
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 6027–6037
December 6-10, 2023 ©2023 Association for Computational Linguistics

Grammatical Error Correction via Mixed-Grained Weighted Training

Jiahao Li1, Quan Wang2∗, Chiwei Zhu1, Zhendong Mao1, Yongdong Zhang1

1University of Science and Technology of China, Hefei, China
2MOE Key Laboratory of Trustworthy Distributed Computing and Service,

Beijing University of Posts and Telecommunications, Beijing, China
jiahao66@mail.ustc.edu.cn, wangquan@bupt.edu.cn

tanz@mail.ustc.edu.cn, zdmao@ustc.edu.cn, zhyd73@ustc.edu.cn

Abstract

The task of Grammatical Error Correction
(GEC) aims to automatically correct grammati-
cal errors in natural texts. Almost all previous
works treat annotated training data equally, but
inherent discrepancies in data are neglected.
In this paper, the inherent discrepancies are
manifested in two aspects, namely, accuracy of
data annotation and diversity of potential an-
notations. To this end, we propose MainGEC,
which designs token-level and sentence-level
training weights based on inherent discrepan-
cies in accuracy and potential diversity of data
annotation, respectively, and then conducts
mixed-grained weighted training to improve
the training effect for GEC. Empirical evalu-
ation shows that whether in the Seq2Seq or
Seq2Edit manner, MainGEC achieves consis-
tent and significant performance improvements
on two benchmark datasets, demonstrating the
effectiveness and superiority of the mixed-
grained weighted training. Further ablation ex-
periments verify the effectiveness of designed
weights of both granularities in MainGEC.

1 Introduction

The task of Grammatical Error Correction (GEC)
aims to automatically correct grammatical errors
in natural texts, which is extremely beneficial for
language learners, such as children and non-native
speakers (Bryant et al., 2022). The currently domi-
nant neural GEC methods are categorized into two
groups, i.e., Seq2Seq methods and Seq2Edit meth-
ods. Seq2Seq methods treat GEC as a monolingual
translation task, regarding errorful sentences as the
source language and error-free sentences as the tar-
get language (Yuan and Briscoe, 2016; Sun et al.,
2021; Zhang et al., 2022b). Seq2Edit methods treat
GEC as a sequence tagging task, which predicts a
tagging sequence of edit operations to perform cor-
rection (Awasthi et al., 2019; Omelianchuk et al.,
2020; Tarnavskyi et al., 2022).

∗Corresponding author: Quan Wang.

Accuracy of Data Annotation
Sample 1: Their new house near the beach is very nice .
Annotation: Your (✗) new house near the beach is very nice .

Sample 2: I read your email yesterday but I had n’t had
the time to reply yet .

Annotation: I read your email yesterday but I have (✓) n’t
had the time to reply until now (✗) .

Sample 3: do you have best friend in your life ?
Annotation: Do (✓) you have a best friend (✓) in your life ?

Diversity of Potential Annotations
Sample 4: Natural environment destroyed that is a people

focus on frequently problem .
Annotation: The natural environment is being destroyed .

That is a problem people focus on frequently .
Alternative: The natural environment is being destroyed ,

which is a problem people focus on frequently .

Sample 5: Secondly there are not much variety of dessert
mainly fruits and puddings .

Annotation: Secondly , there is not a lot of variety in the
desserts , mainly fruits and puddings .

Alternative: Secondly , there are not many varieties of
desserts , mainly fruits and puddings .

Sample 6: One of my favourite books are Diary of a
Wimpy Kid .

Annotation: One of my favourite books is Diary of a
Wimpy Kid .

Table 1: Instances from the BEA-19 (Bryant et al., 2019)
training set to show the discrepancies in the annotated
training data. Erroneous annotations are in red, correct
annotations are in blue, and multiple potential annota-
tions are in green.

Whether in the Seq2Seq or Seq2Edit manner,
almost all previous works treat annotated training
data equally (Rothe et al., 2021; Tarnavskyi et al.,
2022), that is, assigning the same training weight to
each training sample and each token therein. How-
ever, inherent discrepancies in data are completely
neglected, causing degradation of the training ef-
fect. Specifically, inherent discrepancies may be
manifested in two aspects, i.e., accuracy of data
annotation and diversity of potential annotations.
The discrepancy in accuracy of data annotation
refers to the uneven annotation quality, which is

6027

caused by differences in the annotation ability of
annotators and the difficulty of samples (Zhang
et al., 2022a). For example, in Table 1, Sample 1
and Sample 2 contain annotation errors to varying
degrees, while the annotation of Sample 3 is com-
pletely correct. The discrepancy in diversity of po-
tential annotations refers to the different amounts
of potential reasonable alternatives to annotation.
Usually, it differs due to different sentence struc-
tures or synonymous phrases. For example, Sample
4 and 5 potentially have multiple reasonable anno-
tations, while Sample 6 probably only has a single
reasonable annotation. Due to the above data dis-
crepancies, training data should be distinguished
during the training process, by being assigned well-
designed weights.

In this paper, we propose MainGEC (i.e.,
Mixed-grained weighted training for GEC), which
designs mixed-grained weights for training data
based on inherent discrepancies therein to improve
the training effect for GEC. First, we use a well-
trained GEC model (called a teacher model) to
quantify accuracy and potential diversity of data
annotation. On the one hand, the accuracy of anno-
tations is estimated by the generation probability
of the teacher model for each target token, which
represents the acceptance degree of the teacher
model for the current annotation. Then, the quanti-
fied accuracy is converted into token-level training
weights, as the accuracy of annotations may vary
not only across samples but even across tokens in
a single sample, e.g., sample 2 in Table 1. On the
other hand, the diversity of potential annotations
is estimated by the information entropy of output
distribution of the teacher model for each training
sample, which actually represents the uncertainty,
i.e., diversity, of the target sentences that the teacher
model is likely to generate. Then, the quantified
potential diversity is converted into sentence-level
training weights, considering that the potential an-
notations may involve the semantics and structures
of the entire sentence. Finally, the token-level
and sentence-level weigths constitute our mixed-
grained weights for the training process.

Lichtarge et al. (2020) also considers to allo-
cate training weights for samples. However, they
only consider discrepancies in synthetic data and
still treat human-annotated data equally, while the
discrepancies we consider are across all data. Addi-
tionally, they only design sentence-level weighting,
without token-level weighting considered in this pa-

per. From another perspective, our method can be
regarded as an "alternative" knowledge distillation
method. Compared to Xia et al. (2022) applying
general knowledge distillation on GEC, our method
uses a teacher model to obtain mixed-grained train-
ing weights based on inherent discrepancies in data
to guide the training process, rather than forcing
the output distribution of the student model to be
consistent with that of the teacher model.

We apply our mixed-grained weighted training
to the mainstream Seq2Seq and Seq2Edit methods,
and both of them achieve consistent and signifi-
cant performance improvements on two benchmark
datasets, verifying the superiority and generality
of the method. In addition, we conduct ablation
experiments, further verifying the effectiveness of
the designed weights of both granularities. Besides,
we conduct the comparative experiment with the
general knowledge distillation method on GEC,
verifying that our mixed-grained training weight-
ing strategy outperforms the general knowledge
distillation strategy.

The main contributions of this paper are summa-
rized as follows: (1) We investigate two kinds of
inherent discrepancies in data annotation of GEC
for the first time, and propose MainGEC, which
designs mixed-grained training weights based on
the discrepancies above to improve the training
effect. (2) The extensive empirical results show
that MainGEC achieves consistent and significant
performance improvements over the mainstream
Seq2Seq and Seq2Edit methods on two bench-
marks, proving the effectiveness and generality of
our method for GEC.

2 Preliminary

This section presents the formulation of GEC task
and currently mainstream Seq2Seq and Seq2Edit
methods for GEC.

2.1 Problem Formulation

Grammatical Error Correction (GEC) is to cor-
rect grammatical errors in natural texts. Given
an errorful sentence X = {x1, x2, · · · , xm} with
m tokens, a GEC system takes X as input, cor-
rects grammatical errors therein, and outputs a
corresponding error-free sentence Y = {y1, y2,
· · · , yn} with n tokens. In general, the target
sentence Y often has substantial overlap with the
source sentence X .

6028

Figure 1: Overview of Seq2Seq and Seq2Edit methods for GEC. Left: Seq2Seq methods encode the errorful
sentence X by an encoder, and autoregressively generate the corresponding correct sentence Y via a decoder.
Right: Seq2Edit methods employ a sequence tagging model to predict a tagging sequence T of edit operations
corresponding to the errorful sentence X , and the correct sentence Y is obtained by applying editing operations to
X via post-processing. Here, the tag $A_to denotes appending a new token "to" next to the current token "goes",
and the tag $R_school denotes replacing the current token "schol" with "school".

2.2 Seq2Seq Methods
The Seq2Seq methods employ the encoder-decoder
framework, where the encoder encodes the en-
tire errorful sentence X into corresponding hidden
states, and the decoder autoregressively generates
each token in Y based on the hidden states and the
previously generated tokens, as shown on the left
in Figure 1.

The general objective function of the Seq2Seq
methods is to minimize the negative log-likelihood
loss:

L(θ) = −
n∑

i=1

log p(ŷi = yi|X,Y<i, θ),

where θ is learnable model parameters, ŷi is the i-th
token predicted by the model, and Y<i = {y1, y2,
· · · , yi−1} denotes a set of tokens before the i-th
token yi.

2.3 Seq2Edit Methods
Due to the substantial overlap between X and Y ,
autoregressive generation for the entire target Y is
inefficient, and Seq2Edit methods is a good alter-
native. The Seq2Edit methods usually employ a
sequence tagging model made up of a BERT-like
encoder stacked with a simple classifier on the top,
as shown on the right in Figure 1. At first, a pre-
defined set of tags is required to denote edit opera-
tions. In general, this set of tags contains universal
edits, (e.g. $KEEP for keeping the current token un-
changed, $DELETE for deleting the current token,
$VERB_FORM for conversion of verb forms, etc)1

1Here we take GECToR’s tags (Omelianchuk et al., 2020)
for illustration.

and token-dependent edits, (e.g. $APPEND_ei for
appending a new token ei next to the current token,
$REPLACE_ei for replacing the current token with
another token ei). Considering the linear growth
of tag vocab’s size taken by token-dependent ed-
its, usually, a moderate tag vocab’s size is set to
balance edit coverage and model size based on the
frequency of edits. Then, the original sentence pair
(X,Y) is converted into a sentence-tags pair (X,T)
of equal length. Specifically, the target sentence
Y is aligned to the source sentence X by minimiz-
ing the modified Levenshtein distance, and then
converted to a tag sequence T = {t1, t2, · · · , tm}.
Refer to Omelianchuk et al. (2020) for more details.

In training, the general objective function of the
Seq2Edit methods is to minimize the negative log-
likelihood loss for the tag sequence:

Ls2e(θ) = −
m∑

i=1

log p(t̂i = ti|X, θ),

where t̂i is the i-th tag predicted by the model. Dur-
ing inference, Seq2Edit methods predict a tagging
sequence T̂ at first, and then apply the edit opera-
tions in the source sentence X via post-processing
to obtain the predicted result Ŷ .

3 Our Approach

This section presents our approach, MainGEC
which designs mixed-grained weights for training
data based on inherent discrepancies therein to im-
prove the training effect for GEC. Below, we first
elaborate on how to quantify accuracy and poten-
tial diversity of data annotation at the token-level

6029

Figure 2: Illustration of MainGEC. MainGEC converts
the target distribution generated by a teacher model
and original targets into mixed-grained weights, and
conducts weighted training with them.

and sentence-level respectively, and convert quanti-
fied features to training weights of both granulari-
ties, correspondingly. Then, based on both-grained
weights, the overall mixed-grained weighted train-
ing strategy is introduced. Figure 2 summarizes the
overall architecture of MainGEC.

3.1 Token-Level Weights
Due to differences in the annotation ability of an-
notators and the difficulty of samples, there is a
discrepancy in the accuracy of data annotation. Ac-
tually, this discrepancy exists not only across sam-
ples but even across tokens in a single sample. To
this end, a well-trained GEC model is used to quan-
tify the accuracy of data annotation for each token
in all training samples, and then they are converted
into token-level training weights.

For Seq2Seq Methods The source sentence X is
fed into a well-trained Seq2Seq GEC model (called
the teacher model), and the accuracy of the data an-
notation is estimated by the generation probability
of the teacher model for each target token yi :

Acc(yi) = p(ŷi = yi|X,Y<i, θT),

where i ∈ {1, 2, · · · , n}, θT is parameters of the
teacher model. Actually, this estimation implies the
extend to which the teacher model agrees with the
current annotation, which can be a measure of the
accuracy. Then, quantified accuracy of data annota-
tion for each target token can be directly regarded
as the token-level training weight, as the higher
accuracy of data annotation means the better anno-
tation quality and thus a higher token-level train-
ing weight should be assigned for training. The

token-level training weights for Seq2Seq methods
is defined as:

wtoken(yi) = Acc(yi).

For Seq2Edit Methods Similarly, the accuracy
of the data annotation is estimated by the genera-
tion probability of a well-trained Seq2Edit teacher
model for each target tag ti:

Acc(ti) = p(t̂i = ti|X, θT),

where i ∈ {1, 2, · · · ,m}. Correspondingly, the
token-level training weights for each target tag is
defined as:

wtoken(ti) = Acc(ti).

3.2 Sentence-Level Weigths
Due to different sentence structures or synonymous
phrases, there can be multiple potential reasonable
alternatives to the single target sentence Y of a
training sample (X,Y). Further, the amounts of
potential reasonable alternatives may differ across
all samples, which is referred to as the discrepancy
in the diversity of potential annotations. Therefore,
we quantify the diversity of potential annotations
for each training sample by the same teacher model
above, and convert them into sentence-level train-
ing weights.

For Seq2Seq Methods We feed the source sen-
tence X into the teacher model to obtain the proba-
bility distribution of its prediction result. For this
sample (X,Y), the diversity of potential annota-
tions is estimated by the information entropy of
this distribution:

Div(X,Y) =
1

n

n∑

i=1

H(ŷi|X,Y<i, θT)

log|V | ,

where |V | is the vocab size and H() denotes the
entropy of a random variable, with log|V | for
normalization. Here, lower information entropy
means that the teacher model produces a sparser
and sharper probability distribution. This leads
to the fact that fewer candidate target sentences
are likely to be generated, i.e., there is less diver-
sity of potential annotations therein. Further, this
means the teacher model has more confidence for
the target annotation, and a higher sentence-level
training weight should be assigned during train-
ing. Therefore, a monotonically decreasing func-
tion and proper boundary processing are applied

6030

to the quantified diversity of potential annotations
to obtain the sentence-level training weight for the
sample (X,Y):

wsent(X,Y) = Max[
log(Div(X,Y) + ϵ)

log ϵ
, ϵ],

where ϵ is a small positive quantity (e.g., e−9).

For Seq2Edit Methods Similarly, the diversity
of potential annotations is estimated by the infor-
mation entropy of output distribution of a Seq2Edit
teacher model for a sample (X,T):

Div(X,T) =
1

m

m∑

i=1

H(t̂i|X, θT)

log|E| ,

where |E| is the size of the pre-defined tag set. Cor-
respondingly, the sentence-level training weight for
the sample (X,T) is defined as:

wsent(X,T) = Max[
log(Div(X,T) + ϵ)

log ϵ
, ϵ].

3.3 Mixed-Grained Weighted Training
The mixed-grained weighted training is to simply
integrate both-grained weights into the training pro-
cess. During training, the sentence-level weights
determine the contribution of each sample to up-
date the model parameters, while further token-
level weights are used to adjust the importance of
each token/tag therein.

For Seq2Seq Methods We use the sentence-level
and token-level weights as factors of the training
loss for the samples and the tokens in them, re-
spectively. The overall loss function of our mixed-
grained weighted training is defined as:

Lw(θ) = −
∑

(X,Y)∈D
wsent(X,Y)∗

n∑

i=1

wtoken(yi) ∗ log p(ŷi = yi|X,Y<i, θ),

where D is all training corpus.

For Seq2Edit Methods Similarly, the loss func-
tion of our MainGEC for Seq2Edit methods is de-
fined as:

Lw(θ) = −
∑

(X,T)∈DT

wsent(X,T)∗

m∑

i=1

wtoken(ti) ∗ log p(t̂i = ti|X, θ),

where DT is all training data after the tag transfor-
mation.

Training Set #Sent #Tokens #Errors

Troy-1BW 1.2M 30.9M 100%
CLang-8 2.4M 28.0M 58%
NUCLE 57K 1.16M 62%
FCE 28K 455K 62%
W&I+LOCNESS 34K 628K 67%

Test Set #Sent #Tokens #Errors

CONLL-14 1.3K 30.1K 72%
BEA-19 4.5K 85.7K -

Table 2: Statistics of the datasets, including the number
of sentences, tokens, and the proportion of errorful sen-
tences.

4 Experiments and Results

This section introduces our experiments and results
on two benchmarks, i.e., CONLL-14 (Ng et al.,
2014) and BEA-19 (Bryant et al., 2019). Then,
we conduct ablation experiments on both-grained
training weights and comparative experiments with
the general knowledge distillation method. Finally,
a case study is presented to visualize the weights
in MainGEC.

4.1 Experimental Setups

Datasets and Evaluation Metrics As in Tar-
navskyi et al. (2022), the training datasets we used
consist of Troy-1BW (Tarnavskyi et al., 2022),
CLang-82 (Rothe et al., 2021), NUCLE (Dahlmeier
et al., 2013), FCE (Yannakoudakis et al., 2011),
W&I+LOCNESS (Bryant et al., 2019). The statis-
tics of the used datasets are shown in Table 2.

For evaluation, we consider two benchmarks,
i.e., CONLL-14 and BEA-19. CONLL-14 test set
is evaluated by official M2 scorer (Ng et al., 2014),
while BEA-19 dev and test sets are evaluated by
ERRANT (Bryant et al., 2017). Both evaluation
metrics are precision, recall and F0.5.

Baseline Methods We compare MainGEC
against the following baseline methods. All these
methods represent current state-of-the-art on GEC,
in a Seq2Seq or Seq2Edit manner.

Seq2Seq Methods

• Lichtarge et al. (2020) introduces a sentence-
level training weighting strategy by scoring
each sample based on delta-log perplexity,
∆ppl, which represents the model’s log per-

2Here, CLang-8 is a clean version of Lang-8 used in Tar-
navskyi et al. (2022).

6031

Method Model Data Size Architecture CONLL-14 BEA-19

P R F0.5 P R F0.5

Seq2Seq

Lichtarge et al. (2020) 340M Transformer-big 69.4 43.9 62.1 67.6 62.5 66.5
Stahlberg and Kumar (2021) 540M Transformer-big 72.8 49.5 66.6 72.1 64.4 70.4
T5GEC (Rothe et al., 2021) 2.4M T5-large - - 66.1 - - 72.1
T5GEC (Rothe et al., 2021)‡ 2.4M T5-xxl - - 68.8 - - 75.9

SAD (Sun et al., 2021) 300M BART (12+2) - - 66.4 - - 72.9
BART (Zhang et al., 2022b) 2.4M BART 73.6 48.6 66.7 74 64.9 72.0

SynGEC (Zhang et al., 2022b) 2.4M BART + DepGCN 74.7 49.0 67.6 75.1 65.5 72.9

BART (reimp)† 2.4M BART 74.3 47.7 66.8 78.1 58.9 73.3
MainGEC (BART)† 77.3 45.4 67.8 78.9 59.5 74.1

Seq2Edit

PIE (Awasthi et al., 2019) 1.2M BERT-large 66.1 43.0 59.7 - - -
GECToR (Omelianchuk et al., 2020) 10.2M XLNET-base 77.5 40.1 65.3 79.2 53.9 72.4

TMTC (Lai et al., 2022) 10.2M XLNET-base 77.9 41.8 66.4 81.3 51.6 72.9
GECToR-L (Tarnavskyi et al., 2022) 3.6M RoBERTa-large 74.4 41.1 64.0 80.7 53.4 73.2

Lichtarge et al. (2020) (reimp) 3.6M RoBERTa-large 76.4 40.5 64.9 80.4 54.4 73.4

GECToR-L (reimp) 3.6M RoBERTa-large 75.9 40.2 64.4 80.9 53.3 73.3
MainGEC (GECToR-L) 78.9 39.4 65.7 82.7 53.8 74.5

Table 3: Performance on the test sets of CONLL-14 and BEA-19, where precision (P), recall (R), F0.5 (F0.5) are
reported (%). Baseline results are directly taken from their respective literatures. Results marked by “†” are obtained
by applying a decoding approach (Sun and Wang, 2022) to adjust the precision-recall trade-off of inference, while
the result marked by “‡” is not comparable here because it uses a much larger model capacity (11B parameters).
Note: Better scores in MainGEC and the directly comparable baseline are bolded.

plexity difference between checkpoints for a
single sample.

• Stahlberg and Kumar (2021) generates more
training samples based on an error type tag
in a back-translation manner for GEC pre-
training.

• T5GEC (Rothe et al., 2021) pretrains large
multi-lingual language models on GEC, and
trains a Seq2Seq model on distillation data
generated by the former more efficiently.

• SAD (Sun et al., 2021) employs an asymmetric
Seq2Seq structure with a shallow decoder to
accelerate training and inference efficiency of
GEC.

• BART (Zhang et al., 2022b) applies a multi-
stage fine-tuning strategy on pre-trained lan-
guage model BART.

• SynGEC (Zhang et al., 2022b) extracts depen-
dency syntactic information and incorporates
it with output features of the origin encoder.

Seq2Edit Methods

• PIE (Awasthi et al., 2019) generates a tag se-
quence of edit operations and applys parallel
decoding to accelerate inference.

• GECToR (Omelianchuk et al., 2020) defines
a set of token-level transformations and con-
ducts 3-stage training on a tagging model.

• TMTC (Lai et al., 2022) customizes the order
of the training data based on error type, under
GECToR’s framework.

• GECToR-L (Tarnavskyi et al., 2022) applys
Transfomer-based encoders of large configu-
rations on GECToR.

Implementation Details For the Seq2Seq im-
plementation, BART-large (Lewis et al., 2020) is
choosed as the model backbone. At first, we fine-
tune BART with vanilla training as the teacher
model with fairseq3 implementation. For a fair
comparison with SynGEC (Zhang et al., 2022b),
the training scheme here is to just fine-tune BART
on the collection of all training sets excluding Troy-
1BW dataset, for just one stage. More training
details are discussed in Appendix A.

For the Seq2Edit implementation, we choose
GECToR-L based on RoBERTa (Liu et al., 2019)
as the model backbone. The checkpoint released by
GECToR-L is used for the teacher model4 to gen-
erate training weights of both granularities. We

3https://github.com/pytorch/fairseq
4Please refer to Appendix B for effect of different teachers

on MainGEC.

6032

Model CONLL-14 BEA-19

P R F0.5 P R F0.5

BART 74.3 47.7 66.8 78.1 58.9 73.3

MainGEC 77.3 45.4 67.8 78.9 59.5 74.1
w/o Token 74.3 48.0 67.0 79.0 57.6 73.6
w/o Sent 74.4 49.6 67.6 78.1 61.1 74.0

GECToR-L 75.9 40.2 64.4 80.9 53.3 73.3

MainGEC 78.9 39.4 65.7 82.7 53.8 74.5
w/o Token 74.4 43.1 64.9 81.2 53.1 73.4
w/o Sent 74.3 43.8 65.2 80 57.2 74.1

Table 4: Ablation results on MainGEC, with the
Seq2Seq group at the top and the Seq2Edit group at
the bottom. The following changes are applied to
MainGEC: removing the token-level training weights
(w/o Token), and removing the sentence-level training
weights (w/o Sent).

also conduct 3-stage training as in GECToR-L.
In Stage I, the model is pretrained on the Troy-
1BW dataset. Then, in Stage II, the model is
fine-tuned on the collection of the CLang-8, NU-
CLE, FCE, and W&I+LOCNESS datasets, filtered
out edit-free sentences. In Stage III, the model is
fine-tuned on the W&I+LOCNESS dataset. All
training hyperparameters used in MainGEC are set
to their default values as in GECToR-L. Besides,
we re-implement the most closely-related work,
Lichtarge et al. (2020), based on GECToR-L for a
more equitable comparison.

All checkpoints are selected by the loss on BEA-
19 (dev) and all experiments are conducted on 1
Tesla A800 with 80G memory.

4.2 Main Results

Table 3 presents the main results of Seq2Seq
and Seq2Edit methods. We can see that whether
in the Seq2Seq or Seq2Edit manner, MainGEC
brings consistent performance improvements on
both benchmarks, verifying the effectiveness of
our method. Concretely, compared to vanilla train-
ing, our mixed-grained weighted training leads to
1.0/0.8 improvements in the Seq2Seq manner, and
1.3/1.2 improvements in the Seq2Edit manner. In
addition, MainGEC outperforms all baselines on
BEA-19 benchmark, with 1.2/1.3 improvements
over previous SOTAs, while it also has a compara-
ble performance on CONLL-14 benchmark. These
results prove the superiority of our method.

Method CONLL-14 BEA-19

P R F0.5 P R F0.5

GECToR-L 75.9 40.2 64.4 80.9 53.3 73.3

KD 76.9 40.7 65.3 81.0 54.4 73.8
MainGEC 78.9 39.4 65.7 82.7 53.8 74.5

Table 5: Comparison between MainGEC and the gen-
eral knowledge distillation method for GEC.

4.3 Ablation Study

We also conduct ablation study on MainGEC to
investigate the effects of both-grained training
weights, in the Seq2Seq and Seq2Edit manners.
Table 4 presents the ablation results. It is obviously
observed that whether token-level or sentence-level
training weights included in MainGEC, can bring
a certain degree of improvement over the baseline.
Moreover, the mixed-grained weighted training can
provide more improvements on the basis of a single
grained weighted training.

4.4 Exploration w.r.t Knowledge Distillation

As there is a "teacher" model used to obtain training
weights in MainGEC, it is necessary to compare
MainGEC with the general knowledge distillation
method (Xia et al., 2022) for GEC, refered as KD.
In KD, the probability distribution generated by
the teacher model is regarded as a soft objective,
which supervises the entire training process with
the original groundtruth together. Here, we reim-
plement KD in the Seq2Edit manner, where the
teacher model is the same as before and GECToR-L
(RoBERTa-large) is choosed as the student model.
The experimental result is presented in Table 5. As
we can see, KD brings a significant improvement
over the baseline, due to extra knowledge from the
teacher model. More importantly, with the same
teacher model, MainGEC outperforms KD with a
considerable margin. This proves our our mixed-
grained weighted training is superior to KD, forc-
ing the output distribution of the student model to
be consistent with that of the teacher model.

4.5 Case Study

Figure 3 shows the same cases as in Table 1 and
their token-level or sentence-level weights obtained
in MainGEC. The weights here are obtained in the
Seq2Edit manner. As we can see, token-level and
sentence-level weights in MainGEC indeed reflect
the accuracy and potential diversity of data anno-
tation respectively, to some extend. Specifically,

6033

Figure 3: The samples in Table 1 and corresponding token-level or sentence-level weights obtained in MainGEC.
For those token with problematic annotations or those samples with multiple potential appropriate annotations,
MainGEC will assign relatively low token-level or sentence-level training weights, respectively. The correct
annotations are in green, the erroneous annotations are in red, and the corresponding spans in the source sentences
are in blue.

for those problematic annotation, MainGEC will
assign a relatively low token-level weight, and vice
versa. When there are multiple potential appro-
priate annotations for a single sample, only one
objective contained in the training set will be as-
signed a relatively low sentence-level weight. For
example, the sentence-level weights of Sample 4
and Sample 5 in Table 1 are relatively low due to
multiple candidate sentence structures and synony-
mous phrases, respectively. This demonstrates that
MainGEC is consistent with our motivation at first.

5 Related Works

GEC is a fundamental NLP task that has received
wide attention over the past decades. Besides of
the early statistical methods, the currently main-
stream neural GEC methods are categorized into
two groups, i.e., Seq2Seq methods and Seq2Edit
methods, in general.

Seq2Seq methods treat GEC as a monolingual
translation task, regarding errorful sentences as the
source language and error-free sentences as the
target language (Yuan and Briscoe, 2016). Some
works (Ge et al., 2018; Sun et al., 2022) generate
considerable synthetic data based on the symme-
try of the Seq2Seq’s structure for data augmenta-

tion. In addition, some works (Kaneko et al., 2020;
Zhang et al., 2022b) feed additional features into
the neural network to improve GEC, such as the
BERT (Devlin et al., 2019) presentation or syntac-
tic structure of the input sentence.

Seq2Edit methods treat GEC as a sequence tag-
ging task, which predicts a tagging sequence of
edit operations to perform correction (Malmi et al.,
2019). Parallel Iterative Edit (PIE) (Awasthi et al.,
2019) and GECToR (Omelianchuk et al., 2020) de-
fine a set of tags representing the edit operations
to be modelled by their system. Lai et al. (2022)
investigates the characteristics of different types of
errors in multi-turn correction based on GECToR.
Tarnavskyi et al. (2022) applies multiple ensem-
bling methods and knowledge distillation on the
large version of the GECToR system.

6 Conclusion

This paper proposes MainGEC, which assigns
mixed-grained weights to training data based on
inherent discrepancies in data to improve the train-
ing effect for GEC. Our method uses a well-trained
GEC model to quantify the accuracy and poten-
tial diversity of data annotation, and convert them
into the mixed-grained weights for the training

6034

process. Whether in the Seq2Seq or Seq2Edit
manner, MainGEC achieves consistent and signifi-
cant performance improvements on two benchmark
datasets, verifying the superiority and generality
of the method. In addition, further ablation experi-
ments and comparative experiments with the gen-
eral knowledge distillation method provide more
insights on both-grained training weights and the
perspective of knowledge distillation.

Limitations

Our approach requires a well-trained model (called
a teacher model) to obtain weights of two granulari-
ties before training. Therefore, compared to vanilla
training, MainGEC has the additional preparation
step to first acquire a teacher model (publicly re-
leased or trained by yourself) and then compute
the weights by a forward propagation. In addition,
the teacher model needs to be consistent with the
weighted trained model in terms of type (Seq2Seq
or Seq2Edit) and tokenizer.

Acknowledgements

We would like to thank all the reviewers for their
valuable advice to make this paper better. This re-
search is supported by National Science Fund for
Excellent Young Scholars under Grant 62222212
and the General Program of National Natural Sci-
ence Foundation of China under Grant 62376033.

References
Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,

Sabyasachi Ghosh, and Vihari Piratla. 2019. Parallel
iterative edit models for local sequence transduction.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 4259–4269.
Association for Computational Linguistics.

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 shared
task on grammatical error correction. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP
for Building Educational Applications, BEA@ACL
2019, Florence, Italy, August 2, 2019, pages 52–75.
Association for Computational Linguistics.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics, ACL 2017, Vancouver,

Canada, July 30 - August 4, Volume 1: Long Pa-
pers, pages 793–805. Association for Computational
Linguistics.

Christopher Bryant, Zheng Yuan, Muhammad Reza
Qorib, Hannan Cao, Hwee Tou Ng, and Ted Briscoe.
2022. Grammatical error correction: A survey of the
state of the art. CoRR, abs/2211.05166.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
english: The NUS corpus of learner english. In
Proceedings of the Eighth Workshop on Innovative
Use of NLP for Building Educational Applications,
BEA@NAACL-HLT 2013, June 13, 2013, Atlanta,
Georgia, USA, pages 22–31. The Association for
Computer Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Tao Ge, Furu Wei, and Ming Zhou. 2018. Reaching
human-level performance in automatic grammati-
cal error correction: An empirical study. CoRR,
abs/1807.01270.

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun
Suzuki, and Kentaro Inui. 2020. Encoder-decoder
models can benefit from pre-trained masked language
models in grammatical error correction. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020, pages 4248–4254. Association for
Computational Linguistics.

Shaopeng Lai, Qingyu Zhou, Jiali Zeng, Zhongli Li,
Chao Li, Yunbo Cao, and Jinsong Su. 2022. Type-
driven multi-turn corrections for grammatical error
correction. In Findings of the Association for Com-
putational Linguistics: ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 3225–3236. Association for
Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.
Association for Computational Linguistics.

Jared Lichtarge, Chris Alberti, and Shankar Kumar.
2020. Data weighted training strategies for gram-
matical error correction. Trans. Assoc. Comput. Lin-
guistics, 8:634–646.

6035

https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/w19-4406
https://doi.org/10.18653/v1/w19-4406
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.48550/arXiv.2211.05166
https://doi.org/10.48550/arXiv.2211.05166
https://aclanthology.org/W13-1703/
https://aclanthology.org/W13-1703/
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://arxiv.org/abs/1807.01270
http://arxiv.org/abs/1807.01270
http://arxiv.org/abs/1807.01270
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/2020.acl-main.391
https://doi.org/10.18653/v1/2022.findings-acl.254
https://doi.org/10.18653/v1/2022.findings-acl.254
https://doi.org/10.18653/v1/2022.findings-acl.254
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.1162/tacl_a_00336
https://doi.org/10.1162/tacl_a_00336

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil
Mirylenka, and Aliaksei Severyn. 2019. Encode, tag,
realize: High-precision text editing. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 5053–5064. Association for
Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The conll-2014 shared task on
grammatical error correction. In Proceedings of the
Eighteenth Conference on Computational Natural
Language Learning: Shared Task, CoNLL 2014, Bal-
timore, Maryland, USA, June 26-27, 2014, pages
1–14. ACL.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem N.
Chernodub, and Oleksandr Skurzhanskyi. 2020. Gec-
tor - grammatical error correction: Tag, not rewrite.
In Proceedings of the Fifteenth Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions, BEA@ACL 2020, Online, July 10, 2020, pages
163–170. Association for Computational Linguistics.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A simple
recipe for multilingual grammatical error correction.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing, ACL/IJCNLP 2021, (Volume 2:
Short Papers), Virtual Event, August 1-6, 2021, pages
702–707. Association for Computational Linguistics.

Felix Stahlberg and Shankar Kumar. 2021. Synthetic
data generation for grammatical error correction with
tagged corruption models. In Proceedings of the 16th
Workshop on Innovative Use of NLP for Building Edu-
cational Applications, BEA@EACL, Online, April 20,
2021, pages 37–47. Association for Computational
Linguistics.

Xin Sun, Tao Ge, Shuming Ma, Jingjing Li, Furu Wei,
and Houfeng Wang. 2022. A unified strategy for
multilingual grammatical error correction with pre-
trained cross-lingual language model. In Proceed-
ings of the Thirty-First International Joint Confer-
ence on Artificial Intelligence, IJCAI 2022, Vienna,
Austria, 23-29 July 2022, pages 4367–4374. ijcai.org.

Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang. 2021.
Instantaneous grammatical error correction with shal-
low aggressive decoding. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, ACL/IJCNLP

2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pages 5937–5947. Association for
Computational Linguistics.

Xin Sun and Houfeng Wang. 2022. Adjusting the
precision-recall trade-off with align-and-predict de-
coding for grammatical error correction. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
ACL 2022, Dublin, Ireland, May 22-27, 2022, pages
686–693. Association for Computational Linguistics.

Maksym Tarnavskyi, Artem N. Chernodub, and Kos-
tiantyn Omelianchuk. 2022. Ensembling and knowl-
edge distilling of large sequence taggers for gram-
matical error correction. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pages 3842–3852.
Association for Computational Linguistics.

Peng Xia, Yuechi Zhou, Ziyan Zhang, Zecheng Tang,
and Juntao Li. 2022. Chinese grammatical error cor-
rection based on knowledge distillation.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In The 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, Proceedings of the Con-
ference, 19-24 June, 2011, Portland, Oregon, USA,
pages 180–189. The Association for Computer Lin-
guistics.

Zheng Yuan and Ted Briscoe. 2016. Grammatical er-
ror correction using neural machine translation. In
NAACL HLT 2016, The 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
San Diego California, USA, June 12-17, 2016, pages
380–386. The Association for Computational Lin-
guistics.

Yue Zhang, Zhenghua Li, Zuyi Bao, Jiacheng Li,
Bo Zhang, Chen Li, Fei Huang, and Min Zhang.
2022a. Mucgec: a multi-reference multi-source eval-
uation dataset for chinese grammatical error correc-
tion. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, NAACL 2022, Seattle, WA, United States, July
10-15, 2022, pages 3118–3130. Association for Com-
putational Linguistics.

Yue Zhang, Bo Zhang, Zhenghua Li, Zuyi Bao, Chen Li,
and Min Zhang. 2022b. Syngec: Syntax-enhanced
grammatical error correction with a tailored gec-
oriented parser. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 2518–2531.
Association for Computational Linguistics.

6036

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/D19-1510
https://doi.org/10.18653/v1/D19-1510
https://doi.org/10.3115/v1/w14-1701
https://doi.org/10.3115/v1/w14-1701
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://www.aclweb.org/anthology/2021.bea-1.4/
https://www.aclweb.org/anthology/2021.bea-1.4/
https://www.aclweb.org/anthology/2021.bea-1.4/
https://doi.org/10.24963/ijcai.2022/606
https://doi.org/10.24963/ijcai.2022/606
https://doi.org/10.24963/ijcai.2022/606
https://doi.org/10.18653/v1/2021.acl-long.462
https://doi.org/10.18653/v1/2021.acl-long.462
https://doi.org/10.18653/v1/2022.acl-short.77
https://doi.org/10.18653/v1/2022.acl-short.77
https://doi.org/10.18653/v1/2022.acl-short.77
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2022.acl-long.266
http://arxiv.org/abs/2208.00351
http://arxiv.org/abs/2208.00351
https://aclanthology.org/P11-1019/
https://aclanthology.org/P11-1019/
https://doi.org/10.18653/v1/n16-1042
https://doi.org/10.18653/v1/n16-1042
https://doi.org/10.18653/v1/2022.naacl-main.227
https://doi.org/10.18653/v1/2022.naacl-main.227
https://doi.org/10.18653/v1/2022.naacl-main.227
https://aclanthology.org/2022.emnlp-main.162
https://aclanthology.org/2022.emnlp-main.162
https://aclanthology.org/2022.emnlp-main.162

A Training Details

The hyper-parameters for MainGEC (BART) are
listed in Table 6.

Configurations Values

Fine-tune

Model Architecture BART-large
Number of epochs 30
Devices 1 Tesla A800 with 80G
Max tokens per GPU 20480
Update Frequency 2
Learning rate 3e-05

Optimizer Adam
(β1 = 0.9, β2 = 0.98, ϵ = 1e− 8)

Learning rate scheduler polynomial decay
Weight decay 0.01
Loss Function cross entropy
Warmup 2000
Dropout 0.3

Table 6: Hyper-parameters values for MainGEC
(BART).

B Effect of Different Teachers

In MainGEC, a teacher is used to quantify training
weights of both granularities, which is the main
contribution of this work. To investigate effect of
different teacher on MainGEC, we conduct com-
parative experiments under two settings: (1) Teach-
ers of different model scales: we use GECTOR
(RoBERTa-base) and GECTOR (RoBERTa-large)
as the teacher respectively for weighted training
of GECTOR (RoBERTa-base). (2) MainGEC with
self-paced learning: we use MainGEC as a stronger
teacher for a new round of weighted training, ı.e.
iterative weighted training with MainGEC. The
teacher used in the second round of training is the
same model scale as the teacher used in the first
round but performs better in GEC.

Table 7 and Table 8 present the experiment re-
sults respectively. Experiment results show that
no matter what teacher model you use, mixed-
grained weights generated by them can bring im-
provement over the baseline, verifying effective-
ness of MainGEC. Besides, this improvement is
not sensitive to the choice of the teacher, either
with different model sizes or with different perfor-
mances in GEC.

Method CONLL-14 BEA-19 (dev)

GECToR (w/o teacher) 63.4 52.9
MainGEC (w/ base teacher) 64.9 55.6
MainGEC (w/ large teacher) 65.1 54.9

Table 7: Performance of MainGEC based on teachers
of different model scales.

Method CONLL-14 BEA-19 (dev)

GECToR-L (original teacher) 64.4 56.4
MainGEC (1st round) 65.7 57.6
MainGEC (2nd round) 66.1 57.4

Table 8: Performance of MainGEC with self-paced
learning.

6037

