In reality, self-attention often attends
broadly (Clark et al., 2019), violating the
limited amount of information notion of WM. Our
hypothesis is that such violation is to blame for
Transformers’ failure on algorithmic reasoning of
regular languages (Deletang et al., 2023; Liu et al.,
2023) such as PARITY, a seemingly simple task
that checks if the number of 1s in a bit string is
even. Surprisingly, a Transformer can only count
the number of 1s correctly when the sequence
length is held fixed at training sequence length Ttr,
and it fails miserably when the testing sequence
length extrapolates to Tex > Ttr (Hahn, 2020;
Bhattamishra et al., 2020; Chiang and Cholak,
2022; Deletang et al., 2023; Liu et al., 2023). In
contrast, an RNN can extrapolate perfectly.

The goal of this work is therefore to improve
Transformers’ WM by limiting the amount of ac-
cessible information at a time. Existing attempts
that use a combination of scratchpad and recency
biases (Wei et al., 2022; Nye et al., 2022; Anil
et al., 2022; Liu et al., 2023) is not optimal as it
completely foregoes the parallelization property of
a Transformer, making it as computationally ineffi-
cient as an RNN.

This begs the question: Does there exist a more
efficient Transformer working memory design? The
answer is affirmative thanks to the proposed Reg-
ularGPT, which boils down to the three design
choices: Weight-Sharing, Adaptive-Depth, and
Sliding-Dilated-Attention; Each of them has been
proposed previously but it is the unique combina-
tion that sparks the successful and efficient learning
of regular languages. We will further demonstrate
its: 1) similar recursive parallel structure as lin-
ear RNN (Orvieto et al., 2023), resulting in log Ttr
or log Tex layers, and 2) generalizability by show-
ing strong performance on the task of Transformer

5972

natural language length extrapolation (Press et al.,
2022; Chi et al., 2022, 2023).

In this work, we use [N] to denote the list of
non-negative integers [0, . . . , N − 1]. The Trans-
former model used in this work is always causal. It
takes in an input sequence of T ≤ Ttr units (can
be tokens or bits) σi∈[T], passes them through a
fixed amount of L transformer layers, and finally
computes the distribution over the vocabulary V
via the prediction head Wo.

2 Background

2.1 Regular Language and Algorithmic
Reasoning

The Chomsky hierarchy (Chomsky, 1956b) clas-
sifies formal languages into different hierarchies
based on their increasing complexity. Each hierar-
chy represents a family of formal languages that
can be solved by the corresponding automaton. At
the lowest level resides the family of regular lan-
guages, which can be expressed using a finite state
automaton (FSA), a computational model compris-
ing a set of states and transitions connecting them.

Our primary objective is to enhance the algorith-
mic reasoning of the Transformer model on regular
languages by testing its language transduction ca-
pability under the extrapolation setting. Concretely,
the model is trained only to predict desired outputs
on a set of short length-T sequences with T ≤ Ttr.
Still, it must also predict the correct outputs for
longer testing sequences of length Tex � Ttr. It
is worth noting that we evaluate our model via
language transduction following recent work (Dele-
tang et al., 2023; Liu et al., 2023), instead of the
conventional language recognition protocol. Both
settings are equally hard as they are underpinned
by the same finite state semiautomaton. Interested
readers may refer to Deletang et al. (2023) for fur-
ther details regarding the two evaluation protocols.
We also reveal the connection between RegularGPT
and finite state semiautomaton later in §7.

2.2 Failure Mode and An Inefficient Fix

The PARITY task involves a length T bit string
σ1σ2 · · ·σT where each bit σi is randomly sampled
from a Bernoulli distribution with P(σi = 1) =
0.5. The goal is to determine whether the sequence
contains an even or odd number of 1s.

It has been observed that a Transformer is inca-
pable of performing length extrapolation on PAR-
ITY, but what could be its potential failure mode?

Previous work sheds light on this by showing that
a Transformer might settle on the naive-summation
approach (Anil et al., 2022; Deletang et al., 2023;
Liu et al., 2023). Concretely, it sums up all the
bits and outputs the summation modulo 2. This ap-
proach fails since unseen summations will be pro-
duced when the model takes sequences of length
Tex > T as input or P(Si) deviates from 0.5.

To the best of our knowledge, the existing rem-
edy (Liu et al., 2023; Anil et al., 2022) is to use
scratchpad (Wei et al., 2022; Nye et al., 2022) along
with recency biases (Press et al., 2022) to enforce
the correct learning: They create a scratchpad that
interleaves the sequence of input bits and interme-
diate answers (σ1, q1, σ2, q2, · · · , σT , qT), where
qi = solve(σ1 · · ·σi). The model is trained to pre-
dict all the σi∈[T]. Recency biases play the role of
limiting a Transformer’s receptive field to only a
few most recent σ and q at every timestep i. This is
to prevent self-attention from ignoring q and giving
the same naive-summation solution.

Scratchpad and recency biases jointly create the
notion of WM along the temporal dimension simi-
lar to RNNs, thereby enabling successful extrapo-
lation on regular languages. Nevertheless, we note
that this fix is inefficient during inference since all
the intermediate answers qi have to be generated
sequentially before reaching the final answer qT .
A desirable fix should only take in the input bits
(σ1, σ2, · · · , σn) and directly generate the final an-
swer qT . In other words, our goal is to find an
efficient WM design for a Transformer.

2.3 A Desirable Fix for PARITY (Figure 1)

An alternative solution to the PARITY problem is
based on the spirit of divide-and-conquer, where
we first divide the sequence into T/C chunks with
each chunk of length C < T , and we compose
the final answer by recursively merging the chunk
outputs. This approach does not suffer from the
unseen summation issue as the model was trained
to handle a fixed amount of C bits at a time in
its WM (chunk). It then recursively applies the
already-seen results to compose the final solution
when it encounters longer sequences during infer-
ence. More importantly, it is more efficient than
the scratchpad and recency biases approach since
it only requires logC T layers of parallel computa-
tions instead of 2T steps of sequential decoding.

5973

1 0

1 1

0 0

0 𝐿𝑎𝑦𝑒𝑟 = 0

0 1 0 0

0 0

1 1

𝐹𝐹𝑁 𝐹𝐹𝑁

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
𝐿𝑎𝑦𝑒𝑟 = 1 𝐿𝑎𝑦𝑒𝑟 = 2

𝐹𝐹𝑁

Figure 1: This is the divide-and-conquer approach that solves the PARITY problem. The lightly shaded blue cells
represent M (l)

mn in eq. (1). The darkened blue cells represent the routing path to solve the result for the last bit
specifically. As we can see, this approach requires at most log2 T layers to obtain the result for a length T input
sequence, rendering it a more efficient approach compared to the combination of scratchpad and recency biases.

3 Proposed Architecture of RegularGPT

We present our modifications to the vanilla Trans-
former below. Only the related operations will be
expanded, and we follow all the other details of
GPT2 (Radford et al., 2019).

3.1 Sliding-Dilated-Attention
A Transformer layer at layer l consists of a self-
attention operation denoted as SA(l) and feed-
forward network denoted as FFN(l). Originally,
SA(l) computes the inter-token relationships across
all T units. Instead, we set the chunk size to C
and produce T/C non-overlapping chunks;1 Only
the units within the same chunk inter-attend with
each other. In practice, this can be achieved by
an attention mask M (l) ∈ RT×T at layer l. M (l)

shares the same shape as the self-attention matrix
(see Figure 1) and is defined as:

M (l)
mn =

{
r(m−n)/C` , if m−n

Cl ∈ [C]

− inf, otherwise
(1)

Note that M is a lower triangular matrix due to the
causal nature of our model. ri’s with i ∈ [C] are
learnable relative positional scalars. To be precise,
each attention head has a different set of learnable
biases ri’s. Here, we drop the dependency on the
head for notational simplicity.

The use of ri’s is similar to the positional scalars
of T5 (Rae and Razavi, 2020a) except that we do
not use the log-binning strategy over m− n. It is
to facilitate the extraction of global information
instead of enforcing the windowed-attention ef-
fect (Raffel et al., 2020; Press et al., 2022; Chi

1Whenever T is not divisible by C, we pad the input se-
quence such that its length is a multiple of C.

et al., 2022, 2023). M will then be added to
the original self-attention matrix, creating the pro-
posed Sliding-Dilated-Attention effect. The out-
put of SA(l) will be transformed by the positional-
independent FFN(l) to produce o(l)i∈[T].

The case of C = 2 is used as a possible construc-
tion of Theorem 1 in Liu et al. (2023). However,
their focus is not on length extrapolation, hence
lacking the below two proposed modifications.

3.2 Adaptive-Depth and Weight-Sharing
Since our Sliding-Dilated-Attention limits the num-
ber of accessible tokens at a time, we need an adap-
tive depth L̄ = logC T so that the final output
can utilize every single piece of input information.
However, when Tex > Ttr, the depth during infer-
ence will be higher than that during training. The
simplest way to solve this challenge without further
parameter updating is to perform Weight-Sharing
across layers. To account for the possible perfor-
mance loss due to Weight-Sharing, we first thicken
the model by K times, resulting in a total number
of K · L̄ layers. Next, we share the weights across
the K · L̄ layers in the following way for k ∈ [K]:

SA(l·K+k) =SA(k) for l ∈ [L̄]

FFN(l·K+k) =FFN(k) for l ∈ [L̄]

It can be equivalently interpreted as stacking more
SA and FFN components within every Transformer
layer, and the same thickened layer is reused L̄
times. This layer thickening design is only used in
the natural language modeling experiments in §6.

3.3 Where is the WM Notion?
Instead of instantiating WM along the temporal
dimension as the combination of scratchpad and

5974

𝑣! 𝑣" 𝑣# 𝑣$

𝐴𝑣! + 𝑣" 𝐴𝑣# + 𝑣$

𝐴" 𝐴𝑣! + 𝑣" + 𝐴𝑣# + 𝑣$

𝐴#𝑣! + 𝐴"𝑣" + 𝐴𝑣# + 𝑣$ 𝐴$ +
𝐴#𝑣% + 𝐴"𝑣& + 𝐴𝑣' + 𝑣(

𝑣% 𝑣& 𝑣' 𝑣(

𝐴𝑣% + 𝑣& 𝐴𝑣' + 𝑣(

𝐴" 𝐴𝑣% + 𝑣& + 𝐴𝑣' + 𝑣(

Figure 2: This is the parallel scan algorithm that can
accelerate a linear RNN. In this example, we visualize
the routing path for computing x8. Blocks at the same
layer can be computed in parallel on GPUs.

recency biases, RegularGPT limits the amount of
information along the depth dimension. As we
have seen, the idea of breaking T units into several
chunks limits the amount of accessible informa-
tion at each layer, thereby enabling the WM no-
tion. A similar argument was made by Yogatama
et al. (2021) in a sense that they categorized Long-
former (Beltagy et al., 2020), a transformer variant
with local attention pattern, as a model of working
memory. Finally, thanks to modern accelerators
such as GPU, all chunks at a layer can be processed
concurrently, and this further makes RegularGPT
more favorable over the scratchpad and recency
biases approach.

3.4 Complexity Analysis
The sparse attention pattern of RegularGPT sug-
gests it might enjoy the same speedup provided
by sparsified Transformers. The complexity of our
model is O(TCK logC T) where TC is the com-
plexity of each self-attention module andK logC T
is the total number of layers. On the other hand,
the vanilla Transformer follows O(T 2L). To il-
lustrate the possible speedup, if T = 512 and
C = 128, then 512 · 128 ·K log128 512 < 5122L
whenK < 512L

128 log128 512
≈ 3.11L. Namely, as long

asK < 3L, our model is likely to be more efficient
than a vanilla Transformer.

4 Connection to Prior Work

Sliding-Dilated-Attention This special atten-
tion pattern dates back to pre-Transformer era such
as Wavenet (van den Oord et al., 2016) with dilated
convolution. It can also be viewed as a special
form of Longformer attention pattern with system-
atic dilation (Beltagy et al., 2020).2 Limiting the

2The original Longformer also adopts dilated attention on
a few heads at higher layers but without the systematic pattern

range of attention in lower layers of a Transformer
is also corroborated in Rae and Razavi (2020b),
where they find such design does not deteriorate
the performance.

Adaptive-Depth and Weight-Sharing AL-
BERT (Lan et al., 2020) and Universal Trans-
former (Dehghani et al., 2019) share the parameters
across layers. The weight sharing design makes
them compatible with the idea of Adaptive
Computation Time (Graves et al., 2014) and
Dynamic Halting (Dehghani et al., 2019; Elbayad
et al., 2020), which allocate different compu-
tational budget depending on the complexity
of tasks (Simoulin and Crabbé, 2021; Csordás
et al., 2022). However, they lack the special
Sliding-Dilated-Attention design that is necessary
for ruling out naive solutions.

Linear RNN Given x0 = 0 ∈ RN and the in-
put vectors u1 · · ·uT , a linear RNN (Orvieto et al.,
2023) for k ∈ [T] can be written as:

xk = Axk−1 +Buk =
k−1∑

j=0

AjBuk−j

=
k−1∑

j=0

Ajvk−j ,

where we set vk−j = Buk−j . The operation can be
accelerated by the parallel scan algorithm that per-
mits efficient cumulative sum (Ladner and Fischer,
1980; Blelloch, 1990; Lakshmivarahan and Dhall,
1994; Martin and Cundy, 2018; Liu et al., 2023;
Smith et al., 2023). As we can see in Figure 2,
the routing path specified by the parallel scan algo-
rithm is the same as our Sliding-Dilated-Attention
illustrated in Figure 1.

5 Regular Language Experiments

5.1 Task Descriptions
We focus on the four tasks in section 1) (Deletang
et al., 2023) of Table 1 as they will also be used in
our analysis in §7. For tasks in section 2), please
refer to Bhattamishra et al. (2020) for details.

Even Pairs A model needs to predict whether
the total count of "ab" and "ba" pairs is even. In
the example of "aabba", there is one "ab" and one
"ba", resulting in a total count of 2, which is even.
This task is equivalent to checking whether the first
and last characters in a string are identical.

used in this work.

5975

Task RNN Transformer
RegularGPT

C = 2 C = 3

1) Deletang et al.
Even Pairs 100.0 / 100.0 99.7 / 73.2 100.0 / 89.3 100.0 / 96.6
Modular Arithmetic 100.0 / 100.0 21.9 / 20.3 96.4 / 82.6 21.2 / 20.5
Parity Check 100.0 / 98.9 52.3 / 50.1 100.0 / 100.0 100.0 / 88.7
Cycle Navigation 100.0 / 100.0 21.7 / 20.6 100.0 / 100.0 100.0 / 78.6
2) Bhattamishra et al.
D2 100.0 / 100.0 100.0 / 80.1 100.0 / 100.0 99.8 / 96.5
D3 100.0 / 100.0 100.0 / 77.8 100.0 / 99.7 98.6 / 93.0
D4 100.0 / 100.0 100.0 / 82.6 100.0 / 98.7 97.7 / 91.6
D12 100.0 / 100.0 100.0 / 80.3 100.0 / 99.8 94.1 / 90.4
Tomita 3 100.0 / 100.0 100.0 / 94.4 100.0 / 99.7 100.0 / 99.9
Tomita 4 100.0 / 100.0 100.0 / 70.0 100.0 / 99.8 100.0 / 99.3
Tomita 5 100.0 / 100.0 74.5 / 74.5 100.0 / 99.8 98.2 / 84.1
Tomita 6 100.0 / 100.0 50.0 / 50.0 100.0 / 98.5 100.0 / 65.7

Table 1: Length generalization results on Regular Languages (Max/Avg). All models in the first section (Dele-
tang et al.) are trained on sequences of length 40. The reported numbers are the average of length extrapolation
results from 41 to 500. Each result is an average over 3 seeds. All models in the second section (Bhattamishra et al.)
are trained on sequences of length 50. The reported numbers are the average of length extrapolation results from
51 to 100. Each result is an average over 3 seeds. Please refer to Appendix A for the detailed hyperparameters.

Modular Arithmetic Given a sequence of num-
bers in {0, 1, 2, 3, 4} and operations in {+, -, ·}, a
model needs to compute the result modulo 5. For
example, x = 1 + 2− 4 evaluates to y = 4.

Parity Check A model needs to compute
whether the number of bs in a given binary string
is even. For example, the sequence x = aaabba
contains 2 bs, which is even.

Cycle Navigation Given a sequence of move-
ments on a cycle of length 5, a model needs to
compute the end position. The possible movements
are STAY, INCREASE, DECREASE encoded as
{0, 1, 2}. The agent always starts at position 0. For
example, 010211 means the agent stops at position
2 = 0 + 1 + 0− 1 + 1 + 1.

5.2 Language Transduction and
Extrapolation

First, we want to know if endowing a Transformer
with the notion of WM really improves its length
extrapolation capability on regular languages. We
test RegularGPT and all the baselines on two sets of
regular languages from prior work (Deletang et al.,
2023; Bhattamishra et al., 2020).3 Prior work often

3Our implementation is based on the codebase of Deletang
et al. (2023) at: https://github.com/deepmind/
neural_networks_chomsky_hierarchy. We addi-
tionally implement the regular languages in the second section

reports the maximum score across different hyper-
parameter settings and random seeds because their
goal is to know if a model can extrapolate at all.
We additionally report the average scores since we
want to know if the model can consistently obtain
good performance. The baseline models we com-
pare against are an RNN and vanilla Transformer
with Transformer-XL style relative positional em-
bedding (Dai et al., 2019). Table 1 shows that
RegularGPT with C = 2 acheives similar perfor-
mance as an RNN and substantially outperforms a
vanilla Transformer.

5.3 The Effect of Chunk Size C

We vary the chunk size C of RegularGPT to see
its impact on the performance. The motivation
for using a larger C is to reduce the number of
layers (i.e., L̄ = logC T decreases in C) and in-
crease the degree of parallelization. However, in
Table 1, a larger C seems to pose a challenge to
RegularGPT on the Modular Arithmetic task. Mod-
ular Arithmetic is a hard task with far more states
and complicated state transitions. Increasing C is
likely to increase the task difficulty by composing
more state transitions at once. We will have an
in-depth discussion of the theoretical reasons in §7.

of Table 1.

5976

https://github.com/deepmind/neural_networks_chomsky_hierarchy
https://github.com/deepmind/neural_networks_chomsky_hierarchy

Settings Probability P(σi = 1)
0.1 0.3 0.5 0.7 0.9

1) Same Length
RegularGPT 100 100 100 100 100
RNN 100 100 100 100 100
Transformer 98.4 99.8 99.6 97.8 77.2
2) Extrapolation
RegularGPT 100 100 100 100 100
RNN 100 100 100 100 100
Transformer 50.1 49.7 50.3 49.9 50.0

Table 2: We alter the probability P(σi = 1) used to
sample 1s of PARITY. The same length setting is 40.
The extrapolation setting is from 41 to 500. Each entry
is an average over 3 seeds.

5.4 Robust to Probability Changes

Other than the length extrapolation experiment, we
alter the probability of sampling 1s of PARITY,
i.e., set P(σi) 6= 0.5. The results in Table 2 show
that RegularGPT is robust to different sampling
probabilities, indicating its successful modeling
of the underlying regular language grammar. In
contrast, a vanilla Transformer model struggles to
achieve good performance even for the same length
setting, again validating the fact that it only finds
the naive-summation solution as discussed in §2.2.

6 Natural Language Experiments

Given that RegularGPT has been battle-tested on
the main experiment of regular languages, we now
shift gear to benchmark its performance in the nat-
ural language scenario. Given a model trained on
sequences of length Ttr, we test it on much longer
sequences of length Tex � Ttr during inference,
and the goal is to observe similar perplexities. To
optimize efficiency, we employ a random selec-
tion process to extract 1,000 chunks, each with
Tex tokens from the testing set. Subsequently, we
calculate the average perplexity of the last tokens
within these chunks to ensure each of them has
Tex − 1 tokens as the context, thereby avoiding the
issue of early token curse (Press et al., 2022; Chi
et al., 2023). We compare our model against the
existing methods that are known to demonstrate the
ability of length extrapolation including T5 (Raffel
et al., 2020), ALiBi (Press et al., 2022), and KER-
PLE (Chi et al., 2022).4 To counteract the loss of

4We use the nanoGPT codebase: https:
//github.com/karpathy/nanoGPT, and the Open-
WebText2 dataset: https://huggingface.co/
datasets/the_pile_openwebtext2.

expressive power due to weight sharing, we thicken
each layer of RegularGPT to K as detailed in §3.

In Table 3, we first observe exploding perplex-
ities for C = 32 after Tex ≥ 2048. RegularGPT
might only learn to model dlog32 512e = 2 lay-
ers during training, hence it fails to recursively
model more than 322 = 1024 tokens during infer-
ence. This is validated by C = 64 since this time
it is able to extrapolate until 64dlog64 512e = 4096.
While the above argument seems to suggest large
C, setting C = 256 also deteriorates the perfor-
mance. This might be due to the limited number
of chunks (512/256 = 2) and ri’s (in Eq. (1)) ob-
served at the second layer, making the learning of
ri’s harder. Overall, C is a hyperparameter that
needs to be carefully decided for RegularGPT on
natural languages. We also observe that 128/12 per-
forms better than 128/6, implying RegularGPT’s
performance could be improved by stacking more
layers to counteract the performance loss due to
Weight-Sharing.

It is worth noting that 128/12 performs relatively
well and is close to previous methods designed
specifically for the task of natural language extrapo-
lation. We will analyze its inner workings in depth
in Figure 4 and §7, in which we find that Regu-
larGPT learns the similar local receptive field as
prior work, which is likely the key to its successful
natural language extrapolation performance.

7 Discussion and Analysis

7.1 Regular Language and Finite State
Semiautomaton

Regular language is the type of formal language
recognized by an FSA (Chomsky, 1956a), which
is a 5-tuple (Q,Σ, δ, q0, F), where Q is a finite
non-empty set of states, Σ is a finite non-empty
set of symbols, q0 ∈ Q is an initial state, δ : Q×
Σ → Q is a transition function; F ⊆ Q is a set
of final states. However, some of our tasks are
better modeled by a finite-state transducer (FST)
as discussed in §2.1. To underpin both FSA and
FST, we consider a semiautomation A = (Q,Σ, δ)
(i.e., an FSA without q0 and F) and establish its
connection to a Transformer model.

Let σa:b be the sequence from position a (in-
clusive) to b (exclusive) out of a length T input
sequence (i.e., 0 ≤ a < b ≤ T). We define
A(σa:b) : Q → Q as the (b − a)-step state transi-
tion relation after receiving σa:b.

A(σa:b) = δ(·|σb−1) ◦ · · · ◦ δ(·|σa),

5977

https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://huggingface.co/datasets/the_pile_openwebtext2.
https://huggingface.co/datasets/the_pile_openwebtext2.

Tex KERPLE T5 ALiBi
RegularGPT (C/K)

32 / 6 64 / 6 128 / 6 128 / 12 256 / 6
512 24.71 24.50 24.53 32.06 30.17 28.80 26.37 27.90
1024 24.42 24.38 24.90 32.03 30.30 28.94 26.91 34.38
2048 24.21 25.01 25.08 791.74 30.56 29.14 27.08 34.85
4096 24.53 28.91 25.08 812.00 30.80 29.25 27.28 35.11
8192 24.74 39.08 25.08 818.49 1175.91 29.41 27.39 35.42

Table 3: Natural language extrapolation results on OpenWebText2. The training length is 512. The numbers
are averaged over three random seeds. Please refer to Appendix B for the detailed hyperparameters.

where f(·) ◦ g(·) = f(g(·)) denotes function
composition. With abuse of notation, we define
Aq(σa:b) ∈ Q as the state after receiving σa:b if
starting at q ∈ Q

Aq(σa:b) = δ(·|σb−1) ◦ · · · ◦ δ(·|σa), q0 = q.

7.2 Modeling Transition Composition
We want to show that the layers of RegularGPT
with chunk size C = 2 can model the composition
of two transition functions:

A(σa:b) = A(σi:b)◦A(σa:i) for i ∈ [a+1, . . . , b).

This way, the regular language problem can be
solved recursively using the construction outlined
in §3 and Figure 1. To formalize the statement,
we first observe that A(σa:b), A(σa:i), and A(σi:b)
can be represented in R|Q|2 :

A(σa:b) =

OneHot|Q|(Aq0(σa:b))

OneHot|Q|(Aq1(σa:b))

· · ·
OneHot|Q|(Aq|Q|−1

(σa:b))

 ∈ R|Q|

2
,

(2)
where OneHot|Q|(i) is a one-hot vector of length
|Q| with the i-th index being 1.

The next step is to mix A(σa:i) and A(σi:b) to-
gether and get A(σa:b). We show in Lemma 1 that
a 2-layer ReLU network can learn (and so can a
transformer layer) the composition. The proof of
Lemma 1 is deferred to Appendix C.

Lemma 1 (Approximation for Binary Matrix Prod-
uct). Let A,B ∈ {0, 1}n×n be binary matrices of
dimension n × n. Then, there exists a two-layer
ReLU network such that

fmlp([Flat(A),Flat(B)]) = Flat(AB),

where Flat(X)(i−1)n+j = Xi,j for i, j ∈ [n] is
the operation that flattens a matrix into a vector.

Now, we can relate Lemma 1 to the FFN lay-
ers in RegularGPT. Following §3, when chuck size
C = 2 and thickness K = 1, the output vector o(l)i
depends on input sequence σi−2l+1+1:i+1. Also,
o
(l)
i is computed from o

(l−1)
i−2l and o

(l−1)
i , which

depend on input sequences σi−2l+1+1:i−2l+1 and
σi−2l+1:i+1, respectively. This observation im-
plies that o(l)i likely models the transition func-
tion A(σi−2l+1+1:i+1), which we denote as o(l)i ∼
A(σi−2l+1+1:i+1). We will verify this assumption
in §7.3.

If o(l)i ∼ A(σi−2l+1+1:i+1) is true, Lemma 1
implies that RegularGPT’s FFN models the tran-
sition function composition. This is immediate
by setting o

(l−1)
i−2l ∼ Flat(A(σi−2l+1+1:i−2l+1)),

o
(l−1)
i ∼ Flat(A(σi−2l+1:i+1)) and recognizing

the fact that function composition is a matrix prod-
uct under the representation of Eq. (2).

The next step is to explain the use of self-
attention layers in RegularGPT. Although Lemma 1
has established a composition, it is unclear how
the transitions are concatenated in the first place
(i.e., [Flat(A),Flat(B)]). With a two-head self-
attention and the learnable relative positional
scalars, it is possible to adjust them so that the
attention output contains the concatenated informa-
tion [Flat(A),Flat(B)].

Recall in Eq. (1), each head has a different set of
scalars ri’s. One concrete construction for concate-
nation is setting r0 = 0 and the remaining −∞ for
the first head; r1 = 0 and the remaining −∞ for
the second head. In other words, each head is only
responsible for capturing one state transition. After
the multi-head self-attention operation, we obtain
the concatenation of two state transitions.

Finally, when the prediction head reads out
the answer, the operation is equivalent to a map-
ping from A(σ0:T) ∈ R|Q|×|Q| to Aq0(σ0:T) =

A(σ0:T) ◦ q0 ∈ R|Q|. Since we assume that o(l)T−1

5978

(a) PARITY. (b) Cycle Navigation.

Figure 3: Clustering of FFN output vectors across all layers via PCA on the task of PARITY and Cycle Navigation.

models A(σ0:T), the transduction readout is per-
formed by a linear map on o(l)T−1 as Woo

(l)
T−1. Our

tree-structured construction also guarantees that the
final answer could be derived using log2 T layers.

7.3 Verification of Transition Modeling
To verify whether our model learns the dynamics
of a semiautomaton, we perform a clustering exper-
iment to demystify the FFN output representations
on the tasks of PARITY and Cycle Navigation. The
two tasks are chosen as we can easily derive their
state transition functions. For example, there are
only two state transitions in PARITY:

[
1 0
0 1

]
or

[
0 1
1 0

]

and five state transitions in Cycle Navigation5:

OneHot5((0 + k)mod 5)
OneHot5((1 + k)mod 5)
OneHot5((2 + k)mod 5)
OneHot5((3 + k)mod 5)
OneHot5((4 + k)mod 5)

, for k ∈ [0, ..., 4].

e.g., k = 2 gives

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

.

Given a testing input sequence of length 500
that is much longer than the training length 40, we

5Cycle Navigation (§5.1) has 3 one-step transitions (i.e.,
|A(σa:a+1)| = 3). Composing these transitions yields 5
different multi-step state transitions (i.e., |A(σa:b)| = 5 if
b− a ≥ 5).

extract the output o(l)i of all layers l, perform dimen-
sion reduction using PCA, and plot the dimension-
reduced points on a 2D plane. Ideally, we want to
see a limited number of clusters across all layers,
indicating the model learns to capture the state tran-
sition function. As we can see in Figure 3, PARITY
has 2 clusters and Cycle Navigation has 5 clus-
ters. The clear clustering effect demonstrates Reg-
ularGPT’s correct learning of state transition func-
tions. This is in contrast to the naive-summation ap-
proach learned by a vanilla Transformer as shown
in Figure B.4 of Deletang et al. (2023).

7.4 Receptive Field Analysis

We resort to the gradient analysis tool (Chi et al.,
2023) to inspect the receptive field of RegularGPT
on regular and natural languages. It computes a cu-
mulative sum of the gradient norms starting from
the most recent token to the earliest one. A large
magnitude of slope at a position means the most re-
cent token has a high dependency on that position.
Ideally, we would like to see the receptive field
covering the whole input sequence for the case of
regular languages because every single bit in the in-
put sequence is important for the final results. This
is equivalent to a slanted line going from the lower
right to the upper left, which is validated in Fig-
ure 4a. As for natural language, we discover some-
thing interesting in Figure 4b in that RegularGPT
settles on the local windowed-attention pattern as
those enforced manually in prior work (Press et al.,
2022; Chi et al., 2022, 2023). This suggests the
task of natural language modeling mostly needs
only local context to achieve good performance,

5979

0 100 200 300 400 500
Position

0.2

0.4

0.6

0.8

1.0

(a) Regular Language - PARITY

0 500 1000 1500 2000
Position

0.2

0.4

0.6

0.8

1.0

(b) Natural Language - OpenWebText2

Figure 4: Receptive field of RegularGPT via the cumulative gradient analysis tool (Chi et al., 2023).

which aligns with the common belief.

8 Conclusion

This paper introduces RegularGPT, a novel variant
of the Transformer architecture inspired by the no-
tion of working memory that can effectively model
regular languages with high efficiency. Theoretical
explanations and accompanying clustering visual-
izations are presented to illustrate how RegularGPT
captures the essence of regular languages. More-
over, RegularGPT is evaluated on the task of nat-
ural language length extrapolation, revealing its
intriguing rediscovery of the local windowed atten-
tion effect previously observed in related research.
Notably, RegularGPT establishes profound connec-
tions with various existing architectures, thereby
laying the groundwork for the development of fu-
ture Transformer models that facilitate efficient al-
gorithmic reasoning and length extrapolation.

Limitations

Currently we set the chunk size C of RegularGPT
to a constant. Can we make the chunk size more
flexible? A flexible and data-driven C might fur-
ther boost its performance on natural languages as
they often demonstrate diverse patterns unlike reg-
ular languages underpinned by simple grammars.
This might also improve the performance of Regu-
larGPT when C 6= 128.

Acknowledgment

We thank the anonymous reviewers for their insight-
ful feedback and suggestions. We thank Prince-
ton Research Computing for the technical support
on the Della and Adroit clusters. The first author

acknowledges the support from the Boeing Com-
pany (2019-STU-PA-259). The fourth author ac-
knowledges the support from NSF. (MRI Award:
1919452).

References
Eryn J Adams, Anh T Nguyen, and Nelson Cowan.

2018. Theories of working memory: Differences
in definition, degree of modularity, role of attention,
and purpose. Language, speech, and hearing ser-
vices in schools, 49(3):340–355.

Cem Anil, Yuhuai Wu, Anders Johan Andreassen,
Aitor Lewkowycz, Vedant Misra, Vinay Venkatesh
Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan
Dyer, and Behnam Neyshabur. 2022. Exploring
length generalization in large language models. In
Advances in Neural Information Processing Sys-
tems.

Kristijan Armeni, Christopher Honey, and Tal Linzen.
2022. Characterizing verbatim short-term mem-
ory in neural language models. In Proceedings
of the 26th Conference on Computational Natural
Language Learning (CoNLL), pages 405–424, Abu
Dhabi, United Arab Emirates (Hybrid). Association
for Computational Linguistics.

Alan Baddeley. 1992. Working memory. Science,
255(5044):556–559.

Alan D Baddeley and Graham Hitch. 1974. Working
memory. In Psychology of learning and motivation,
volume 8, pages 47–89. Elsevier.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv:2004.05150.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the Ability and Limitations of Transform-
ers to Recognize Formal Languages. In Proceed-
ings of the 2020 Conference on Empirical Methods

5980

https://openreview.net/forum?id=zSkYVeX7bC4
https://openreview.net/forum?id=zSkYVeX7bC4
https://aclanthology.org/2022.conll-1.28
https://aclanthology.org/2022.conll-1.28
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576

in Natural Language Processing (EMNLP), pages
7096–7116, Online. Association for Computational
Linguistics.

Guy E Blelloch. 1990. Prefix sums and their applica-
tions. School of Computer Science, Carnegie Mel-
lon University Pittsburgh, PA, USA.

Ta-Chung Chi, Ting-Han Fan, Peter Ramadge, and
Alexander Rudnicky. 2022. KERPLE: Kernelized
relative positional embedding for length extrapola-
tion. In Advances in Neural Information Processing
Systems.

Ta-Chung Chi, Ting-Han Fan, Alexander I. Rudnicky,
and Peter J. Ramadge. 2023. Dissecting transformer
length extrapolation via the lens of receptive field
analysis. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), Toronto, Canada. Associ-
ation for Computational Linguistics.

David Chiang and Peter Cholak. 2022. Overcoming a
theoretical limitation of self-attention. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 7654–7664, Dublin, Ireland. Associa-
tion for Computational Linguistics.

N. Chomsky. 1956a. Three models for the description
of language. IRE Transactions on Information The-
ory, 2(3):113–124.

Noam Chomsky. 1956b. Three models for the descrip-
tion of language. IRE Transactions on information
theory, 2(3):113–124.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276–286, Florence, Italy. Association
for Computational Linguistics.

Nelson Cowan. 1998. Attention and memory: An inte-
grated framework. Oxford University Press.

Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber.
2022. The neural data router: Adaptive control flow
in transformers improves systematic generalization.
In International Conference on Learning Represen-
tations.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978–2988, Florence, Italy.
Association for Computational Linguistics.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer-
sal transformers. In International Conference on
Learning Representations.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya,
Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Ve-
ness, and Pedro A Ortega. 2023. Neural networks
and the chomsky hierarchy. In International Confer-
ence on Learning Representations.

Adele Diamond. 2013. Executive functions. Annual
review of psychology, 64:135–168.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael
Auli. 2020. Depth-adaptive transformer. In Interna-
tional Conference on Learning Representations.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science, 14(2):179–211.

K Anders Ericsson and Walter Kintsch. 1995. Long-
term working memory. Psychological review,
102(2):211.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Michael Hahn. 2020. Theoretical limitations of self-
attention in neural sequence models. Transactions
of the Association for Computational Linguistics,
8:156–171.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Michael I Jordan. 1997. Serial order: A parallel dis-
tributed processing approach. In Advances in psy-
chology, volume 121, pages 471–495. Elsevier.

Richard E Ladner and Michael J Fischer. 1980. Parallel
prefix computation. Journal of the ACM (JACM),
27(4):831–838.

Sivaramakrishnan Lakshmivarahan and Sudarshan K
Dhall. 1994. Parallel computing using the prefix
problem. Oxford University Press.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Kr-
ishnamurthy, and Cyril Zhang. 2023. Transformers
learn shortcuts to automata. In International Confer-
ence on Learning Representations.

Eric Martin and Chris Cundy. 2018. Parallelizing lin-
ear recurrent neural nets over sequence length. In
International Conference on Learning Representa-
tions.

Akira Miyake, Priti Shah, et al. 1999. Models of work-
ing memory. Cambridge: Cambridge University
Press.

5981

https://openreview.net/forum?id=hXzOqPlXDwm
https://openreview.net/forum?id=hXzOqPlXDwm
https://openreview.net/forum?id=hXzOqPlXDwm
https://doi.org/10.18653/v1/2022.acl-long.527
https://doi.org/10.18653/v1/2022.acl-long.527
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://openreview.net/forum?id=KBQP4A_J1K
https://openreview.net/forum?id=KBQP4A_J1K
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=SJg7KhVKPH
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00306
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=HyUNwulC-
https://openreview.net/forum?id=HyUNwulC-

Aida Nematzadeh, Sebastian Ruder, and Dani Yo-
gatama. 2020. On memory in human and artificial
language processing systems. In Proceedings of
ICLR Workshop on Bridging AI and Cognitive Sci-
ence.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2022. Show your work: Scratchpads for intermedi-
ate computation with language models.

Klaus Oberauer. 2002. Access to information in work-
ing memory: exploring the focus of attention. Jour-
nal of Experimental Psychology: Learning, Memory,
and Cognition, 28(3):411.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan
Fernando, Caglar Gulcehre, Razvan Pascanu, and
Soham De. 2023. Resurrecting recurrent neu-
ral networks for long sequences. arXiv preprint
arXiv:2303.06349.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAI blog, 1(8):9.

Jack Rae and Ali Razavi. 2020a. Do transformers need
deep long-range memory? In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7524–7529.

Jack Rae and Ali Razavi. 2020b. Do transformers need
deep long-range memory? In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7524–7529, Online. As-
sociation for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Antoine Simoulin and Benoit Crabbé. 2021. How
many layers and why? An analysis of the model
depth in transformers. In Proceedings of the 59th
Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint
Conference on Natural Language Processing: Stu-
dent Research Workshop, pages 221–228, Online.
Association for Computational Linguistics.

Jimmy T.H. Smith, Andrew Warrington, and Scott Lin-
derman. 2023. Simplified state space layers for se-
quence modeling. In The Eleventh International
Conference on Learning Representations.

Aäron van den Oord, Sander Dieleman, Heiga Zen,
Karen Simonyan, Oriol Vinyals, Alexander Graves,
Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. 2016. Wavenet: A generative model
for raw audio. In Arxiv.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems.

Dani Yogatama, Cyprien de Masson d’Autume, and
Lingpeng Kong. 2021. Adaptive Semiparametric
Language Models. Transactions of the Association
for Computational Linguistics, 9:362–373.

5982

https://openreview.net/forum?id=iedYJm92o0a
https://openreview.net/forum?id=iedYJm92o0a
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://doi.org/10.18653/v1/2020.acl-main.672
https://doi.org/10.18653/v1/2020.acl-main.672
https://doi.org/10.18653/v1/2021.acl-srw.23
https://doi.org/10.18653/v1/2021.acl-srw.23
https://doi.org/10.18653/v1/2021.acl-srw.23
https://openreview.net/forum?id=Ai8Hw3AXqks
https://openreview.net/forum?id=Ai8Hw3AXqks
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.1162/tacl_a_00371
https://doi.org/10.1162/tacl_a_00371

A Hyperparameters for the Regular
Language Experiments

We report the hyperpamaters used in the regular
language experiments (Table 1) in Table 4.

B Hyperparameters for the Natural
Language Experiments

We report the hyperpamaters used in the natural
language experiments (Table 3) in Table 5.

C Proof of Lemma 1

Lemma 1 (Approximation for Binary Matrix Prod-
uct). Let A,B ∈ {0, 1}n×n be binary matrices of
dimension n × n. Then, there exists a two-layer
ReLU network such that

fmlp([Flat(A),Flat(B)]) = Flat(AB),

where Flat(X)(i−1)n+j = Xi,j for i, j ∈
[1, ..., n] is the operation that flattens a matrix into
a vector.

Proof. Observe that a ReLU operation can per-
fectly approximate the multiplication of two binary
scalars:

ReLU(a+ b− 1) = a · b, for a, b ∈ {0, 1}.
The binary matrix product AB is composed of n3

binary scalar products of the form:

AikBkj = x(i−1)n+kx(n+k−1)n+j

for i, j, k ∈ [1, .., n],

where x = [Flat(A),Flat(B)] is the concatenated
flattened input. Our goal is to construct two neural
network layers. The first layer computes all n3

binary scalar products. The second layer sums
these products into the form of matrix product; i.e.,∑n

k=1AikBkj .
The first layer’s binary weight matrix W (1) ∈
{0, 1}2n2×n3

is constructed as:

For z ∈ [1, ..., 2n2], i, j, k ∈ [1, ..., n],

W
(1)
z,(i−1)n2+(j−1)n+k

=
{

1 if z = (i− 1)n+ k or (n+ k − 1)n+ j

0 otherwise.
(3)

Then, the first layer computes all n3 binary scalar
products as follows:

ReLU
(
[Flat(A),Flat(B)]W (1)−1>

n3

)
(i−1)n2+(j−1)n+k

= AikBkj for i, j, k ∈ [1, ..., n].

To sum these n3 products into n2 results, the
second layer’s binary weight matrix W (2) ∈
{0, 1}n3×n2

is constructed as:

W (2) = In2 ⊗ 1n =

1n 0n 0n . . . 0n
0n 1n 0n . . . 0n
...

...
0n . . . 0n 1n

∈ {0, 1}n3×n2
,

where In2 is an n2 × n2 identity matrix, ⊗ is the
Kronecker product, 0n is an n-dimensional column
vector of all zeros, and 1n is an n-dimensional
column vector of all ones. We arrive at a two-
layer ReLU network that perfectly approximates
the multiplication of two binary matrices:

fmlp([Flat(A),Flat(B)])

=ReLU
(
[Flat(A),Flat(B)]W (1)−1>

n3

)
W (2)

= Flat(AB).

D Illustration of Lemma 1

D.1 Illustration of the Binary Weight
Matrices

We illustrate W (1) and W (2) of Lemma 1 as fol-
lows:
import numpy as np

def get_W1 (n) :
n2 = n*n
W1 = np . z e r o s ((2 * n*n , n * * 3) , d t y p e = i n t)
f o r i in range (n) :

f o r j in range (n) :
f o r k in range (n) :

W1[i *n+k , i *n2+ j *n+k] = 1
W1[n2+k*n+ j , i *n2+ j *n+k] = 1

re turn W1

def get_W2 (n) :
eye = np . eye (n*n , d t y p e = i n t)
ones = np . ones ((n , 1) , d t y p e = i n t)
W2 = np . kron (eye , ones)
re turn W2

get_W1(2) gives:

[[1 0 1 0 0 0 0 0]
[0 1 0 1 0 0 0 0]
[0 0 0 0 1 0 1 0]
[0 0 0 0 0 1 0 1]
[1 0 0 0 1 0 0 0]
[0 0 1 0 0 0 1 0]
[0 1 0 0 0 1 0 0]
[0 0 0 1 0 0 0 1]]

5983

Layers logC T
Hidden Size 256

Attention Heads 8
Train Seq. Len. 40 or 50

Trainable Params. 4.3 M
Optimizer Adam (lr 1e-4, 3e-4, 5e-4)
Batch Size 128
Train Steps 100,000

Precision float32
Dataset Regular Languages

Table 4: Hyperparameters for the regular language experiments.

Layers K logC T
Hidden Size 768

Attention Heads 12
Train Seq. Len. 512

Trainable Params. 81M (K = 6) or 123M (K = 12)
Optimizer Adam (lr 6e-4)

Batch Size 32
Train Steps 50,000

Precision bfloat16
Dataset OpenWebText2

Table 5: Hyperparameters for the natural language experiments.

get_W2(2) gives:

[[1 0 0 0]
[1 0 0 0]
[0 1 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 1 0]
[0 0 0 1]
[0 0 0 1]]

D.2 An Illustrative Example for n = 2

Suppose the input matrices are:

A =

[
1 0
1 0

]
, B =

[
0 1
1 0

]
.

The concatenated flattened input becomes:

x = [Flat(A),Flat(B)] = [1 0 1 0 0 1 1 0].

Then, Lemma 1 is verified as follows:

ReLU
(
xW (1) − 1>n3

)
W (2)

=ReLU ([1 1 2 0 1 1 2 0]− 1)W (2)

=[0 0 1 0 0 0 1 0]W (2)

=[0 1 0 1]

=Flat
([

0 1
0 1

])
= Flat (AB) .

Here is the Python code for the above example:
A = np . a r r a y ([[1 , 0] , [1 , 0]]) . r e s h a p e (−1)
B = np . a r r a y ([[0 , 1] , [1 , 0]]) . r e s h a p e (−1)
x = np . c o n c a t e n a t e ([A, B]) . r e s h a p e (1 , −1)
W1 = get_W1 (2)
W2 = get_W2 (2)
f l a t_AB = np . maximum (x @ W1 −1 ,0) @ W2

5984

