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Abstract

Query rewriting plays a vital role in enhancing
conversational search by transforming context-
dependent user queries into standalone forms.
Existing approaches primarily leverage human-
rewritten queries as labels to train query rewrit-
ing models. However, human rewrites may lack
sufficient information for optimal retrieval per-
formance. To overcome this limitation, we pro-
pose utilizing large language models (LLMs) as
query rewriters, enabling the generation of in-
formative query rewrites through well-designed
instructions. We define four essential proper-
ties for well-formed rewrites and incorporate
all of them into the instruction. In addition, we
introduce the role of rewrite editors for LLMs
when initial query rewrites are available, form-
ing a “rewrite-then-edit” process. Furthermore,
we propose distilling the rewriting capabilities
of LLMs into smaller models to reduce rewrit-
ing latency. Our experimental evaluation on
the QReCC dataset demonstrates that informa-
tive query rewrites can yield substantially im-
proved retrieval performance compared to hu-
man rewrites, especially with sparse retrievers.1

1 Introduction

Conversational search has gained significant promi-
nence in recent years with the proliferation of digi-
tal virtual assistants and chatbots, enabling users to
engage in multiple rounds of interactions to obtain
information (Radlinski and Craswell, 2017; Dal-
ton et al., 2021; Gao et al., 2023). This emerging
search paradigm offers remarkable advantages in
assisting users with intricate information needs and
complex tasks (Yu et al., 2021). However, a fun-
damental challenge in conversational search lies in
accurately determining users’ current search intents
within the conversational context.

An effective approach that has gained increasing
attention addresses this challenge of conversational

1Our implementation is available at: https://github.
com/smartyfh/InfoCQR.

What job did Elizabeth Blackwell have?

In what field?

She was a lecturer.

She was a lecturer in midwifery.

Did she do well?

Did Elizabeth Blackwell 
do well?

Did Elizabeth Blackwell do well 
as a lecturer in midwifery?

Human rewrite Informative rewrite

Figure 1: An example showing that human rewrites may
overlook valuable contextual information. Specifically,
the omission of the phrase “as a lecturer in midwifery”
makes it challenging for retrieval systems to understand
the original query comprehensively.

context modeling by performing query rewriting
(Elgohary et al., 2019; Yu et al., 2020; Vakulenko
et al., 2021; Wu et al., 2022; Mo et al., 2023).
This approach transforms context-dependent user
queries into self-contained queries, thereby allow-
ing the utilization of existing off-the-shelf retrievers
that have been extensively validated for standalone
queries. For example, the user query “Did she do
well?” illustrated in Figure 1 can be rewritten into
“Did Elizabeth Blackwell do well as a lecturer in
midwifery?” which is context-independent.

Previous studies (Anantha et al., 2021; Vaku-
lenko et al., 2021; Qian and Dou, 2022; Hao et al.,
2022) predominantly depend on human-rewritten
queries as supervised labels to train query rewriting
models. Although human-rewritten queries tend to
perform better than the original queries, they may
not be informative enough for optimal retrieval per-
formance (Chen et al., 2022; Wu et al., 2022). This
limitation arises from the fact that human rewriters
are only concerned with addressing ambiguity is-
sues, such as coreference and omission, when trans-
forming the original query into a self-contained
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form. Such a simple rewriting strategy may over-
look lots of valuable information within the conver-
sational context (refer to Figure 1 for an example),
which has the potential to enhance the effectiveness
of the retriever. As a consequence, existing query
rewriting models learned from human rewrites can
only achieve sub-optimal performance.

A straightforward approach to improving the in-
formativeness of rewritten queries is to provide hu-
man annotators with more comprehensive instruc-
tions so that they can rewrite the original queries
to be not only unambiguous but also informative.
However, this approach has several disadvantages,
including being expensive, increasing workload
for human annotators, and potentially leading to
higher inconsistencies among rewrites from differ-
ent annotators. Therefore, it is necessary to explore
alternative approaches.

In this paper, we propose the utilization of large
language models (LLMs) for query rewriting, lever-
aging their impressive capabilities in following in-
structions and demonstrations (Brown et al., 2020;
Wei et al., 2021; Ouyang et al., 2022; Wei et al.,
2023). We consider two settings to prompt LLMs
as query rewriters. In the zero-shot learning set-
ting, only an instruction is provided, while in the
few-shot learning setting, both an instruction and a
few demonstrations are given. To develop suitable
instructions, we first identify four essential proper-
ties that characterize a well-formed rewritten query.
Then, we design an instruction that incorporates all
four properties. However, generating rewrites with
all these properties may pose challenges for LLMs
due to the intricacy of the instruction (Ouyang et al.,
2022; Jang et al., 2023). In view of this, we pro-
pose an additional role for LLMs as rewrite editors.
Inspired by the fact that humans excel at editing
rather than creating from scratch, the purpose of
the rewrite editor is to edit initial rewrites provided,
forming a “rewrite-then-edit” process. These initial
rewrites can be generated by smaller query rewrit-
ing models or even by the LLM itself. Furthermore,
considering the potential time overhead and high
costs associated with LLMs, we suggest distilling
their rewriting capabilities into smaller models us-
ing their generated rewrites as training labels.

Our contributions are summarized as follows:

• We are the first to introduce the concept of infor-
mative conversational query rewriting and metic-
ulously identify four desirable properties that a
well-crafted rewritten query should possess.

• We propose to prompt LLMs as both query rewrit-
ers and rewrite editors by providing clear instruc-
tions that incorporate all the desirable properties.
In addition, we employ distillation techniques to
condense the rewriting capabilities of LLMs into
smaller models to improve rewriting efficiency.

• We demonstrate the effectiveness of informative
query rewriting with two off-the-shelf retrievers
(sparse and dense) on the QReCC dataset. Our
results show that informative query rewrites can
outperform human rewrites, particularly in the
context of sparse retrieval.

2 Task Formulation

The primary objective of conversational search is
to identify relevant passages from a vast collection
of passages in response to the current user query.
Formally, let Qi and Ai be the user query and sys-
tem response at turn i, respectively. Furthermore,
let Xt = {Q1, A1, . . . , Qt−1, At−1} represent the
conversational context up to turn t. Then, the task
of conversational search can be formulated as re-
trieving top-k relevant passages, denoted as Rk,
from a large passage collection C given the current
user query Qt and its associated context Xt. This
retrieval process is accomplished by a retriever de-
fined as f : (Qt,Xt, C) → Rk, where Rk is a
subset of C and k is considerably smaller than the
total number of passages in C.

The unique challenge in conversational search
is incorporating the conversational context while
retrieving relevant passages, which cannot be di-
rectly addressed by existing retrievers designed for
standalone queries. Additionally, re-training re-
trievers tailored for conversational queries can be
expensive or even infeasible due to complex sys-
tem designs or limited data availability (Wu et al.,
2022). To overcome the need for re-training, query
rewriting is employed as an effective solution (Lin
et al., 2021c; Mo et al., 2023). Query rewriting
involves transforming the context-dependent user
query Qt into a self-contained standalone query Q′

t

by extracting relevant information from the con-
text Xt. Consequently, any existing off-the-shelf
retrieval systems designed for standalone queries
can be leveraged by taking Q′

t as the input query to
find passages that are relevant to the original user
query Qt, i.e., f : (Q′

t, C) → Rk.
The utilization of query rewriting shifts the chal-

lenge of modeling conversational context from the
retriever end to the query rewriting model end. As
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Given a question and its context and a rewrite that decontextualizes the 
question, edit the rewrite to create a revised version that fully addresses 
coreferences and omissions in the question without changing the original 
meaning of the question but providing more information. The new rewrite 
should not duplicate any previously asked questions in the context. If 
there is no need to edit the rewrite, return the rewrite as-is.

Instruction to prompt LLM as rewrite editor

Given a question and its context, decontextualize the question by 
addressing coreference and omission issues. The resulting question 
should retain its original meaning and be as informative as possible, 
and should not duplicate any previously asked questions in the 
context.

Q: Who proposed that atoms are the basic units of matter? 
A: John Dalton proposed that each chemical element is composed 
of atoms of a single, unique type, and they can combine to form 
more complex structures called chemical compounds.
Question: How did the proposal come about?
Rewrite: How did John Dalton's proposal that each chemical 
element is composed of atoms of a single unique type, and they 
can combine to form more complex structures called chemical 
compounds come about?

Q: Who proposed that atoms are the basic units of matter? 
A: John Dalton proposed that each chemical element is composed of 
atoms of a single, unique type, and they can combine to form more 
complex structures called chemical compounds.
Question: How did the proposal come about?
Rewrite: How did John Dalton's proposal come about?
Edit: How did John Dalton's proposal that each chemical element is 
composed of atoms of a single unique type, and they can combine to 
form more complex structures called chemical compounds come about?

Q: What job did Elizabeth Blackwell have? 
A: A lecturer in midwifery.
Question: Did she do well?
Rewrite:

Q: What job did Elizabeth Blackwell have? 
A: A lecturer in midwifery.
Question: Did she do well?
Rewrite: Did Elizabeth Blackwell do well as a lecturer?
Edit:

n demonstrations

Instruction to prompt LLM as query rewriter

n demonstrations

Test instance Test instance

Did Elizabeth Blackwell do well as a lecturer? LLM Did Elizabeth Blackwell do well as a lecturer in midwifery?LLM

Figure 2: Our proposed approach involves prompting LLMs as query rewriters and rewrite editors through clear
and well-designed instructions, along with appropriate demonstrations. In the absence of demonstrations, the LLM
functions as a zero-shot query rewriter. We explicitly incorporate the requirement that rewritten queries should be as
informative as possible into the instructions for generating informative query rewrites.

thus, the effectiveness of retrieval results heavily re-
lies on the employed query rewriting models. Only
when appropriate rewritten queries are generated
can an off-the-shelf retrieval system return highly
relevant passages.

3 Approach

In contrast to relying on human annotators to gener-
ate more informative rewrites or developing more
complex models to closely replicate existing human
rewrites, we propose to prompt LLMs to generate
informative query rewrites simply by providing
clear instructions and appropriate demonstrations,
avoiding the requirement for extensive human ef-
fort and complicated model designs. Figure 2 illus-
trates our proposed approach.

3.1 Prompting LLM as Query Rewriter
Recent work (Wei et al., 2021; Ouyang et al., 2022;
Peng et al., 2023) has demonstrated the strong ca-
pability of LLMs in following given instructions to
generate coherent and contextually appropriate text.
Inspired by this, it is natural to consider employing
LLMs as query rewriters. Before delving into the
details of how we can prompt an LLM as a query
rewriter, we first describe the desirable properties

that a well-crafted rewritten query should possess:

• Correctness: The rewritten query should pre-
serve the meaning of the original query, ensuring
that the user’s intent remains unchanged.

• Clarity: The rewritten query should be unam-
biguous and independent of the conversational
context, enabling it to be comprehensible by peo-
ple outside the conversational context. This clar-
ity can be achieved by addressing coreference
and omission issues arising in the original query.

• Informativeness: The rewritten query should in-
corporate as much valuable and relevant informa-
tion from the conversational context as possible,
thereby providing more useful information to the
off-the-shelf retriever.

• Nonredundancy: The rewritten query should
avoid duplicating any query previously raised in
the conversational context, as it is important to
ensure that the rewritten query only conveys the
intent and meaning of the current query.

In order to effectively instruct an LLM in gen-
erating query rewrites that embody the aforemen-
tioned four properties, it is essential to formulate
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appropriate instructions. As an illustrative example,
we adopt the following instruction in this work:

“Given a question and its context, de-
contextualize the question by addressing
coreference and omission issues. The re-
sulting question should retain its original
meaning and be as informative as possi-
ble, and should not duplicate any previ-
ously asked questions in the context.”2

This instruction takes all four desirable properties
of a good rewritten query into account simultane-
ously. Building upon this instruction, we explore
two settings to prompt an LLM for query rewriting.

3.1.1 Zero-Shot Learning (ZSL) Setting
In the ZSL setting, the LLM is instructed to gener-
ate a rewritten query Q′

t using only the information
provided by the current query Qt and its associated
conversational context Xt, without having access
to any human-labeled instances. In this setting, we
entirely rely on the LLM’s capability to understand
and follow instructions to perform query rewriting.
Specifically, we append Xt and Qt to the instruc-
tion I as the prompt and feed this prompt to the
LLM for sampling the rewrite Q′

t:

Q′
t ∼ LLM(I||Xt||Qt), (1)

where || denotes concatenation. The detailed for-
mat of the prompt is shown in Appendix D.

3.1.2 Few-Shot Learning (FSL) Setting
In the FSL setting, the LLM is provided with both
the instruction and a small number of demonstra-
tions. This type of prompting is commonly referred
to as in-context learning, which has been shown to
be effective in adapting LLMs to new tasks (Brown
et al., 2020; Min et al., 2022a,b; Wei et al., 2023;
Sun et al., 2023; Ram et al., 2023). In this setting,
each demonstration consists of a query Q, a con-
versational context X , and a rewrite Q′. We denote
the concatenation of these demonstrations as:

D = (X 1, Q1, Q′1)|| . . . ||(X n, Qn, Q′n), (2)

where n represents the total number of demonstra-
tions. By placing D between the instruction I and

2Note that in this instruction, we use the term “question”
instead of “query”, as each query is referred to as a question
in the dataset we employed for experimentation. We believe
this tiny variation would not significantly impact the quality
of generated rewrites. Additionally, other instructions with a
similar meaning can also be applied.

the test instance (Xt, Qt) as the prompt to the LLM,
the rewrite Q′

t is then sampled as follows:

Q′
t ∼ LLM(I||D||Xt||Qt). (3)

Note that the query rewrites utilized in the demon-
strations should be well-designed, ensuring that
they have the aforementioned four properties. Oth-
erwise, the LLM may be misled by these demon-
strations. For a more detailed description of the
demonstrations used in our experiments, please re-
fer to Appendix D.

3.2 Prompting LLM as Rewrite Editor
Despite the proficiency of LLMs in following in-
structions and demonstrations, recent work (Dong
et al., 2022; Liu et al., 2022; Mosbach et al., 2023)
suggests that they may encounter difficulties when
faced with complex tasks or intricate requirements.
This limitation highlights that it can be challenging
for LLMs to generate query rewrites with all the
desirable properties mentioned above. In order to
address this challenge, we propose an alternative
approach in which an LLM is prompted as a rewrite
editor whose primary function is to edit provided
initial rewrites instead of being prompted as a query
rewriter who needs to generate query rewrites from
scratch. This approach draws inspiration from the
observation that humans often find it easier to edit
existing content than to create it from scratch.

In this work, we adopt the FSL setting to prompt
LLMs as rewrite editors. In addition to the query Q,
the conversational context X , and the rewrite Q′,
we introduce an initial rewrite Q̂ for each demon-
stration. We represent the concatenation of these
augmented demonstrations as:

D̃ = (X 1, Q1, Q̂1, Q′1)|| . . . ||(X n, Qn, Q̂n, Q′n).
(4)

For a test instance (Xt, Qt), accompanied by an ini-
tial rewrite Q̂t, we obtain the edited (final) rewrite
Q′

t through the following procedure:

Q′
t ∼ LLM(Ĩ||D̃||Xt||Qt||Q̂t), (5)

where Ĩ denotes the modified instruction. Please
refer to Figure 2 and Appendix D for details.

The initial rewrite can be generated by a small
query rewriting model, such as T5QR (Lin et al.,
2020; Wu et al., 2022). It can also be generated
by an LLM, following the prompting method de-
scribed in the previous subsection. When an LLM
is employed as both the query rewriter and rewrite
editor, the “rewrite-then-edit” process enables the
LLM to perform self-correction (Gou et al., 2023).
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3.3 Distillation: LLM as Rewriting Teacher
One major obstacle in effectively leveraging LLMs
for query rewriting is the substantial demand for
memory and computational resources (Hsieh et al.,
2023), which can further result in significant time
overhead. Besides, the cost can be extremely high
when there is a lack of in-house models, necessitat-
ing the reliance on third-party API services as the
only option. To address these issues, we propose
to fine-tune a small query rewriting model using
rewrites generated by an LLM as ground-truth la-
bels. In this approach, the LLM assumes the role of
a teacher, while the smaller query rewriting model
acts as a student. The fine-tuning process distills
the teacher’s rewriting capabilities into the student.
This technique is known as knowledge distillation
(Gou et al., 2021) and has recently been utilized to
distill LLMs for various other tasks (Shridhar et al.,
2022; Magister et al., 2022; Marjieh et al., 2023).

Following previous work (Lin et al., 2020; Wu
et al., 2022), we adopt T5 (Raffel et al., 2020) as
the student model (i.e., the small query rewriting
model). The input to the model is the concatenation
of all utterances in the conversational context Xt

and the current user query Qt. In order to differenti-
ate between user queries and system responses, we
prepend a special token <Que> to each user query
and a special token <Ans> to each system response.
The output of the model is the rewrite Q′

t, which
is sampled from the employed LLM. The model is
fine-tuned using the standard cross-entropy loss to
maximize the likelihood of generating Q′

t.

4 Experimental Setup

4.1 Dataset & Evaluation Metrics
Following previous work (Wu et al., 2022; Mo
et al., 2023), we leverage QReCC (Anantha et al.,
2021) as our experimental dataset. QReCC consists
of 14K open-domain English conversations with a
total of 80K question-answer pairs. Each user ques-
tion is accompanied by a human-rewritten query,
and the answers to questions within the same con-
versation may be distributed across multiple web
pages. There are in total 10M web pages with each
divided into several passages, leading to a collec-
tion of 54M passages3. The task of conversational
search is to find relevant passages for each question
from this large collection and gold passage labels
are provided if any. The conversations in QReCC

3The dataset and passage collection are available at https:
//zenodo.org/record/5115890#.YZ8kab3MI-Q.

are sourced from three existing datasets, includ-
ing QuAC (Choi et al., 2018), Natural Questions
(Kwiatkowski et al., 2019), and TREC CAsT-19
(Dalton et al., 2020). For ease of differentiation,
we refer to these subsets as QuAC-Conv, NQ-Conv,
and TREC-Conv, respectively. Note that TREC-
Conv only appears in the test set. For a comprehen-
sive evaluation, we present experimental results not
only on the overall dataset but also on each subset.
For additional information and statistics regarding
the dataset, please refer to Appendix A.

To evaluate the retrieval results, we adopt mean
reciprocal rank (MRR), mean average precision
(MAP), and Recall@10 (R@10) as evaluation met-
rics. We employ the pytrec_eval toolkit (Van Gy-
sel and de Rijke, 2018) for the computation of all
metric values.

4.2 Comparison Methods

Since our focus is on the effectiveness of informa-
tive query rewrites, two straightforward baseline
methods are Original, which uses the user question
in its original form as the search query, and Human,
which utilizes the query rewritten by a human as
the search query. We also include three supervised
models as baselines, including T5QR (Lin et al.,
2020), which fine-tunes the T5-base model (Raffel
et al., 2020) as a seq2seq query rewriter, ConQRR
(Wu et al., 2022), which employs reinforcement
learning to train query rewriting models by directly
optimizing retrieval performance, and ConvGQR
(Mo et al., 2023), which combines query rewriting
with potential answer generation to improve the
informativeness of the search query.

For our proposed approach, we investigate four
variants, namely RW(ZSL), RW(FSL), ED(Self),
and ED(T5QR). RW(ZSL) prompts an LLM as a
query rewriter in the ZSL setting, while RW(FSL)
prompts an LLM as a query rewriter in the FSL set-
ting. By comparison, ED(Self) prompts an LLM as
a rewrite editor, wherein the initial rewrites are gen-
erated by RW(FSL) with the same LLM applied.
ED(T5QR) also prompts an LLM as a rewrite edi-
tor, but the initial rewrites are generated by T5QR.
For simplicity, we only prompt LLMs as rewrite
editors in the FSL setting.

4.3 Retrieval Systems

We experiment with two types of off-the-shelf re-
trievers to explore the effects of informativeness in
query rewrites on conversational search:
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Query QReCC (8209) QuAC-Conv (6396) NQ-Conv (1442) TREC-Conv (371)

MRR MAP R@10 MRR MAP R@10 MRR MAP R@10 MRR MAP R@10

Sp
ar

se
(B

M
25

)

Original 9.30 8.87 15.50 9.29 8.84 15.20 9.06 8.64 15.14 10.30 10.27 22.10
Human 39.81 38.45 62.65 40.32 38.98 62.90 40.78 39.05 63.80 27.34 27.04 53.77

T5QR 33.67 32.50 53.68 34.04 32.90 53.83 34.24 32.66 53.92 25.23 24.96 50.13
ConQRR 38.30 - 60.10 39.50 - 61.60 37.80 - 58.00 19.80 - 43.50
ConvGQR 44.10 - 64.40 - - - - - - - - -

RW(ZSL) 42.63 41.31 60.46 45.43 44.11 63.20 36.43 34.81 54.69 18.50 18.26 35.58
RW(FSL) 46.96 45.53 65.57 49.81 48.38 68.28 41.51 39.71 60.13 19.02 18.86 39.89
ED(Self) 49.39 47.89 67.01 53.01 51.52 70.46 41.57 39.69 59.63 17.43 17.08 36.25
ED(T5QR) 47.93 46.40 66.25 50.67 49.18 68.84 42.69 40.64 60.67 21.04 20.79 43.26

D
en

se
(G

T
R

)

Original 12.12 11.49 18.74 11.34 10.69 17.79 13.11 12.57 19.49 21.76 21.11 32.08
Human 43.15 41.27 66.12 40.67 38.92 64.59 54.01 51.25 73.13 43.74 42.98 65.23

T5QR 37.67 35.93 58.65 35.51 33.88 57.23 46.95 44.47 64.43 38.94 38.16 60.51
ConQRR 41.80 - 65.10 41.60 - 65.90 45.30 - 64.10 32.70 - 55.20
ConvGQR 42.00 - 63.50 - - - - - - - - -

RW(ZSL) 40.64 38.95 62.28 40.12 38.48 62.47 44.85 42.57 63.58 33.26 32.88 54.09
RW(FSL) 43.89 42.09 66.45 43.50 41.78 66.87 48.60 46.12 68.10 32.37 31.79 52.65
ED(Self) 44.99 43.19 67.34 45.21 43.48 68.30 47.64 45.20 67.27 30.91 30.48 51.03
ED(T5QR) 44.76 42.90 66.64 44.29 42.50 66.65 49.67 47.12 69.22 33.90 33.43 56.47

Table 1: Passage retrieval performance of sparse and dense retrievers with various query rewriting methods on the
QReCC test set and its three subsets. The best results are shown in bold and the second-best results are underlined.

BM25 BM25 (Robertson et al., 2009) is a classic
sparse retriever. Following Anantha et al. (2021),
we employ Pyserini (Lin et al., 2021a) with hy-
parameters k1 = 0.82 and b = 0.68.

GTR GTR (Ni et al., 2022) is a recently proposed
dense retriever4. It has a shared dual-encoder archi-
tecture and achieves state-of-the-art performance
on multiple retrieval benchmarks.

4.4 Implementation Details

We adopt ChatGPT (gpt-3.5-turbo) provided by
OpenAI through their official API5 as the LLM in
our experiments. During inference, we use greedy
decoding with a temperature of 0. In the FSL set-
ting, we utilize four demonstrations (i.e., n = 4).
We employ Pyserini (Lin et al., 2021a) for sparse
retrieval and Faiss (Johnson et al., 2019) for dense
retrieval. For each user query, we retrieve 100 pas-
sages (i.e., k = 100). We disregard test instances
without valid gold passage labels. As a result, we
have 8209 test instances in total, with 6396, 1442,
and 371 test instances for QuAC-Conv, NQ-Conv,
and TREC-Conv, respectively. For more implemen-
tation details, please refer to Appendix B.

4We use the T5-base version https://huggingface.co/
sentence-transformers/gtr-t5-base.

5platform.openai.com/docs/api-reference/chat

5 Experimental Results

5.1 Main Results

Table 1 presents the retrieval performance of dif-
ferent query rewriting methods on the QReCC test
set and its subsets. Our key findings are summa-
rized as follows. (I) All query rewriting methods
outperform the original query, validating the im-
portance of query rewriting. (II) Our approaches,
ED(Self) and ED(T5QR), consistently achieve the
best and second-best results on the overall QReCC
test set. Notably, they both surpass human rewrites.
For example, ED(Self) demonstrates a substan-
tial absolute improvement of 9.58 in MRR scores
for sparse retrieval compared to human rewrites.
RW(FSL) also performs better than human rewrites,
while RW(ZSL) fails to show consistent improve-
ments over human rewrites. These results empha-
size the value of informative query rewriting and
in-context demonstrations. (III) The supervised
models, T5QR and ConQRR, exhibit worse per-
formance than human rewrites, suggesting that
relying solely on learning from human rewrites
leads to sub-optimal results. Although ConvGQR
beats human rewrites in sparse retrieval, its per-
formance gain mainly derives from generated po-
tential answers rather than more informative query
rewrites. (IV) Dense retrieval improvements are
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Query QuAC-Conv NQ-Conv TREC-Conv

AT %OT AT %OT AT %OT

Original 6.75 61.23 6.31 64.41 6.01 74.76
T5QR 9.80 83.63 8.67 85.27 7.31 90.32
RW(ZSL) 16.51 68.71 14.48 73.55 12.53 65.03
RW(FSL) 16.95 76.66 15.74 81.68 15.07 74.11
ED(Self) 22.00 78.88 19.82 82.99 21.85 76.22
ED(T5QR) 17.93 85.16 15.08 89.28 15.66 87.78

Human 10.76 100 8.98 100 7.35 100

Table 2: Average number of tokens (AT) and the per-
centage of overlapping tokens (OT) with human rewrites
in queries produced by different rewriting methods.

less effective than sparse retrieval. For example,
ED(Self) only outperforms human rewrites by 1.84
MRR scores when using the dense retriever GTR.
This discrepancy arises due to the need for domain-
specific passage and query encoders in dense re-
trieval. In our experiments, the GTR model is kept
fixed without fine-tuning, which limits the full po-
tential of dense retrieval. Besides, ConvGQR also
shows inferior dense retrieval performance, further
indicating that a fixed general dense retriever can-
not fully demonstrate the superiority of informa-
tive query rewrites. (V) Breaking down the results
by subsets reveals that our proposed approaches
can consistently achieve higher performance on the
QuAC-Conv subset. They also prevail in terms of
MRR and MAP for sparse retrieval and achieve the
second-best results for dense retrieval on the NQ-
Conv subset. However, our approaches are inferior
to human rewrites and T5QR on the TREC-Conv
subset. One reason is that TREC-Conv contains
many obscure questions, making it challenging for
an LLM to accurately understand true user needs.
It is seen that even human rewrites perform worse
on TREC-Conv than on QuAC-Conv and NQ-Conv
in sparse retrieval. Additionally, the questions in
TREC-Conv are more self-contained and require
less rewriting, as evidenced by higher ROUGE-1
scores (Lin, 2004) between human rewrites and
original questions compared to QuAC-Conv and
NQ-Conv. Specifically, the ROUGE-1 scores on
TREC-Conv, QuAC-Conv, and NQ-Conv are 80.60,
69.73, and 72.16, respectively. (VI) Both ED(Self)
and ED(T5QR) outperform RW(FSL), showing the
significance of prompting LLMs as rewrite editors.
While ED(T5QR) performs worse than ED(Self)
on the overall QReCC test set, it excels on the NQ-
Conv and TREC-Conv subsets, benefiting from the
fact that T5QR is trained with human rewrites.

In summary, this study confirms the importance

Query MRR MAP R@10

Sparse
(BM25)

Human 39.81 38.45 62.65
RW(ZSL) 42.63 41.31 60.46
R̂W(ZSL) 41.52 40.20 59.60

Dense
(GTR)

Human 43.15 41.27 66.12
RW(ZSL) 40.64 38.95 62.28
R̂W(ZSL) 39.94 38.28 61.44

Table 3: Ablation study by removing the informative-
ness requirement from the instruction in RW(ZSL).

of informative query rewriting and the effectiveness
of our proposed approaches of prompting LLMs as
query rewriters and rewrite editors. The study also
suggests that it is crucial to take query characteris-
tics into account when performing query rewriting
with LLMs, which we leave as our future work.

5.2 Quantitative Analyses of Query Rewrites

The previous results have demonstrated the effec-
tiveness of informative query rewrites generated by
our proposed approaches in enhancing conversa-
tional search. To gain more insights into the quality
of these rewrites, we employ the average number
of tokens per rewrite as a measurement of infor-
mativeness and the percentage of tokens in human
rewrites that also appear in the generated rewrites
as a measurement of correctness. We assume that
a rewrite containing more tokens from the corre-
sponding human rewrite is more likely to be cor-
rect. The results are shown in Table 2. We observe
that our proposed approaches consistently generate
longer rewrites than human rewrites, with ED(Self)
producing the longest rewrites overall. This im-
plies that the rewrites generated by our proposed
approaches are more informative. We also observe
that T5QR generates shorter rewrites than human
rewrites, indicating that relying solely on learning
from human rewrites fails to produce informative
rewrites. Moreover, our proposed approaches, al-
beit without supervised fine-tuning, achieve rela-
tively high correctness compared to human rewrites.
For example, more than 76% of tokens in human
rewrites are included in the rewrites generated by
ED(Self). ED(T5QR) even exhibits higher correct-
ness than T5QR on the QuAC-Conv and NQ-Conv
subsets. Finally, the longer rewrites and higher per-
centage of shared tokens with human rewrites (ex-
cept RW on TREC-Conv), compared to the original
queries, suggest to some extent that the rewrites
generated by our approaches have fair clarity.
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Figure 3: Distillation results of using BM25 as the retriever. The legends indicate the sources of fine-tuning labels.

5.3 Ablation Study
We conduct an ablation study by removing the in-
formativeness requirement from the instruction uti-
lized by RW(ZSL) (i.e., removing the phrase “and
be as informative as possible”), resulting in a mod-
ified version denoted as R̂W(ZSL). Table 3 reports
the results. We find that for both sparse and dense
retrieval, R̂W(ZSL) achieves lower performance
across all three evaluation metrics than RW(ZSL),
demonstrating that it is valuable to incorporate in-
formativeness requirement into the instruction for
generating informative query rewrites. Interest-
ingly, R̂W(ZSL) outperforms human rewrites in
terms of MRR and MAP for sparse retrieval, which
again verifies the notion that human rewrites may
fail to yield optimal retrieval performance. See Ap-
pendix C.3 for ablation results of the other three
desirable properties.

5.4 Distillation Results
Figure 3 shows the distillation results using BM25
as the retriever. In this study, we sample 10K train-
ing instances and employ RW(FSL) and ED(Self)
to generate labels for fine-tuning the T5QR model.
For comparison, we include the results with human
rewrites as training labels. We find that distillation
outperforms using human rewrites as labels on the
QReCC test set. Notably, distillation with only 10K
training instances can achieve superior results than
directly utilizing human rewrites as search queries
in terms of MRR and MAP. On the QuAC-Conv
and NQ-Conv subsets, distillation also consistently
demonstrates improved performance. However, for
TREC-Conv, fine-tuning with human rewrites leads
to better outcomes. Distillation not only improves
retrieval performance but also reduces time over-
head. See Appendix C.4 for latency analyses.

6 Related Work

Conversational search addresses users’ informa-
tion needs through iterative interactions (Radlinski

and Craswell, 2017; Rosset et al., 2020). It al-
lows users to provide and seek clarifications (Xu
et al., 2019) and explore multiple aspects of a topic,
thereby excelling at fulfilling complex informa-
tion needs. The primary challenge in conversa-
tional search is accurately identifying users’ search
intents from their contextualized and potentially
ambiguous queries (Ye et al., 2022a; Keyvan and
Huang, 2022; Ye et al., 2022b; Wang et al., 2023;
Owoicho et al., 2023; Zhu et al., 2023).

Most existing work (Yu et al., 2021; Lin et al.,
2021b; Kim and Kim, 2022; Li et al., 2022a; Mao
et al., 2022) addresses this challenge by regarding
the concatenation of the current user query with its
associated conversational context as a standalone
query. However, using this concatenation directly
as input to search systems could result in poor re-
trieval performance (Lin et al., 2021b). Moreover,
this approach requires training specialized retriev-
ers such as dual encoders (Karpukhin et al., 2020;
Xiong et al., 2020; Khattab and Zaharia, 2020),
which can be challenging or even impractical in
many real-world scenarios (Wu et al., 2022).

Another line of research addresses this challenge
through query rewriting (Elgohary et al., 2019; Wu
et al., 2022; Qian and Dou, 2022; Yuan et al., 2022;
Li et al., 2022b; Mo et al., 2023), which converts
the original query into a standalone one. However,
these approaches mainly rely on human rewrites
to train query rewriting models. As shown in our
experiments, human rewrites may lack sufficient
informativeness, hence leading to sub-optimal per-
formance of these rewriting models.

Alternatively, some studies employ query expan-
sion to address this challenge. They select relevant
terms from the conversational context (Voskarides
et al., 2020; Kumar and Callan, 2020) or generate
potential answers (Mo et al., 2023) to augment the
original query. The latter can be seamlessly inte-
grated into our approach to leverage the knowledge
within LLMs. We leave this study as future work.
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7 Conclusion

In this work, we propose to prompt LLMs as query
rewriters and rewrite editors for informative query
rewrite generation. We are the first to introduce the
concept of informative query rewriting and iden-
tify four properties that characterize a well-formed
rewrite. We also propose distilling the rewriting ca-
pabilities of LLMs into smaller models to improve
efficiency. Our experiments verify the significance
of informativeness in query rewrites and the effec-
tiveness of using LLMs for generating rewrites.

Despite the superb performance achieved by our
proposed approach, there are multiple future direc-
tions that are worthy of exploration. For example,
we can train an auxiliary model to decide whether
queries generated by prompting LLMs should be
preferred to those generated by models that have
been finetuned on human rewrites. We can also
combine human rewrites and LLM rewrites as la-
bels through a proper weighting strategy to finetune
query rewriting models. Furthermore, in this work,
we have used a fixed set of demonstrations for all
test queries. To achieve the best performance, it
is essential to find appropriate demonstrations for
each specific query. This would be an effective
solution to tackle obscure or complicated queries.
Another future direction can be parameter-efficient
fine-tuning (e.g., LoRA (Hu et al., 2021)) of LLMs
with retrieval performance as feedback. In this way,
we will aim to optimize the helpfulness of rewritten
queries rather than informativeness.

Limitations

We identify three limitations of our proposed ap-
proach. Firstly, the utilization of LLMs as query
rewriters and rewrite editors inevitably suffers from
the shortcomings associated with LLMs. Our ex-
periments indicate that LLMs do not always fol-
low provided instructions, resulting in generated
rewrites that fail to possess the four desirable prop-
erties. For example, these rewrites may contain du-
plicate questions from the conversational context,
thereby violating the nonredundancy requirement.
In Appendix C.5, we present a case study demon-
strating that the original user query may even be
misinterpreted, leading to incorrect query rewrites.

Secondly, although our experimental results have
demonstrated improved retrieval performance, it
is essential to emphasize that the effectiveness of
informative query rewriting is highly dependent on
the formatting of the passage collection. In scenar-

ios where passages are relatively short, the intro-
duction of more information in the search query
may have a detrimental effect, as it becomes more
challenging for retrieval systems to determine the
most relevant passages. Conversely, informative
query rewriting should prove beneficial in the con-
text of long passages or document retrieval.

Thirdly, in this work, we have experimented with
only one LLM, namely ChatGPT, and therefore our
findings may be biased toward this specific model.
It is unclear if other LLMs can achieve the same
level of performance. Further investigation with
more LLMs is worthwhile.

Ethics Statement

Query rewriting plays a crucial role as an intermedi-
ary process in conversational search, facilitating a
clearer comprehension of user search intents. This
process is beneficial in generating appropriate re-
sponses to users. The effectiveness of this approach
can be further enhanced through informative query
rewriting, resulting in the retrieval of more relevant
passages. Nevertheless, it is important to acknowl-
edge that our proposed approaches are subject to
the inherent limitations of LLMs, such as halluci-
nations, biases, and toxicity. It is also important to
filter out passages that contain offensive text from
the passage collection to ensure reliable retrieval
results when applying our proposed approaches in
practical scenarios.
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A Additional Dataset Details

The original QReCC dataset is only divided into a
training set and a test set. Following Kim and Kim
(2022), we sample 2K conversations from the train-
ing set as the development set. The statistics are
summarized in Table 4. To ensure that the first user
question is always self-contained and unambigu-
ous, we replace all first questions with their cor-
responding human rewrites. This pre-processing
aligns with previous work (Anantha et al., 2021;
Wu et al., 2022). We note that some questions in
the test set lack valid gold passage labels. As these
questions are irrelevant for retrieval evaluation, we
remove them from the test set. Consequently, our
final test set consists of 8,209 questions, with 6,396
for QuAC-Conv, 1,442 for NQ-Conv, and 371 for
TREC-Conv. This filtering also helps reduce costs
associated with using OpenAI APIs.

Train Dev Test

QReCC #C 8,823 2,000 2,775
#Q 51,928 11,573 16,451

QuAC-Conv #C 6,008 1,300 1,816
#Q 41,395 8,965 12,389

NQ-Conv #C 2,815 700 879
#Q 10,533 2,608 3,314

TREC-Conv #C 0 0 80
#Q 0 0 748

Table 4: Statistics of the QReCC dataset and its three
subsets. #C represents the number of conversations and
#Q denotes the number of questions.

B Additional Implementation Details

Throughout our experiments, we leverage ChatGPT
as the LLM and set the maximum number of gen-
eration tokens to 2,560 for all four variants of our
proposed approach, namely RW(ZSL), RW(FSL),
ED(Self), and ED(T5QR). ED(Self) utilizes the
rewrites generated by RW(FSL) as initial rewrites,
while ED(T5QR) takes the rewrites produced by
T5QR as initial results. For training, we initialize
T5QR with the t5-base checkpoint from Hugging-
Face6 and select the best model based on the high-
est BLEU score (Papineni et al., 2002) with human
rewrites on the development set. The training pro-
cess involves 10 epochs with a batch size of 16 and

6huggingface.co/docs/transformers/model_doc/t5

gradient accumulation steps of 2 (i.e., an overall
batch size of 32). We employ AdamW (Loshchilov
and Hutter, 2017) as the optimizer and creat a linear
schedule with warmup to adjust the learning rate
dynamically. The peak learning rate is set to 1e-5,
and the warmup ratio is 0.1. The maximum conver-
sational context length is restricted to 384, and the
maximum output length is set to 64. We use a fixed
random seed of 42 and conduct experiments on a
single TITAN RTX GPU card with 24GB memory.
Greedy decoding is used for inference.

To conduct distillation, we first sample 10K ques-
tions from the training set and 2K questions from
the development set. We then apply RW(FSL) and
ED(Self) to generate rewrites as pseudo labels for
training the T5QR model. In this experiment, the
training settings remain the same as the previous
one, except that the number of gradient accumula-
tion steps is set to 1 (i.e., an overall batch size of
16) and the BLEU score is calculated based on the
generated pseudo labels rather than human rewrites.
We perform testing on the full test set.

We use Pyserini (Lin et al., 2021a) to construct
the sparse index for the BM25 retrieval model, with
default hyparameters of k1 = 0.82 and b = 0.68.
These values were chosen according to the retrieval
performance on MS MARCO (Bajaj et al., 2016),
a non-conversational retrieval dataset. We adopt
Faiss (Johnson et al., 2019) to build the dense in-
dex for the GTR retrieval model. When encoding
queries and passages, the maximum length is set
to 384 and the dimension of embedding vectors is
768. We utilize cosine similarity between a query
vector and a passage vector to estimate their rele-
vance. Building the dense index for 54M passages
requires around 320GB of RAM. To efficiently han-
dle this, we split the passage collection into 8 parts,
conduct retrieval on each part, and subsequently
merge the results.

C Additional Experimental Results

C.1 Pairwise Comparison of Query Rewriting
Methods

We provide a more in-depth analysis of different
query rewriting methods by comparing the per-
formance of every two methods on each instance
within the QReCC test set. We leverage recipro-
cal rank (RR) as the evaluation metric and mea-
sure the ratio of instances where the first method
outperforms (win) or achieves equal performance
(tie) to the second method. The results are illus-
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Figure 4: The ratio of cases where query rewriting methods shown in the vertical axis achieve better performance
(win) than or equal performance (tie) to methods shown in the horizontal axis in terms of the reciprocal rank (RR)
metric on the overall QReCC test set. We adopt BM25 as the retriever in this study.

Query QReCC QuAC-Conv NQ-Conv TREC-Conv

NDCG@3 R@5 R@100 NDCG@3 R@5 R@100 NDCG@3 R@5 R@100 NDCG@3 R@5 R@100

Sp
ar

se
(B

M
25

)

Original 7.98 12.06 28.63 8.02 12.10 27.70 7.80 11.14 29.06 7.96 14.82 42.99
Human 35.97 50.71 98.48 36.57 51.21 98.35 36.58 51.65 98.96 23.15 38.54 98.92

T5QR 30.13 43.09 85.66 30.55 43.57 85.86 30.47 42.86 84.42 21.39 35.58 87.06
ConQRR - - 88.90 - - 90.20 - - 86.70 - - 75.90
ConvGQR 41.00 - 88.00 - - - - - - - - -

RW(ZSL) 39.67 52.04 84.31 42.54 55.02 85.55 33.05 45.30 81.92 15.89 26.82 72.15
RW(FSL) 43.82 56.60 88.34 46.83 59.59 89.86 37.61 50.85 86.56 16.00 27.36 69.05
ED(Self) 46.43 58.86 88.15 50.20 62.55 89.95 37.94 50.89 85.72 14.32 26.28 66.49
ED(T5QR) 44.85 57.69 89.91 47.80 60.49 91.09 38.77 51.88 87.97 17.71 32.08 77.18

D
en

se
(G

T
R

)

Original 10.90 15.23 27.22 10.09 14.38 25.64 12.00 15.97 29.26 20.51 27.09 46.50
Human 39.42 54.85 86.86 36.68 52.44 86.46 50.89 65.24 88.54 42.01 56.06 87.24

T5QR 34.37 48.19 79.85 32.06 46.09 79.65 43.98 56.94 79.92 36.79 50.40 83.20
ConQRR - - 84.70 - - 85.80 - - 80.90 - - 79.60
ConvGQR 39.10 - 81.80 - - - - - - - - -

RW(ZSL) 37.41 52.23 81.03 36.83 51.79 81.53 41.59 55.96 79.89 31.21 45.28 76.95
RW(FSL) 40.62 56.12 84.76 40.17 55.85 85.33 45.41 60.19 84.67 29.87 44.83 75.34
ED(Self) 41.80 57.11 85.61 42.06 57.50 86.42 44.08 59.27 84.42 28.44 41.87 76.15
ED(T5QR) 41.49 56.46 85.91 41.02 56.11 86.25 46.39 60.27 85.35 30.56 47.71 82.12

Table 5: Passage retrieval performance of sparse and dense retrievers with various query rewriting methods on the
QReCC test set and its three subsets. The best results are shown in bold and the second-best results are underlined.

trated in Figure 4. It can be seen that our proposed
approaches, RW(FSL), ED(Self), and ED(T5QR),
win more instances than human rewrites. For ex-
ample, ED(Self) achieves higher performance in
approximately 36% of instances, whereas human
rewrites are better in only about 26.6% of instances.
It can also be seen that T5QR outperforms human
rewrites in only 12.6% of instances, again confirm-
ing that learning solely from human rewrites is not
ideal. Moreover, we observe that ED(T5QR) out-
performs T5QR in 38.4% of instances, while T5QR
only wins in 16.3% of instances. This demonstrates
that prompting LLMs as rewrite editors is effec-

tive in generating higher-quality query rewrites.
Among the four variants of our proposed approach,
we find that they share a relatively high tie ratio.
For example, ED(Self) and RW(FSL) achieve equal
performance in 73.2% of instances. This is reason-
able since ED(Self) takes the rewrites produced by
RW(FSL) as initial rewrites.

This analysis reveals that no single method pos-
sesses superior efficacy over all other methods,
thereby indicating considerable potential for fu-
ture research. It is crucial to emphasize that while
we assert the limited informativeness of human
rewrites in a general sense, it is possible that some
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Figure 5: Recall value versus the cutoff rank k ∈ {5, 10, 20, 30, 100}, with BM25 as the retriever.

human rewrites are already informative enough.

C.2 Main Results with Different Evaluation
Metrics

Here, we expand the range of evaluation metrics
to assess the retrieval performance more compre-
hensively. Specifically, we utilize normalized dis-
counted cumulative gain with a cutoff rank of 3
(NDCG@3) and Recall@5 (R@5) to evaluate the
relevance of top-ranked passages. Additionally, we
employ Recall@100 (R@100) to consider the rel-
evance of lower-ranked passages. The results are
presented in Table 5. We find that our proposed
approaches can substantially outperform human
rewrites and all supervised baselines in terms of
NDCG@3 and R@5 on the QReCC test set. For
example, ED(Self) shows an absolute improvement
of 10.46 in NDCG@3 compared to human rewrites.
This finding indicates that our approaches can effec-
tively rank relevant passages higher, which is partic-
ularly valuable for downstream tasks such as ques-
tion answering, where only the top-ranked passages

are typically considered. Regarding R@100, we
find that human rewrites consistently demonstrate
the best performance. This is rational since human
rewrites possess a higher guarantee of correctness.
Although our proposed approaches are able to gen-
erate more informative query rewrites, they suffer
from a lower guarantee of correctness as they are
built upon LLMs. However, it is worth noting that
our approach ED(T5QR) achieves the second-best
results for both sparse and dense retrieval. Concern-
ing the performance on the three subsets, our find-
ings are similar to those presented in Section 5.1.
Our approaches consistently achieve the best or
second-best results in terms of NDCG@3 and R@5
on the QuAC-Conv and NQ-Conv subsets. How-
ever, they fall short of human rewrites and T5QR
on the TREC-Conv subset. Nevertheless, our ap-
proach ED(T5QR) achieves higher performance
than ConQRR, even though it employs reinforce-
ment learning to optimize the model with retrieval
performance as the reward.

We conduct further analysis on the trend of re-

6000



R@5 R@10 R@20 R@30 R@100

50

60

70

80

90

Human
T5QR

RW(ZSL)
RW(FSL)

ED(Self)
ED(T5QR)

(a) QReCC

R@5 R@10 R@20 R@30 R@100

50

60

70

80

90

Human
T5QR

RW(ZSL)
RW(FSL)

ED(Self)
ED(T5QR)

(b) QuAC-Conv

R@5 R@10 R@20 R@30 R@10050

60

70

80

90

Human
T5QR

RW(ZSL)
RW(FSL)

ED(Self)
ED(T5QR)

(c) NQ-Conv

R@5 R@10 R@20 R@30 R@10040

50

60

70

80

90

Human
T5QR

RW(ZSL)
RW(FSL)

ED(Self)
ED(T5QR)

(d) TREC-Conv

Figure 6: Recall value versus the cutoff rank k ∈ {5, 10, 20, 30, 100}, with GTR as the retriever.

call values by varying the cutoff rank k within the
range of {5, 10, 20, 30, 100}. Recall, which repre-
sents the fraction of relevant passages retrieved, is
an important metric for evaluating the performance
of retrieval results, particularly from a holistic point
of view. The results of sparse retrieval and dense
retrieval are illustrated in Figure 5 and Figure 6,
respectively. As anticipated, increasing the value of
k leads to higher recall values across all methods,
as a larger number of relevant passages are likely
to be included in the results. Notably, our proposed
approaches RW(FSL), ED(Self), and ED(T5QR)
demonstrate commendable performance at differ-
ent cutoff ranks (i.e., different values of k). They
can surpass human rewrites when considering small
values of k. However, they are inferior to human
rewrites when k becomes large. This observation
suggests that the quality of rewrites generated by
our approaches exhibits a higher variability. Even
though many rewrites outperform human rewrites,
there are also cases where the generated rewrites
are significantly inferior. It is worthwhile to con-

Query MRR MAP R@10

Sparse
(BM25)

RW(ZSL) 42.63 41.31 60.46
-Informativeness 41.52 40.20 59.60
-Correctness 35.95 34.61 53.59
-Clarity 33.43 32.16 50.87
-Nonredundancy 36.58 35.23 55.02

Dense
(GTR)

RW(ZSL) 40.64 38.95 62.28
-Informativeness 39.94 38.28 61.44
-Correctness 38.03 36.28 57.88
-Clarity 35.78 34.11 54.82
-Nonredundancy 38.53 36.82 59.27

Table 6: Ablation study by removing each of the four
desirable properties from the instruction in RW(ZSL).

duct further research to optimize the worst-case
performance of our proposed approach.

C.3 Additional Ablation Study

In Table 6, we report the ablation results by remov-
ing each of the four desirable properties from the
instruction in RW(ZSL). From the table, we can see
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Figure 7: Distillation results of using GTR as the retriever. The legends indicate the sources of fine-tuning labels.

that all the four properties contribute to the perfor-
mance improvement. Removing any one of them
will lead to performance degradation. In particular,
we can observe that removing either the correctness
or clarity property leads to the most performance
drop. This is because these two properties are cru-
cial to ensure that the rewrites preserve the mean-
ing of the original queries and are self-contained.
Since the clarity requirement also contributes to
the informativeness of rewritten queries, remov-
ing the informativeness requirement only seems to
decrease the performance not that much.

In summary, this ablation study verifies that our
proposed four properties in the instructions are es-
sential to the success of prompting LLMs as query
rewriters and informative query rewriting is critical
for achieving better retrieval performance.

C.4 Additional Distillation Results

The distillation results using GTR as the retrieval
model are depicted in Figure 7. It can be observed
that distillation outperforms using human rewrites
as labels by a large margin on the QReCC test set.
On the QuAC-Conv subset, distillation also consis-
tently demonstrates superior performance. On the
NQ-Conv subset, distillation surpasses the utiliza-
tion of human rewrites as labels when RW(FSL) is
employed as the teacher model.

Distillation offers benefits not only in enhanc-
ing retrieval performance but also in reducing time
overhead. The rewriting latency comparison be-
tween T5QR and RW(FSL), with RW(FSL) serv-
ing as the teacher model, is presented in Table 7.
The results indicate that the student model T5QR
exhibits a significantly higher rewriting speed, ap-
proximately six times faster than RW(FSL).

C.5 Case Study

We perform a case study to help understand the im-
pact of informative query rewrites on retrieval per-
formance more intuitively. We employ RW(FSL)

T5QR RW(FSL)

Rewriting Latency 312 (ms/q) 1867 (ms/q)

Table 7: Comparison of rewriting latency in terms of
milliseconds per query (ms/q). RW(FSL) is the teacher
model, while T5QR is the student model.

as the query rewriter and BM25 as the retriever in
this study. Table 8 showcases two successful exam-
ples. In the first example, adding the information
“during his time as Chancellor of the University of
Chicago” is crucial to understanding the original
query comprehensively, thereby significantly im-
proving the ranking of the relevant passage. In the
second example, the added information exhibits a
high degree of overlap with the gold passage, which
also leads to better retrieval performance. Table 9
showcases one unsuccessful example. In this exam-
ple, our approach RW(FSL) misinterprets the user
query and expands it using wrong contextual infor-
mation, resulting in worse retrieval performance.

D Prompts

The prompts for utilizing LLMs as zero-shot and
few-shot query rewriters and few-shot rewrite ed-
itors are presented in Table 10, Table 11, and Ta-
ble 12, respectively.
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Conversational Context: (id=511_4)
Q1: What year was Robert Maynard Hutchins Chancellor of the University of Chicago?
A1: Robert Maynard Hutchins served as University of Chicago’s Chancellor from 1945 until 1951.
Q2: Did Robert pull any sports out of the schools agenda?
A2: Robert Maynard Hutchins eliminated the University of Chicago’s football program, which he
saw as a campus distraction.
Q3: What collegiate conference of sports did he pull the university out of?
A3: Robert Maynard Hutchins pulled the University of Chicago out of the Big Ten Conference.
Current Question:
Q4: What degree did he make known for two year studies?
Human Rewrite:
Q∗

4: What degree did Robert Maynard Hutchins make known for two year studies? (Rank=56)
Rewrite by RW(FSL):
Q′

4: What degree program did Robert Maynard Hutchins make known for two year studies during his
time as Chancellor of the University of Chicago? (Rank=2)
Gold passage:
. . . Hutchins was able to implement his ideas regarding a two-year, generalist bachelors during his
tenure at Chicago, and subsequently had designated those studying in depth in a field as masters
students . . .

Conversational Context: (id=1875_3)
Q1: Where did Wu-Tang Clan’s name come from?
A1: Shaolin and Wu Tang is a film that inspired the name of the hip-hop group Wu-Tang Clan.
Q2: When did the group form?
A2: Wu-Tang Clan is an American hip hop group formed in the New York City borough of Staten
Island in 1992.
Current Question:
Q3: Who were the founding members?
Human Rewrite:
Q∗

3: Who were the founding members of Wu-Tang Clan? (Rank=14)
Rewrite by RW(FSL):
Q′

3: Who were the founding members of the American hip hop group Wu-Tang Clan, which was
formed in the New York City borough of Staten Island in 1992 and named after the film Shaolin and
Wu Tang? (Rank=1)
Gold passage:
. . . Wu-Tang Clan is an American hip hop group formed in the New York City borough of Staten
Island in 1992, originally composed of rapper-producer RZA and rappers GZA, OlD́irty Bastard,
Method Man, Raekwon, Ghostface Killah, Inspectah Deck, U-God and Masta Killa . . .

Table 8: Two successful examples showing that our proposed approach RW(FSL) can extract valuable contextual
information to improve the informativeness of generated query rewrites. We highlight the additional information in
generated rewrites compared to human rewrites in blue and the relevant parts in gold passages regarding the added
information in red.
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Conversational Context: (id=617_5)
Q1: What did the singer, Cheryl do for the greater good?
A1: In 2004, Cheryl’s band, Girls Aloud released a cover of The Pretenders’ I’ll Stand by You as the
official single for the BBC’s charity telethon Children in Need.
Q2: Did she do any other activities for charities?
A2: In March 2009, Cheryl climbed Mount Kilimanjaro in aid of Comic Relief.
Q3: Does she have any charities?
A3: In February 2011, Cheryl launched her own charitable foundation with The Prince’s Trust
following a meeting with The Trust’s President, HRH Charles, Prince of Wales.
Q4: Are there any other interesting aspects about this article?
A4: On 23 January 2015, Cheryl announced the launch of a second charity, once again alongside The
Prince’s Trust.
Current Question:
Q5: For what charity?
Human Rewrite:
Q∗

5: What second charity did the singer, Cheryl launch in 2015? (Rank=1)
Rewrite by RW(FSL):
Q′

5: For which charity did Cheryl launch her own charitable foundation in February 2011, following a
meeting with The Trust’s President, HRH Charles, Prince of Wales? (Rank=25)
Gold passage:
. . . The charity was named Cherylś Trust, and was set up with the aim of raising £2 million to build a
centre, which will support up to 4000 disadvantaged young people in her native city of Newcastle. To
raise these funds, Cheryl has thus far teamed up with Prizeo in March 2015 . . .

Table 9: An unsuccessful example showing that our proposed approach RW(FSL) may misinterpret the original
question and thus fail to identify truly relevant contextual information to augment the original query.

Given a question and its context, decontextualize the question by addressing
coreference and omission issues. The resulting question should retain its
original meaning and be as informative as possible, and should not duplicate any
previously asked questions in the context.

Context: {Conversational context}
Question: {Question}
Rewrite:

Table 10: Prompt for utilizing LLMs as zero-shot query rewriters.
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Given a question and its context, decontextualize the question by addressing
coreference and omission issues. The resulting question should retain its
original meaning and be as informative as possible, and should not duplicate any
previously asked questions in the context.

Context: [Q: When was Born to Fly released?
A: Sara Evans’s third studio album, Born to Fly, was released on October 10, 2000.
]
Question: Was Born to Fly well received by critics?
Rewrite: Was Born to Fly well received by critics?

Context: [Q: When was Keith Carradine born?
A: Keith Ian Carradine was born August 8, 1949.
Q: Is he married?
A: Keith Carradine married Sandra Will on February 6, 1982. ]
Question: Do they have any children?
Rewrite: Do Keith Carradine and Sandra Will have any children?

Context: [Q: Who proposed that atoms are the basic units of matter?
A: John Dalton proposed that each chemical element is composed of atoms of a
single, unique type, and they can combine to form more complex structures called
chemical compounds. ]
Question: How did the proposal come about?
Rewrite: How did John Dalton’s proposal that each chemical element is composed
of atoms of a single unique type, and they can combine to form more complex
structures called chemical compounds come about?

Context: [Q: What is it called when two liquids separate?
A: Decantation is a process for the separation of mixtures of immiscible liquids
or of a liquid and a solid mixture such as a suspension.
Q: How does the separation occur?
A: The layer closer to the top of the container-the less dense of the two liquids,
or the liquid from which the precipitate or sediment has settled out-is poured
off. ]
Question: Then what happens?
Rewrite: Then what happens after the layer closer to the top of the container is
poured off with decantation?

Context: {Conversational context}
Question: {Question}
Rewrite:

Table 11: Prompt for utilizing LLMs as few-shot query rewriters.

6005



Given a question and its context and a rewrite that decontextualizes the question,
edit the rewrite to create a revised version that fully addresses coreferences
and omissions in the question without changing the original meaning of the
question but providing more information. The new rewrite should not duplicate
any previously asked questions in the context. If there is no need to edit the
rewrite, return the rewrite as-is.

Context: [Q: When was Born to Fly released?
A: Sara Evans’s third studio album, Born to Fly, was released on October 10, 2000.
]
Question: Was Born to Fly well received by critics?
Rewrite: Was Born to Fly well received by critics?
Edit: Was Born to Fly well received by critics?

Context: [Q: When was Keith Carradine born?
A: Keith Ian Carradine was born August 8, 1949.
Q: Is he married?
A: Keith Carradine married Sandra Will on February 6, 1982. ]
Question: Do they have any children?
Rewrite: Does Keith Carradine have any children?
Edit: Do Keith Carradine and Sandra Will have any children?

Context: [Q: Who proposed that atoms are the basic units of matter?
A: John Dalton proposed that each chemical element is composed of atoms of a
single, unique type, and they can combine to form more complex structures called
chemical compounds. ]
Question: How did the proposal come about?
Rewrite: How did John Dalton’s proposal come about?
Edit: How did John Dalton’s proposal that each chemical element is composed
of atoms of a single unique type, and they can combine to form more complex
structures called chemical compounds come about?

Context: [Q: What is it called when two liquids separate?
A: Decantation is a process for the separation of mixtures of immiscible liquids
or of a liquid and a solid mixture such as a suspension.
Q: How does the separation occur?
A: The layer closer to the top of the container-the less dense of the two liquids,
or the liquid from which the precipitate or sediment has settled out-is poured
off. ]
Question: Then what happens?
Rewrite: Then what happens after the layer closer to the top of the container is
poured off?
Edit: Then what happens after the layer closer to the top of the container is
poured off with decantation?

Context: {Conversational context}
Question: {Question}
Rewrite: {Initial rewrite}
Edit:

Table 12: Prompt for utilizing LLMs as few-shot editors.
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