
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 6076–6093
December 6-10, 2023 ©2023 Association for Computational Linguistics

NASH: A Simple Unified Framework of Structured Pruning for
Accelerating Encoder-Decoder Language Models

Jongwoo Ko1∗ Seungjoon Park2∗‡ Yujin Kim1 Sumyeong Ahn3†‡

Du-Seong Chang2 Euijai Ahn2 Se-Young Yun1†
1KAIST AI 2KT 3Michigan State University

https://github.com/jongwooko/NASH-Pruning-Official

Abstract
Structured pruning methods have proven effec-
tive in reducing the model size and accelerating
inference speed in various network architec-
tures such as Transformers. Despite the versa-
tility of encoder-decoder models in numerous
NLP tasks, the structured pruning methods on
such models are relatively less explored com-
pared to encoder-only models. In this study,
we investigate the behavior of the structured
pruning of the encoder-decoder models in the
decoupled pruning perspective of the encoder
and decoder component, respectively. Our find-
ings highlight two insights: (1) the number of
decoder layers is the dominant factor of infer-
ence speed, and (2) low sparsity in the pruned
encoder network enhances generation quality.
Motivated by these findings, we propose a sim-
ple and effective framework, NASH, that narrows
the encoder and shortens the decoder networks
of encoder-decoder models. Extensive experi-
ments on diverse generation and inference tasks
validate the effectiveness of our method in both
speedup and output quality.

1 Introduction

In recent years, pre-trained language models (LMs)
have demonstrated their effectiveness in various
downstream tasks, such as natural language un-
derstanding (NLU) and natural language gener-
ation (NLG). Especially, there have been three
main types of research, e.g.,encoder-only LMs (De-
vlin et al., 2019; He et al., 2023), decoder-only
LMs (Touvron et al., 2023; OpenAI, 2023), and
encoder-decoder LMs (Lewis et al., 2020; Raffel
et al., 2020; Chung et al., 2022b; Tay et al., 2023),
which aim for their specific expertise. Among these
various types of LMs, we will focus on the widely
studied and utilized encoder-decoder LMs due to
their flexibility in application across a range of
tasks (Guo et al., 2022; Wang et al., 2023b).

∗denotes equal contribution. † denotes equal advising.
‡ denotes working done at KAIST AI. Correspondence to
Jongwoo Ko <jongwoo.ko@kaist.ac.kr> .

Narrow Encoder

Enc!
Enc!"#

Enc!"$

Enc$

Enc%

Enc# Dec#

Width pruning

Shallow Decoder

Depth pruning

Dec&"#

Dec$
Dec#

Dec&
Dec&"#

Dec!
Dec!"#

Dec!

Figure 1: Brief illustration of the proposed algorithm,
NASH: NArrow encoder and SHallow decoder. It is com-
posed of two main components, width and depth pruning
for encoder and decoder, respectively.

On the other perspective of LM researches
rather than performances, efficiency of LMs
(e.g.,computational and memory cost) have been
intensively studied because of their huge com-
putational requirements. This research direction
is called model compression. Among the various
model compression techniques (Jiao et al., 2020;
Yao et al., 2022), pruning (Frankle and Carbin,
2018; Sanh et al., 2020; Wang et al., 2020c; Xia
et al., 2022) is a promising method that aims to
remove redundant weights from networks, result-
ing in improved efficiency by saving storage ca-
pacity and enhancing inference speed. Between
structured pruning and unstructured pruning ap-
proaches, structured pruning is typically preferred
in practice due to its relative ease of deployment
on various types of hardware platforms compared
to unstructured pruning (Han et al., 2016; Gupta
and Agrawal, 2020).

Therefore, we focus on the structured pruning
method specifically tailored for encoder-decoder
LMs. Despite the remarkable advancements in
encoder-decoder models, little attention has been
given to structured pruning methods for encoder-
decoder LMs. This can be attributed to the inherent

6076

https://github.com/jongwooko/NASH-Pruning-Official

differences in the components that enhance prun-
ing efficiency between encoder and decoder net-
works. Consequently, traditional structured prun-
ing methods that rely on encoder-only models may
not effectively optimize encoder-decoder models.
For instance, CoFi (Xia et al., 2022), one of the
SoTA encoder-only pruning methods, demonstrates
a maximum speedup improvement of 1.53× on the
CNN/DailyMail (See et al., 2017) dataset, with a
ROUGE-L drop of 7.36%. This gain is consider-
ably lower compared to the original result achieved
on the encoder-only model applied to the worst
QQP case in the GLUE (Wang et al., 2018), where
the speedup reaches 11.0× with an accuracy drop
of 1.20%. Thus, it becomes crucial to investigate
structured pruning methods that are specifically
tailored for the encoder and decoder networks.

To this end, in this paper, we pose the following
question: How can we design a structured pruning
method that effectively accelerates the encoder-
decoder model while maintaining its performance?
To the best of our knowledge, this study represents
the first attempt to address this question. In order
to accomplish this, we conduct systematic studies
to examine the impact of structured pruning on the
encoder and decoder networks, respectively.

Contribution. In this study, we propose an algo-
rithm, NASH, which is strongly motivated by two
findings derived from our preliminary experiments.
(1) The number of decoder layers is the primary
factor for inference speedup. (2) The sparsity of
the encoder network is a key factor affecting the
output quality of encoder-decoder LMs.

Based on these findings, we propose an algo-
rithm, illustrated in Figure 1, that consists of two
parts: the encoder network, which enhances output
quality by gradually reducing the width of each
layer, and the decoder network, which achieves
faster inference speed by uniformly selecting lay-
ers to reduce depth.

We empirically evaluate the performance of
NASH on various NLG datasets including standard
fine-tuning on a single task (Gliwa et al., 2019;
Xiong et al., 2019), multi-task learning scenarios,
and recent instruction-tuning datasets (Conover
et al., 2023; Wang et al., 2023a). Notably, in our ex-
periments using T5-base, NASH achieves a speedup
of 2.5-4.2× while preserving 95% of the output
quality. Our experimental results show that NASH
can be a unified framework which is regardless of
task difficulty and model type.

2 Preliminary

Transformers. We focus on the Transformer net-
work (Vaswani et al., 2017), which consists of the
encoder and decoder architecture. The encoder ar-
chitecture is composed of L blocks, and each block
consists of a multi-head attention (MHA) layer
and a feed-forward (FFN) layer. An MHA layer in
the i-th Transformer layer with Nh heads outputs:

MHA(i,j)(Q,K,V) = Att(QW
(i,j)
Q ,KW

(i,j)
K ,VW

(i,j)
V),

MHA(i)(Q,K,V) =

Nh∑

j=1

MHA(i,j)(Q,K,V)W
(i,j)
O ,

where Att represents a dot product attention head,
and Q, K, and V are the input sequences for
query, key, and value, respectively. In self-attention
layers, all of the keys, values, and queries come
from the outputs of the previous layer. On the
other hand, in cross-attention layers, the queries
come from the previous decoder layer, while the
memory keys and values come from the output of
the encoder. It is important to note that the j-th
head is parameterized by W

(i,j)
Q ,W

(i,j)
K ,W

(i,j)
V ,

and W
(i,j)
O ∈ Rd×dh , which represent the query,

key, value, and output matrices, respectively. Here,
d and dh denote the hidden state dimension and
attention head dimension, respectively.

The output of the MHA layer, denoted as X, is
then fed into the FFN layer in the i-th Transformer
layer:

FFN(i)(X) = GELU(XW1)W2.

Here, the two fully-connected layers are parameter-
ized by W1 ∈ Rd×df and W2 ∈ Rdf×d, with df
representing the dimension of the FFN layer.

Structured Pruning. Structured pruning gradu-
ally removes unnecessary parameters from a model,
targeting width-related components (e.g.,MHA
heads, FFN hidden units) and depth-related ele-
ments (e.g.,Transformer layers) during training. Re-
cent advancements have demonstrated significant
speedups with minimal output quality reduction.
For example, block pruning (Lagunas et al., 2021)
and CoFi (Xia et al., 2022) have enhanced flexibil-
ity, optimization, and enabled simultaneous prun-
ing at multiple levels.

Pruning the components of the i-th layer related

6077

D
ec

. A
cc

.

60

70

80

En
c.

 A
cc

.

60

70

80

Model size
100M 200M

RTE (Model size vs Accuracy)

D
ec

. A
cc

.

70

75

80

En
c.

 A
cc

.

70

75

80

Speedup (Sec/example)
1.0 1.5 2.0

RTE (Speedup vs Accuracy)

De
c.

 R
-L

30
35
40
45

En
c.

 R
-L

30
35
40
45

Model size
100M 200M

SAMSum (Model size vs ROUGE-L)

De
c.

 R
-L

30
35
40
45

En
c.

 R
-L

30
35
40
45

Speedup (Sec/token)
1.0 1.2 1.4 1.6 1.8

SAMSum (Speedup vs ROUGE-L)

Baseline (T5-Base) Encoder (w/o Layer) Encoder (w/ Layer) Decoder (w/o Layer) Decoder (w/ Layer)Baseline (T5-Base) Encoder (w/o Layer) Encoder (w/ Layer) Decoder (w/o Layer) Decoder (w/ Layer)

Figure 2: Comparing model size (or speedup) vs. output performance for four pruning options: with or without
depth pruning applied to either the encoder or decoder network individually. The results emphasize that (1) the
number of layers in the decoder network is the primary factor contributing to speedup improvements. and (2) the
sparsity of the encoder network is the key factor of output quality.

to MHA can be formulated as follows:

MHA(i)(Q,K,V) = z
(i)
MHA ·

Nh∑

j=1

z
(i,j)
head ·

Att(QW
(i,j)
Q ,KW

(i,j)
K ,VW

(i,j)
V)W

(i,j)
O ,

where z
(i)
MHA and z

(i,j)
head ∈ {0, 1} and to mask MHA

layer and individual head of MHA.
The FFN layer, which is another major compo-

nent of the Transformer network, is also known to
be over-parameterized (Dong et al., 2021). Strate-
gies for pruning include pruning an entire FFN
layer and pruning intermediate dimensions at a
more granular width level. This can be achieved
by introducing mask variables, z(i)FFN and z

(i)
int ∈

{0, 1}df , with the following formulation:

FFN(i)(X) = z
(i)
FFN·GELU(XW1)·diag(z(i)int)·W2

Various techniques have been employed to learn
these mask variables used in structured pruning.
For example, Wang et al. (2020c) and Xia et al.
(2022) utilized L0 regularization to eliminate re-
dundant parameters. On the other hand, Lagunas
et al. (2021) adopted the movement score intro-
duced by Sanh et al. (2020) as a measurement for
their pruning approach.

3 Experimental Motivations

In this section, we separately investigate the behav-
ior of the encoder and decoder when depth prun-
ing is applied or not, using CoFi-T5, the modi-
fied version of CoFi (Xia et al., 2022) tailored for
T5 (Raffel et al., 2020). Particularly, in Figure 2,
we study the results of four cases: encoder with
depth-pruning (△), encoder without depth-pruning
(⃝), decoder with depth-pruning (△), and decoder
without depth-pruning (⃝). From these four types

of cases, we aim to address the following ques-
tions: (1) Does depth pruning exhibit different phe-
nomena in each case? (2) What is the key factor
for accelerating inference speed while preserving
sufficient output quality? We provide detailed an-
swers to each question by training T5-Base with
target sparsities of {60%, 70%, 80%, 90%, 95%}
for the decoder cases, and {20%, 40%, 60%,
70%, 80%, 90%, 95%} for the encoder cases. 1

Before delving into the detailed answers, we
briefly address the first question: the impact of
depth pruning when applied to the encoder and de-
coder, respectively. As depicted in Figure 2, depth
pruning exhibits a significant influence on the de-
coder (as indicated by △ and ⃝), while the encoder
shows negligible effects (as observed in △ and ⃝).
Consequently, the appropriate utilization of depth
pruning becomes crucial. In the following para-
graphs, we outline our key findings related to the
second question to establish an effective structured
pruning mechanism for encoder-decoder LMs.

Finding 3.1. The number of layers in the decoder
network is the dominant factor affecting the infer-
ence speed, while the decoder width does not have
a significant impact.

We evaluate the findings regarding the decoder net-
work from two perspectives: (1) the effectiveness
of layer-wise pruning and (2) the ineffectiveness
of width pruning. Firstly, as demonstrated in the
second and fourth plots of Figure 2, the decoder
exhibits a significant speedup with minor degra-
dation (when comparing △ and ⃝), whereas the
encoder shows no such effect (when comparing
△ and ⃝). This indicates that layer-wise pruning
plays a dominant role in pruning the decoder. On
the other hand, when comparing the model size

1In the case of a high level of target sparsity, we observed
that CoFi-T5 is unable to achieve the desired sparsity. A de-
tailed explanation of this phenomenon is in the Appendix A.

6078

T5-base (DFFN = 3072 , NH = 12)
T5-mini (DFFN = 1536 , NH = 8)

T5-small (DFFN = 2048 , NH = 8)
T5-tiny (DFFN = 1024 , NH = 4)

R
el

at
iv

e
Ti

m
e

(%
)

0

25

50

75

100

Sequence Length
1 128 256 512

Relative Process Time per Transformer Layer

Figure 3: Processing time per one Transformer layer
depending on the model configuration and the sequence
length. As depicted in the sequence length 1 case, the
factors, such as the number of attention heads and FFN
dimensions not affect the processing time.

and speedup (as shown in the first and second plots
of Figure 2 with ⃝), width pruning reduces the
model size but leads to both performance degra-
dation and negligible speedup. This suggests that
width pruning is not effective for the decoder.

To further investigate Finding 3.1, we investigate
the inference speed of Transformer layers, with a
specific focus on understanding why width prun-
ing is ineffective. This analysis involves two key
observations: (1) finding the metric that synergizes
with width pruning, and (2) identifying the compo-
nent that predominantly consumes computational
resources. According to Figure 3, width pruning
can have a significant impact on the computational
cost as the sequence length increases. However,
due to the inherent nature of the autoregressive de-
coding process, the decoder network is constrained
to a sequence length of 1. As a result, width prun-
ing cannot effectively improve the speed of the
decoder network. Furthermore, as illustrated in Fig-
ure 4, Layer Normalization (LN) and dropout (DO)
collectively contribute approximately 20-25% to
the overall inference time. Consequently, the time
allocated to these fixed operations remains constant,
leading to diminished efficiency in terms of infer-
ence speed. In conclusion, width pruning is not an
appropriate approach for optimizing the decoder.

Finding 3.2. From the perspective of encoder prun-
ing, while achieving high-level sparsity may not
be desirable, attaining low-level sparsity not only
slightly accelerates inference speed but also en-
hances performance.

By comparing the ⃝ points and ⋆ in the second
and fourth plots of Figure 2, we observe that en-
coder pruning yields a slight speedup along with
improved performance. However, when the en-
coder network is heavily pruned, it experiences sig-

RTE
SAMsum

Total SA CA FF LN DO

R
el

at
iv

e
Ti

m
e

(%
)

0

20

40

Network compomenet

Enc. Dec. Dec. Dec. Dec. Dec.

Relative Process Time

Figure 4: Componentwise processing time of the T5-
base. The layer normalization and dropout contribute
20-25% of the total inference time.

nificant performance degradation. These findings
emphasize the significance of considering pruning
in both the decoder and encoder networks. Further-
more, they provide insights into the necessity of
employing distinct pruning strategies for these two
networks, considering their unique characteristics.

Comparison with Prior Observations. Our key
findings provide valuable insights: the appropriate
strategy for encoder-decoder models involves us-
ing a small number of layers for the decoder and
minimal pruning for the encoder networks. Impor-
tantly, our observations offer a more generalized
understanding compared to previous works (Kasai
et al., 2020; Tay et al., 2021). Unlike prior studies
that manually determined model configurations for
specific tasks such as machine translation (Kasai
et al., 2020) or NLU (Tay et al., 2021), our con-
clusions are derived automatically through gradual
structured pruning and have been validated across
both NLG and NLU tasks. Furthermore, while the
DeepNarrow strategy proposed by Tay et al. (2021)
demonstrates effectiveness in NLU tasks with short
output sequences, it exhibits computational ineffi-
ciency when applied to NLG tasks. Similarly, the
contribution of processing time for encoder net-
works varies, necessitating the use of a narrower
encoder architecture contrary to the approach pro-
posed by Kasai et al. (2020).

4 Narrow Encoder and Shallow Decoder

Based on the findings presented in Section 3, we
propose a structured pruning framework called
NASH (Narrow encoder and Shallow decoder) that
is specifically optimized for encoder-decoder LMs.
Our approach focuses on enhancing inference
speed by utilizing uniform layer selection in the
decoder network, deviating from the gradual prun-
ing technique commonly employed in encoder-only
models. Additionally, we improve generation per-

6079

formance by applying gradual L0 regularization
pruning specifically to the encoder network, in-
ducing low sparsity instead of solely prioritizing
inference speed improvement.

4.1 Shallow Decoder: Uniform Layer
Selection for Decoder Networks

For a given number of selected layers ds, we can
generate a sub-network of the decoder network
with a set of selected layers as follows:

Ls =

{⌊
L− 1

ds − 1

⌋
· ℓ+ 1

∣∣∣∣ℓ ∈ {0, . . . , ds − 1}
}

We match the hidden states of the sub-networks to
those of unpruned decoder networks:

Ldec
h =

∑

ℓ∈{1,...,ds}
MSE(Hℓ

dec,s,H

⌊
L−1
ds−1

⌋
·ℓ+1

dec,t).

While uniformly selecting layers work well on var-
ious domains such as knowledge distillation (Jiao
et al., 2019; Shleifer and Rush, 2020) or structured
pruning of encoder-only model (Hou et al., 2020),
our work first proposes using uniform layer selec-
tion of decoder network for structured pruning of
encoder-decoder LMs.

The key philosophy of our proposed module is
twofold: (1) As shown in Finding 3.1, the num-
ber of layers in the decoder network is the main
factor affecting inference speedup. (2) Uniform
selection is proven to be an effective approach
for selecting layers (Hou et al., 2020). To verify
this second statement, we compare various candi-
dates, including uniform selection, selection with
lower layers, selection with higher layers, and the
L0 regularization-based approach (Louizos et al.,
2018). Through our empirical evaluation, we con-
firm that uniform selection is the best approach
among these candidates (see Section 5.3 and Ta-
ble 3 for details). Based on this philosophy, we
construct shallow decoder pruning by selecting the
layers using uniform selection.

4.2 Narrow Encoder: Gradual
L0-regularization with Low Sparsity

Among various structured pruning methods (Hou
et al., 2020; Lagunas et al., 2021), we utilize the L0
regularization-based pruning method, which has
shown the state-of-the-art performances in encoder-
only language models (Wang et al., 2020c; Xia
et al., 2022). The application of L0 regularization

in practice is achieved by enforcing an equality con-
straint between the target sparsity and the current
sparsity:

R = λ1(ŝ− t) + λ2(ŝ− t)2,

where λ1, λ2, ŝ, and t denote the learnable La-
grange multipliers, current sparsity, and target spar-
sity, respectively. The detailed derivation of R is
described in Appendix B. The current sparsity, ŝ,
is calculated as follows:

ŝ =
4

M
· dh ·

L∑

i

Nh∑

j

z
(i,j)
head +

2

M
·

L∑

i

df∑

j

z
(i,j)
int ,

where M , L, Nh, and df indicate the number of
model parameters, encoder layers, attention heads,
and feed-forward layer dimensions, respectively.

We only conduct the pruning of individ-
ual attention heads and intermediate layer
dimensions by introducing variables z(i)head and zint.

MHA(Q,K,V) =

Nh∑

i=1

z
(i)
headMHAi(Q,K,V)W

(i)
O ,

FFN(X) = GELU(XW1) · diag(zint) ·W2.

We further use hidden states distillation by match-
ing the hidden states of pruned and unpruned
networks at the same layers as follows:

Lenc
h =

∑

ℓ∈{1,...,L}
MSE(Hℓ

enc,s,H
ℓ
enc,t).

As we demonstrated in Finding 3.2, structured
pruning with low sparsity enables output quality
enhancement rather than inference speedup gain.
Motivated by this finding, unlike previous meth-
ods (Wang et al., 2020c; Xia et al., 2022) that
mainly use L0 regularization to achieve high in-
ference speedup, we use such L0 regularization to
accomplish improvement of output quality.

4.3 Training Loss Function of NASH

We combine hidden states distillation with
prediction-layer distillation by using Kull-
back–Leibler divergence (KLD) function.

Lpred = KLD (f(·)∥g(·)) ,

where the f(·) and (·) are softmax outputs for the
sub-network of pruned model and unpruned model,

6080

Table 1: The summary of Figure 5 which compares the generation quality and latency speedup of NASH against
other acceleration methods on TweetQA (Xiong et al., 2019), XSum (Narayan et al., 2018), SAMSum (Gliwa et al.,
2019), and CNN/DailyMail (See et al., 2017). The numbers of parameters for all models are around 60M, except for
T5-Base. The best and second-best results of sharing the dataset are highlighted in bold and underline.

Task Question Answering Summarization

Dataset
TweetQA XSum SAMSum CNN/DailyMail

METEOR Speedup ROUGE-L Speedup ROUGE-L Speedup ROUGE-L Speedup

T5-Base 57.16 1.00× 28.66 1.00× 43.33 1.00× 37.47 1.00×
T5-Small 51.42 1.92× 25.04 1.96× 38.14 2.14× 35.59 2.11×
CoFi-T5∗ 49.99 1.42× 25.04 1.12× 37.35 1.45× 34.71 1.53×
NASH (2 decoder layers) 48.03 4.02× 26.96 3.74× 38.89 5.53 × 33.70 4.91×
NASH (3 decoder layers) 50.77 2.99× 28.20 2.42× 41.09 4.24× 36.02 3.37×
NASH (4 decoder layers) 55.08 2.52× 28.64 1.64× 41.34 2.99× 36.78 2.69×

M
ET

EO
R

45

50

55

60

Speedup
1 2 3 4

TweetQA

R
O

EG
U

-L

24

26

28

Speedup
1 2 3 4

XSum

R
O

EG
U

-L

34
36
38
40
42
44

Speedup
1 2 3 4 5 6

SAMSum

R
O

EG
U

-L

32

34

36

38

Speedup
1 2 3 4 5 6

CNN/DailyMail

T5-Base 95% T5-Base CoFi-T5 NASH-T5 T5-Small T5-Mini

Figure 5: METEOR (or ROUGE-L) vs. speedup on abstractive question answering (TweetQA) and summariza-
tion (XSum, SAMSum, and CNN/DailyMail) tasks. We compare NASH on 220M T5-Base against CoFi-T5 on
T5-Base, 60M T5-Small, 31M T5-Mini (Tay et al., 2021). On all datasets, NASH is able to outperform CoFi-T5.

En
co
de
r

De
co
de
r

T5-small

NASH-2
NASH-4

CoFi-T5
T5-base

Self-attention
Cross-attention
Feed-forward

Pruned module
Legend

T5-small
T5-base

NASH-2
NASH-4

CoFi-T5

𝟎.𝟕𝟖

𝟎. 𝟐𝟑
𝟎. 𝟐𝟎

𝟎.𝟖𝟎
𝟎. 𝟎𝟎

𝟎.𝟕𝟖
𝟎. 𝟎𝟎

𝟎. 𝟖𝟑
𝟎. 𝟔𝟕

𝟎.𝟖𝟑

Figure 6: Comparison of the unpruned layers between
NASH and the other methods on SAMSum. The values on
the right of each row indicate the corresponding sparsity
compared to the part (encoder or decoder) of T5-base,
respectively.

respectively. Then, the total training objective for a
pruned model is

L = Lpred + λencLenc
h + λdecLdec

h +R,

where λenc and λdec are coefficients for controlling
the contribution of hidden state distillation for the
encoder and decoder network, respectively.

5 Experiments

5.1 Experimental Setup
Dataset. We evaluate our proposed method on
various tasks using the versatility of encoder-
decoder LMs. For abstractive question answering,
we conduct experiments on TweetQA (Xiong et al.,

2019). For the text summarization task, we ex-
periment on XSum (Narayan et al., 2018), SAM-
Sum (Gliwa et al., 2019), and CNN/DailyMail (See
et al., 2017). We evaluate the output quality using
METEOR (Banerjee and Lavie, 2005) for abstrac-
tive question answering and ROUGE (Lin, 2004)
for the summarization tasks. We conduct experi-
ments on multi-task scenario that consists of SAM-
Sum, TweetQA, and five tasks from GLUE (Wang
et al., 2018) and SuperGLUE (Wang et al., 2019)
benchmarks. The detailed explanations for the
datasets used are described in Appendix C.

Implementation. First, we fine-tune a model and
perform uniform layer selection on the decoder net-
work of the fine-tuned model to generate a sub-
network model. Subsequently, we further train the
sub-network model with the pruning objective, uti-
lizing a scheduler to gradually increase the sparsity
until reaching the desired target value. In our experi-
ments, we calculate sparsity by dividing the number
of pruned parameters (excluding the embedding)
by the size of the full model. Following the ap-
proach of Xia et al. (2022), we continue fine-tuning
the pruned model until convergence. We set the
target sparsity of the encoder networks as 30% for
all experiments. The reported results are based on

6081

T5-base
T5-small

T5-base
Single Task

T5-small
Four Tasks

Nash-2
Five Tasks

Nash-3
Six Tasks

Nash-4
Seven Tasks

M
ET

EO
R

48
50
52
54
56
58

Speedup
1 2 3 4 5

TweetQA

R
O
U
G
E-
L

38

40

42

44

Speedup
1 2 3 4 5 6

SAMSum

Ac
cu
ra
cy

70

75

80

Speedup
1.0 1.5 2.0 2.5 3.0

BoolQ

M
C
C

20

40

60

Speedup
1.0 1.5 2.0 2.5 3.0 3.5

CoLA

Figure 7: Evaluation of generation quality and latency speedup of NASH on multi-task learning scenario. We compare
NASH on 220M T5-Base against T5-Base and 60M T5-Small. On all datasets, NASH is able to outperform T5-Small.

Table 2: Evaluation of generation quality and latency speedup of NASH on instruction-tuning scenario. Note that
NASH-L indicates that we conduct our NASH with decoder layer number of L.

Dolly Evaluation Self-Instruct Vicuna Evaluation
Method GPT Eval ROUGE-L Speedup GPT Eval ROUGE-L Speedup GPT Eval ROUGE-L Speedup

T5-Base 61.32 32.53 1.00× 40.15 14.20 1.00× 59.26 20.47 1.00×
T5-Small 47.03 29.29 1.96× 29.82 11.67 1.91× 34.98 17.40 2.21×
NASH-2 41.28 28.09 5.15× 26.74 10.58 5.27× 45.53 20.09 5.90×
NASH-3 52.82 30.87 3.62× 32.18 11.91 3.79× 50.59 21.07 4.24×
NASH-4 56.85 31.43 2.67× 36.44 13.01 2.94× 54.21 21.83 3.17×

the validation sets of all datasets. Additionally, our
models are implemented using Huggingface (Wolf
et al., 2020) library.

5.2 Main Results

Standard Fine-tuning. Table 1 and Figure 5
summarize that the proposed method outperforms
CoFi-T5, 6-layer T5-Small,(Raffel et al., 2020),
and 4-layer T5-mini,(Tay et al., 2021) in terms of
output quality and inference speedup. Our results
consistently demonstrate the superiority of NASH
with three decoder layers over the baselines in both
performance metrics, although there is a trade-off
between output quality and inference speedup with
our method. Moreover, our method is particularly
effective in improving inference speed, especially
for tasks involving longer sequence outputs, such
as SAMSum or CNN/DailyMail. However, CoFi-
T5 falls short in achieving comparable speedups
to T5-Small while maintaining the same output
quality. Figure 6 illustrates the pruned model struc-
ture trained on SAMSum, following the method
described in Table 1 to provide a deeper under-
standing of the results. Despite CoFi-T5 removing
more modules in the encoder network compared
to NASH, it cannot remove as many layers in the
decoder layer as NASH does.

Multi-task Learning. We conducted an anal-
ysis to observe how performance trend change
with varying numbers of tasks. As depicted in
Figure 7, both fine-tuned T5-Base and our algo-

rithm (NASH) exhibit fluctuations in accuracy ac-
cording to the number of tasks. However, it is
worth noting that our proposed method demon-
strates significantly less variation in generation
performance when compared to T5-Small. This
robustness in multi-task learning is consistently
observed across all datasets. Overall, NASH con-
sistently outperforms T5-Small in terms of both
generation performance and speedup, similar to
standard fine-tuning. Through the results shown in
complex scenarios, we verify that the generation
performance of encoder-decoder models is robust
to the number of decoder layers.

Instruction Tuning. To verify versatility of pro-
posed NASH, we consider the instruction-tuning sce-
nario with the databricks-dolly-15k (Conover
et al., 2023) dataset. By following Gu et al. (2023),
we split the total dataset into 14k train sam-
ples and 1k evaluation samples. We evaluate the
trained model (with 14k of train samples) on three
instruction-following datasets to check the general-
izability of the model across the different datasets:
(1) 1k dolly evaluation; (2) Self-Instruct (Wang
et al., 2023a); (3) Vicuna evaluation (Chiang et al.,
2023). Similar to previous instances of task-specific
fine-tuning and multi-task scenarios, our algorithm
with three decoder layers consistently outperforms
T5-Small across various metrics, including GPT-
4 evaluation, ROUGE-L, and speedup, as shown
in Table 2. These results suggest that our pro-
posed method is well-suited for developing general-

6082

Table 3: The performance of various layer selection
strategies on different datasets is presented. “Gray” indi-
cates a failure to achieve the target sparsity. Additionally,
we report the number of remaining SA, CA and FF lay-
ers for the automatic selection method.

Task RTE BoolQ CB SAMSum TweetQA

Uniform (Ours) 76.17 79.51 91.07 47.37 52.74
Low 75.81 79.82 89.29 46.14 49.70
High 75.45 78.99 87.50 39.45 47.40

Louizos et al. (2018) 78.70 79.20 92.86 48.52 56.41
SA, CA, FF 2,4,2 0,3,2 4,7,4 6,7,5 11,10,8

Table 4: Comparison of pruning strategy on encoder
network. We conduct our method on T5-base with a
uniform selection of 4 decoder layers.

Dataset RTE SAMSum TweetQA
Acc Speedup R-L Speedup MTR Speedup

None 77.97 2.12× 41.06 2.78× 54.73 2.42 ×
Unif. (S 0.25) 74.36 2.35× 40.42 2.86× 53.62 2.55 ×
Unif. (S 0.5) 71.84 2.59× 39.36 2.94× 49.62 2.68 ×
L0 Reg. (S 0.3) 78.70 2.24× 41.34 2.99× 55.08 2.52×
L0 Reg. (S 0.6) 76.89 2.61× 40.49 3.12× 49.48 2.75×

purpose language models, a usage pattern widely
adopted in recent large language models (Chung
et al., 2022a; Tay et al., 2023).

5.3 Ablation Studies

Different Layer Selection. To validate the effec-
tiveness of uniform layer selection in shrinking the
decoder network, we investigate other layer selec-
tion methods in a two-layer selection problem. We
compare four selection methods: lower selection
(first 2 layers), higher selection (last 2 layers), L0
regularization-based automatic selection (Louizos
et al., 2018; Xia et al., 2022), and our uniform selec-
tion. The results presented in Table 3 demonstrate
that uniform selection consistently outperforms the
other manual selection methods. The performance
margin becomes more pronounced in NLG tasks.
Notably, we observe that automatic selection fails
to achieve the target sparsity consistently across
all tasks, except for BoolQ. This instability in auto-
matic selection aligns with our preliminary findings
discussed in Appendix A.

Different Pruning on Encoder. To evaluate the
effectiveness of our pruning strategy on the encoder
network, we investigate the following strategies at
different levels of sparsity: (1) without encoder
pruning, (2) uniform layer selection (similar to the
decoder network), and (3) the proposed L0 regu-
larization approach. We prune the encoder network
of the T5-Base, which has four decoder layers se-

Table 5: Comparison of results achieved by CoFi-T5 and
NASH on deeper models (Tay et al., 2021) and SAMSum.

Task NL 16 NL 20 NL 24
R-L Speedup R-L Speedup R-L Speedup

Base 41.31 1.0× 41.73 1.0× 41.83 1.0×
CoFi-T5∗ 33.53 1.6× 35.87 1.6× 36.65 1.5×
NASH (2 DL) 36.50 4.6× 35.45 5.2× 35.29 5.9×
NASH (4 DL) 39.05 3.6× 38.66 3.8× 38.25 4.3×

Table 6: Comparison of results of NASH and Tao et al.
(2023) on BART-Base and CNN/DailyMail. Results of
Tao et al. (2023) are from the original work.

BART NASH Tao et al. (2023)
Base NASH-2 NASH-3 50% 27%

ROUGE-L 41.68 40.87 41.14 39.91 40.39
Speedup 1.0× 3.2× 2.1× ∼1.5×
Params 139M 80M 89.8M 70.9M 102.4M

lected uniformly. The results presented in Table 4
clearly demonstrate that our chosen approach, with
low sparsity, outperforms both the unpruned base-
line and the uniform layer selection. We also ob-
serve that the advantage of this approach is only
noticeable at low sparsity, as evidenced by the com-
parison between 30% and 60% sparsity.

NASH on Different LMs. We also conducted
a deeper model experiment using T5-Small-
efficient,(Tay et al., 2021), which is a variant of
T5-Small with up to four times more layers while
maintaining the same configuration. This experi-
ment aimed to determine the effectiveness of our
method regardless of the model architecture. The
results presented in Table 5 consistently demon-
strate that NASH improves inference speed without
significantly compromising the quality of gener-
ated outputs, regardless of the depth of the decoder
networks. It is noteworthy that the acceleration
compared to the original model increases as the
number of decoder layers increases. Furthermore,
NASH exhibits faster inference and higher output
quality compared to CoFi-T5, which is consistent
with the results presented in Table 1.

Comparison with Tao et al. (2023). We applied
NASH to BART-Base (Lewis et al., 2020) using the
CNN/DailyMail dataset, conducting a direct com-
parison with SIMPLE (Tao et al., 2023). SIMPLE

introduced a structured pruning method for genera-
tive LMs, which is relevant to our work. Notably,
NASH exhibits higher ROUGE-L scores than SIM-
PLE when both models are at 27% sparsity. Ad-
ditionally, despite having larger parameters, NASH

6083

outperforms SIMPLE with 50% sparsity in terms of
speedup. Our approach achieves more than three
times the speedup, while SIMPLE reaches a maxi-
mum of 1.5 times on the GPU.

6 Related Works

Language Model Compression. With the ad-
vancement of NLP, LMs have grown in size,
making it difficult to deploy them on edge de-
vices and resulting in slower inference speed. As
a result, there has been active research on lan-
guage model compression which has three main
approaches: quantization, knowledge distillation,
pruning. Quantization (He et al., 2016; Alom et al.,
2018; Zafrir et al., 2019; Shen et al., 2020; Yao
et al., 2022) minimizes the storage requirements
for weight values by reducing the number of
bits needed to represent them. Knowledge distil-
lation (Sanh et al., 2019; Jiao et al., 2019; Sun
et al., 2019, 2020; Wang et al., 2020b,a) transfers
the knowledge of a large-scale teacher model with
high performance to a smaller-scale student model,
enabling the student model to replicate the behavior
of the teacher model. Pruning (Chen et al., 2020;
Sanh et al., 2020; Kwon et al., 2022; Frantar and
Alistarh, 2023) reduces the size of a model by re-
moving unnecessary parts of large networks such
as neurons, weights, or layers.

Pruning. Pruning can be categorized into two
parts: (1) unstructured pruning and (2) structured
pruning. In unstructured pruning (Chen et al., 2020;
Prasanna et al., 2020), weights, which are connec-
tions between neurons, are removed from the net-
work based on various criteria. However, this line
of methods produces sparse weight matrices, requir-
ing specific hardware support. On the other hand,
structured pruning (Xia et al., 2022; Kwon et al.,
2022; Kurtic et al., 2023), prunes away structures
such as neurons, weight matrix blocks, or layers.
Most previous works on structured pruning have
focused on encoder-based models (Xia et al., 2022;
Kwon et al., 2022; Kurtic et al., 2023), which re-
move attention heads, columns, and rows of weight
matrices using different importance score metrics,
including magnitudes or Hessians of weight ma-
trices, and L0 loss. However, structured pruning
on generative models has been significantly under-
investigated, with only a few available works (Lagu-
nas et al., 2021; Yang et al., 2022; Santacroce et al.,
2023). Lagunas et al. (2021) extended movement
pruning (Sanh et al., 2020) into structured prun-

ing, but their method can only achieve up to 1.4×
speedup for encoder-decoder based BART (Lewis
et al., 2020). Yang et al. (2022) released an open-
source toolkit that combines structured pruning
and vocabulary pruning for various pre-trained lan-
guage models, but only vocabulary pruning is ap-
plicable to T5 and BART.

7 Conclusion

We propose NASH to address the lack of exploration
in structured pruning of encoder-decoder LMs. To
design a structured pruning method suitable for
encoder-decoder models, we first examine the be-
havior of pruned models with different strategies,
focusing on inference speed and generation perfor-
mance. Our findings reveal that (1) the number of
decoder network layers is the key factor in accel-
erating inference speed and (2) low sparsity prun-
ing on the encoder network can enhance model
performance. Based on these insights, we develop
NASH, which constructs a narrow encoder and a
shallow decoder network for encoder-decoder LMs
through gradual L0 regularization pruning and uni-
form layer selection, respectively. We demonstrate
the superiority of NASH in terms of speedup and
output quality across various tasks. We strongly be-
lieve this work lays a strong foundation for further
investigation into effective pruning approaches for
encoder-decoder LM.

Limitations

Although we were unable to conduct research on
unstructured pruning due to device limitations,
collaboration with devices could facilitate perfor-
mance enhancements. Furthermore, owing to the
motivating analysis and algorithm construction of
this paper, i.e., analysis of separate encoder and
decoder networks, further exploration of a co-
optimized method is necessary, and there is po-
tential for improvement in this aspect.

Acknowledgment

This work was supported by the “Research on
model compression algorithm for Large-scale Lan-
guage Models” project funded by KT (KT award
B220002586, 90%) and Institute of Information
& communications Technology Planning & Eval-
uation (IITP) grant funded by Korea government
(MSIT) [No. 2019-0-00075, Artificial Intelligence
Graduate School Program (KAIST), 10%].

6084

References
Md Zahangir Alom, Adam T Moody, Naoya Maruyama,

Brian C Van Essen, and Tarek M Taha. 2018. Ef-
fective quantization approaches for recurrent neural
networks. In 2018 international joint conference on
neural networks (IJCNN), pages 1–8. IEEE.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The lottery ticket hypothesis for pre-
trained bert networks. Advances in neural informa-
tion processing systems, 33:15834–15846.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022a. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022b. Scaling instruction-finetuned
language models.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Chenhe Dong, Guangrun Wang, Hang Xu, Jiefeng Peng,
Xiaozhe Ren, and Xiaodan Liang. 2021. Efficient-
BERT: Progressively searching multilayer percep-
tron via warm-up knowledge distillation. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 1424–1437, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Jonathan Frankle and Michael Carbin. 2018. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot.

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wal-
lace, Pieter Abbeel, Sergey Levine, and Dawn Song.
2023. Koala: A dialogue model for academic re-
search. Blog post.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summa-
rization. In Proceedings of the 2nd Workshop on
New Frontiers in Summarization, pages 70–79, Hong
Kong, China. Association for Computational Linguis-
tics.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
2023. Knowledge distillation of large language mod-
els. arXiv preprint arXiv:2306.08543.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. UniXcoder: Unified cross-
modal pre-training for code representation. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 7212–7225, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Manish Gupta and Puneet Agrawal. 2020. Compression
of deep learning models for text: A survey. ACM
Trans. Knowl. Discov. Data, 16:61:1–61:55.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan
Pedram, Mark A. Horowitz, and William J. Dally.
2016. Eie: Efficient inference engine on compressed
deep neural network. SIGARCH Comput. Archit.
News, 44(3):243–254.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023.
Newmodel: Improving deBERTa using ELECTRA-
style pre-training with gradient-disentangled embed-
ding sharing. In International Conference on Learn-
ing Representations.

Qinyao He, He Wen, Shuchang Zhou, Yuxin Wu, Cong
Yao, Xinyu Zhou, and Yuheng Zou. 2016. Effective
quantization methods for recurrent neural networks.
arXiv preprint arXiv:1611.10176.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao
Chen, and Qun Liu. 2020. Dynabert: Dynamic bert
with adaptive width and depth. Advances in Neural
Information Processing Systems, 33:9782–9793.

6085

https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2021.findings-emnlp.123
https://doi.org/10.18653/v1/2021.findings-emnlp.123
https://doi.org/10.18653/v1/2021.findings-emnlp.123
http://arxiv.org/abs/2301.00774
http://arxiv.org/abs/2301.00774
http://arxiv.org/abs/2301.00774
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.18653/v1/2022.acl-long.499
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1145/3007787.3001163
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2019.
Tinybert: Distilling bert for natural language under-
standing. arXiv preprint arXiv:1909.10351.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163–
4174, Online. Association for Computational Lin-
guistics.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah A Smith. 2020. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine
translation. arXiv preprint arXiv:2006.10369.

Eldar Kurtic, Elias Frantar, and Dan Alistarh. 2023. Zi-
plm: Hardware-aware structured pruning of language
models.

Woosuk Kwon, Sehoon Kim, Michael W. Mahoney,
Joseph Hassoun, Kurt Keutzer, and Amir Gholami.
2022. A fast post-training pruning framework for
transformers.

François Lagunas, Ella Charlaix, Victor Sanh, and
Alexander Rush. 2021. Block pruning for faster trans-
formers. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Process-
ing, pages 10619–10629, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Christos Louizos, Max Welling, and Diederik P. Kingma.
2018. Learning sparse neural networks through l0
regularization.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020.
When bert plays the lottery, all tickets are winning.
arXiv preprint arXiv:2005.00561.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning.

Michael Santacroce, Zixin Wen, Yelong Shen, and
Yuanzhi Li. 2023. What matters in the structured
pruning of generative language models? arXiv
preprint arXiv:2302.03773.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low
precision quantization of bert. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815–8821.

Sam Shleifer and Alexander M Rush. 2020. Pre-
trained summarization distillation. arXiv preprint
arXiv:2010.13002.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. arXiv preprint arXiv:1908.09355.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert: a
compact task-agnostic bert for resource-limited de-
vices. arXiv preprint arXiv:2004.02984.

6086

https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
http://arxiv.org/abs/2302.04089
http://arxiv.org/abs/2302.04089
http://arxiv.org/abs/2302.04089
http://arxiv.org/abs/2204.09656
http://arxiv.org/abs/2204.09656
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2021.emnlp-main.829
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/1712.01312
http://arxiv.org/abs/1712.01312
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2005.07683
http://arxiv.org/abs/2005.07683
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099

Chaofan Tao, Lu Hou, Haoli Bai, Jiansheng Wei, Xin
Jiang, Qun Liu, Ping Luo, and Ngai Wong. 2023.
Structured pruning for efficient generative pre-trained
language models. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 10880–
10895, Toronto, Canada. Association for Computa-
tional Linguistics.

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus,
Samira Abnar, Hyung Won Chung, Sharan Narang,
Dani Yogatama, Ashish Vaswani, and Donald Met-
zler. 2021. Scale efficiently: Insights from pre-
training and fine-tuning transformers. arXiv preprint
arXiv:2109.10686.

Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia,
Jason Wei, Xuezhi Wang, Hyung Won Chung, Dara
Bahri, Tal Schuster, Steven Zheng, Denny Zhou, Neil
Houlsby, and Donald Metzler. 2023. UL2: Unifying
language learning paradigms. In The Eleventh Inter-
national Conference on Learning Representations.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. Advances in neural information pro-
cessing systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong,
and Furu Wei. 2020a. Minilmv2: Multi-head
self-attention relation distillation for compress-
ing pretrained transformers. arXiv preprint
arXiv:2012.15828.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020b. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Advances in Neural In-
formation Processing Systems, 33:5776–5788.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh

Hajishirzi. 2023a. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023b.
Codet5+: Open code large language models for
code understanding and generation. arXiv preprint
arXiv:2305.07922.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2020c.
Structured pruning of large language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6151–6162, Online. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022.
Structured pruning learns compact and accurate mod-
els. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1513–1528, Dublin, Ireland.
Association for Computational Linguistics.

Wenhan Xiong, Jiawei Wu, Hong Wang, Vivek Kulka-
rni, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and
William Yang Wang. 2019. TWEETQA: A social
media focused question answering dataset. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5020–
5031, Florence, Italy. Association for Computational
Linguistics.

Ziqing Yang, Yiming Cui, and Zhigang Chen. 2022.
Textpruner: A model pruning toolkit for pre-trained
language models. arXiv preprint arXiv:2203.15996.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. Advances
in Neural Information Processing Systems, 35:27168–
27183.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing-NeurIPS Edition
(EMC2-NIPS), pages 36–39. IEEE.

6087

https://doi.org/10.18653/v1/2023.findings-acl.692
https://doi.org/10.18653/v1/2023.findings-acl.692
https://openreview.net/forum?id=6ruVLB727MC
https://openreview.net/forum?id=6ruVLB727MC
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2020.emnlp-main.496
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2022.acl-long.107
https://doi.org/10.18653/v1/2022.acl-long.107
https://doi.org/10.18653/v1/P19-1496
https://doi.org/10.18653/v1/P19-1496

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Wein-
berger, and Yoav Artzi. 2021. Revisiting few-sample
{bert} fine-tuning. In International Conference on
Learning Representations.

6088

https://openreview.net/forum?id=cO1IH43yUF
https://openreview.net/forum?id=cO1IH43yUF

A Instability of CoFi-T5

In this section, we observe that pruning of the
T5 shows more varied accuracy and pruned spar-
sity than those of BERT under the same condition
of pruning (e.g., target sparsity, warm-up epochs)
which means instability of encoder-decoder model
pruning.

Experimental Setup. We study the instability
of CoFi-T5 with T5-Base compared to the orig-
inal CoFi with BERT-Base (Devlin et al., 2019).
To compare the T5 and BERT, we conduct the ex-
periments on the RTE task of the GLUE bench-
mark (Wang et al., 2018) with 90% of target spar-
sity2 for both models. Additionally, we extend our
investigation to the SAMSum (Gliwa et al., 2019)
which contains messenger-like conversations with
summaries, utilizing T5-Base to observe the train-
ing instability of the encoder-decoder model on
more challenging tasks. We prune with 20 random
seeds to compare different settings.

Results. Figure 8 presents two main observations.
Firstly, the output performance of pruned T5 mod-
els exhibits more variability than pruned BERT
models at high-level target sparsity. Secondly, CoFi-
T5 fails to achieve the target sparsity at high-level
sparsity in both RTE and SAMSum. In the case
of RTE, we observed a high proportion of over-
pruning, while in the case of SAMSum, all ex-
periments were significantly under-pruned. These
results indicate the instability of CoFi-T5 in terms
of sparsity and output quality, which aligns with
the findings discussed by Zhang et al. (2021).
L0 regularization-based structured pruning

methods (Wang et al., 2020c; Xia et al., 2022)
commonly incorporate linear warm-up to gradu-
ally increase the target sparsity during the training
process, aiming to ensure stable training of mask
variables. Based on this understanding, we employ
longer warm-up epochs for gradual structured prun-
ing and observe that this approach partially miti-
gates the instability of CoFi-T5. While this miti-
gates the training instability to some extent, it does
not completely address the challenge associated
with CoFi-T5. These results motivate us to investi-
gate the appropriate strategy for structured pruning
in encoder-decoder models. 3

2The sparsity is computed as the number of pruned param-
eters divided by the full model size (embeddings and classifier
excluded).

3As longer warm-up epoch is shown to be effective, we
applied it to both CoFi-T5 and NASH in our experiments.

Ac
cu

ra
cy

 (%
)

20

30

40

50

60

70

Model (Dataset)
BERT (RTE) T5 (RTE) T5 (SAMSum)

Sp
ar

si
ty

 (%
)

80

85

90

95

Model (Dataset)
BERT (RTE) T5 (RTE) T5 (SAMSum)

Figure 8: The pruned sparsity (left) and output perfor-
mance (right) distributions for 90% of target sparsity
across 20 random trials on RTE (Wang et al., 2018) with
BERT-Base, RTE with T5-Base, and SAMSum (Gliwa
et al., 2019) with T5-Base. Unlike the results of BERT
on RTE, which show that the accuracy and pruned spar-
sity are concentrated around the target sparsity, we ob-
serve that both output performance and pruned spar-
sity vary across different trials. This variation confirms
the instability of pruning-aware training for encoder-
decoder models. It is important to note that accuracy
and ROUGE-L are used as output performance metrics
for RTE and SAMSum, respectively.

B Pruning with L0 Regularization

In this section, we give the details of the pruning
with L0 regularization. Structured pruning through
L0 regularization (Louizos et al., 2018) is proposed
to construct the sparse neural network efficiently.
In addition, this scheme using L0 regularization
is widely applied to prune LMs (Xia et al., 2022;
Wang et al., 2020c). With a given LM f(·; θ) that
is parameterized by θ = {θj}nj=1, we can define
binary mask variable z = {zj}nj=1. Note that θj
and zj denote a unit of weights (e.g., weights of
attention heads, or column of an MLP layer) and
mask variable corresponding to θj , respectively.

In this formulation, a pruned LM is written as
f(·; θ̃), where θ̃ = θ ⊙ z and the pruning is a prob-
lem to find optimal mask variables and weights. In
the L0 regularization-based pruning, these masks
and weights are learned based on the following
objective function:

minEz

[
1

D

D∑

i=1

L(f(xi; θ̃), yi) + λ||θ̃||0
]

In the objective function above, every mask vari-
able zj is chosen based on the prior distribution
q(zj |πj) = Bernoulli(πj). Considering the num-
ber of binary masks, n, the possible choices of z
can be represented as 2n. The discrete feature of
the mask and this tremendous amount of choices
make mask optimization practically intractable.

Louizos et al. (2018) mitigate this issue with a
re-parameterization trick, enabling z to be differ-
entiable and updates with the model parameter θ.
In detail, the masks z are defined as continuous

6089

Table 7: Description and label of NLU datasets in GLUE and SuperGLUE benchmarks.

Task Description Label

GLUE

CoLA To determine the linguistic acceptability of a single sentence [’acceptable’, ’not_acceptable’]
MRPC To answer whether human annotators paraphrase input sentence pairs [’equivalent’, ’not_equivalent’]
STS-B To answer how much input sentence pairs are semantically similar 0<x<5 (regression)
RTE To determine the logical relationship between input sentence pairs [’entailment’, ’not_entailment’]

SST-2 To answer whether the input sentence contains positive or negative sentiment [’negative’,’positive’]
QNLI To determine whether a given context entails the answer to a corresponding question [’entailment’, ’not_entailment’]

SGLUE

CB To determine the linguistic acceptability of a single sentence [’acceptable’, ’not_acceptable’]
COPA To comprehend the logical connections between events and make accurate judgments [’choice1’, ’choice2’]
WiC To determine the linguistic acceptability of a single sentence [’true’, ’false’]

BoolQ to determine the linguistic acceptability of a single sentence [’true’, ’false’]

variables determined by min(1,max(0, s)), where
continuous random variable s is sampled from the
range of [0, 1]. Note that it is equivalent to sam-
ple u from the uniform distribution, U(0, 1) and
calculate s as follows:

s = sigmoid(logu− log(1− u) + α),

s̄ = s× (r − l) + l, z = min(1,max(0, s̄))

where l and r are constant values that satisfy l < 0
and r > 0, and α is a learnable parameter. From
this formulation, the learning objective can be re-
written as:

minEu∼U(0,1)

[
1

D

D∑

i=1

L(p(xi; θ̃), yi) + λ||θ̃||0
]

This process obtains z ={zj}nj=1 where every zj is
in the range of [0, 1]. However, Wang et al. (2020c)
observes that optimizing with those relaxed reg-
ularizations makes models converge to different-
size subnetworks depending on a learning rate and
pruning schedule. To mitigate this problem, they
suggest using a Lagrangian relaxation instead of
the L0 regularizer λ∥θ̃∥0 as follows:

R = λ1(ŝ− t) + λ2(ŝ− t)2

where λ1 and λ2 are learnable Lagrange multipli-
ers. ŝ represents the current sparsity calculated by
the masks z, while t represents the target sparsity.
Motivated by these works, we also utilize the re-
laxed regularization term, R, for gradually struc-
tured pruning on the encoder network.

C Description of Datasets

Natural Language Generation Tasks. Since we
study the structured pruning for encoder-decoder
models, a sort of generative model, we conduct
comprehensive experiments on the NLG tasks.
The NLG datasets used in our study encompass

two tasks: summarization and abstract question
answering. We employed the XSum (Narayan
et al., 2018), SAMSum (Gliwa et al., 2019), and
CNN/DailyMail (See et al., 2017) datasets to as-
sess the summarization capability of our proposed
method. These datasets are widely used in evaluat-
ing the effectiveness of summarization techniques.
Regarding abstractive question answering, we em-
ployed the TweetQA (Xiong et al., 2019) dataset to
evaluate our method.

• XSUM (Summarization): XSUM (Narayan
et al., 2018) comprises articles sourced from
BBC, along with corresponding single sentence
summaries. More specifically, each article be-
gins with an introductory sentence that serves as
a summary. These summaries are professionally
written and are usually provided by the article’s
author.

• SAMSum (Summarization): SAMSum (Gliwa
et al., 2019) consists of 16K messenger-like con-
versations annotated with a summary for provid-
ing a concise overview of the conversation’s con-
tent in third person. The conversations encom-
pass a variety of styles and registers, ranging
from informal to semi-formal and formal. Addi-
tionally, they may include slang words, emoti-
cons, and typographical errors.

• CNN/DailyMail (Summarization): CNN / Dai-
lyMail (See et al., 2017) consists of over 300K
English news articles that were originally de-
signed for machine-reading and comprehension
as well as abstractive question answering, but
it now also supports extractive and abstractive
summarization. In this work, we utilize the 3.0.0
version.

• TweetQA (Abstract Question Answering):
TweetQA (Xiong et al., 2019) is the first large-
scale dataset for question answering (QA) over

6090

Table 8: Hyperparameters for NLG datasets

Hyperparameter Value & Description

Training epochs
20 (TQA, SAMSum), 3 (XSum, CNN/DM)

how many epochs are trained.

Learning rate
3× 10−5

learning rate by AdamW optimizer

Evaluation steps
1000

evaluation frequency

Batch size
4

quantity of samples per update

Max input length
512

the maximum length for the training

Max target length
128

maximum length to be generated

Warm-up epochs
16 (TQA,SAM), 2 (XSum, CNN/DM)

epochs that target sparsity meets

Reg learning rate
0.01

learning rate for the λ1 and λ2 in L0 regularization

λenc, λdec 0.001
weight for layer distill loss

Fine-tune epochs
20 (TQA, SAMSum), 3 (XSum, CNN/DM)

epochs for fine-tuning after the pruning

Table 9: Hyperparameters for NLU datasets

Hyperparameter Value & Description

Training epochs
150 (small), 100 (middle), 20 (high)

how many epochs are trained.

Learning rate
3× 10−5

learning rate by AdamW optimizer

Evaluation steps
20 (small), 50 (middle), 500 (high)

evaluation frequency

Batch size
32

quantity of samples per update

Max input length
128

the maximum length for the training

Max target length
5

maximum length to be generated

Warm-up epochs
120 (small), 80 (middle), 16 (high)
epochs that target sparsity meets

Reg learning rate
0.01

learning rate for the λ1 and λ2 in L0 regularization

λenc, λdec 0.001
weight for layer distill loss

Fine-tune epochs
20

epochs for fine-tuning after the pruning

social media by addressing that previous QA
datasets have concentrated on formal text like
news and Wikipedia.

Natural Language Understanding Tasks. We
apply GLUE (Wang et al., 2018) and SuperGLUE
benchmarks (Wang et al., 2019) for evaluating on
NLU tasks. While these benchmarks consist of clas-
sification datasets, we generate the phrase related
to the label instead of the class index. The detailed
descriptions and labels of each task are described
in Table 7.

• GLUE: GLUE (Wang et al., 2018) is a collec-
tion of datasets for evaluating the performance

of models across a diverse set of existing NLU
tasks. By including tasks with limited training
data, GLUE is designed to favor and encourage
models that share general linguistic knowledge
across tasks. In this work, we employ six tasks
in GLUE benchmarks: CoLA, MRPC, STS-B,
RTE, SST-2, and QNLI.

• SuperGLUE: SuperGLUE (Wang et al., 2019)
is a new benchmark styled after GLUE with a
new set of more difficult NLU tasks. It incorpo-
rates improved resources to address the fact that
performance on GLUE has surpassed the level
of non-expert humans, thereby indicating the
limited potential for further research progress.
In this work, we adopt some of SuperGLUE
tasks: CB, BoolQ, WiC, and COPA.

Instruction-Tuning Tasks. We apply
databricks-dolly-15k (Conover et al., 2023),
Self-Instruct (Wang et al., 2023a), and Vi-
cuna (Chiang et al., 2023) for evaluating on
instruction-tuning tasks.

• databricks-dolly-15k:
databricks-dolly-15k (Conover et al.,
2023) is an open-source dataset of instruction-
following records generated by thousands
of Databricks employees in several of the
behavioral categories outlined in the In-
structGPT (Ouyang et al., 2022), including
brainstorming, classification, closed QA,
generation, information extraction, open QA,
and summarization.

• Self-Instrcut: The authors of Self-
Instruct (Wang et al., 2023a) have introduced a
dataset comprising 52,000 instructions matched
with 82,000 instance inputs and outputs. This
dataset serves as a resource for fine-tuning
language models to improve their adherence
to instructions. Additionally, they’ve provided
252 expert-created tasks and instructions
designed for user-centric applications, which
are used in the human evaluation section of
their research. Furthermore, the Self-Instruct
dataset includes 50,000 examples from the P3
and Super Natural Instructions datasets for
the purpose of facilitating comparisons with
existing public datasets.

• Vicuna: Vicuna (Chiang et al., 2023) utilized
approximately 70,000 multi-round conversa-
tions between users and ChatGPT collected

6091

from the ShareGPT website (Geng et al., 2023),
which allows sharing of ChatGPT dialogues, as
a dataset for fine-tuning. In this work, we uti-
lize 80 challenging questions used in the Vicuna
evaluation.

D Hyperparameters

In this section, we describe the hyperparame-
ter setup of experiments. We report the hyper-
parameters that we utilized in Table 8 and 9 for
NLG and NLU tasks, respectively. We use differ-
ent hyperparameter sets for small NLG datasets
(TweetQA, SAMSum) and large NLG (XSum,
CNN/DailyMail) datasets. Similarly, for NLU
tasks, we use different hyperparameters depend-
ing on the dataset size. For the small-size NLU
datasets (CB, COPA) that the number of sam-
ples is smaller than 1,000, we use the hyperpa-
rameters (small) described in Table 9. We espe-
cially train our model for 150 epochs because
the data size is too small to learn the weights for
the L0 regularization. We use the hyperparame-
ters (middle) described in Table 9 for the middle-
size NLU datasets (MRPC, RTE, STS-B, CoLA,
WIC, BOOLQ) that the number of samples is more
than 1, 000 but less than 10, 000. We use the hy-
perparameters (high) described in Table 9 for the
large-size NLU datasets (MNLI, QQP, QNLI, SST-
2) that the NLU datasets whose size is larger than
10, 000.

E Instruction-tuning Details

In the evaluation process of GPT-4, feedback is
solicited by instructing the model to compare its
generated responses with the authentic, reference
answers and assign a numerical score ranging from
1 to 10 to each response. Drawing upon the method-
ology outlined by Gu et al. (2023), we calculate
the ratio between the cumulative scores assigned
to the model’s responses and those of the ground
truth answers. Further details regarding the specific
prompt employed for this evaluation are presented
in Figure 9.

F Speedup Evaluation Metric

To measure the inference speed, we conducted
inference predictions for each dataset and exam-
ined configuration using the PyTorch (Paszke et al.,
2019) compiled function. This was done on a sin-
gle server equipped with a NVIDIA GeForce RTX

We would like to request your feedback on the
performance of two AI assistants in response to the
user instruction and input displayed above.

Please rate the helpfulness, relevance, accuracy, and
level of detail of their responses. Each assistant
receives an overall score on a scale of 1 to 10, where
a higher score indicates better overall performance.

Please first output a single line containing only two
values indicating the scores for Assistant 1 and 2,
respectively. The two scores are separated by a space.

In the subsequent line, please provide a comprehen-
sive explanation of your evaluation, avoiding any po-
tential bias and ensuring that the order in which the
responses were presented does not affect your judg-
ment.

Figure 9: GPT-4 evaluation prompt.

3090 GPU and an AMD EPYC 7502 32-Core Pro-
cessor CPU. For each inference prediction, we uti-
lized a batch size of 32. Additionally, we generated
output sequences using a beam size of 4. The time
taken for the measurements included all decoding
steps until completion.

Table 10: Comparison with Tay et al. (2021) using same
decoder layer number (# DL) on TweetQA (TQA) and
SAMSum (SAM).

DL DL 2 DL 4 DL 6 DL 8

Task TQA SAM TQA SAM TQA SAM TQA SAM

Tay et al. (2021) 51.16 39.30 51.67 40.96 51.68 41.07 52.67 41.18
NASH 48.03 38.90 55.11 41.37 56.92 42.23 58.02 42.51

G Additional Experiments

G.1 Comparison with Efficient-T5

We compare our algorithm, NASH, with models
designed to have a shallow decoder depth orig-
inally from the pre-training stage, as proposed
by Tay et al. (2021). In our evaluation, we exam-
ine the performance of our method on two tasks,
namely TweetQA and SAMSum, using 2, 4, 6,
and 8 decoder layers. As shown in Table 10, NASH
demonstrates superior performance in most cases.
This result is noteworthy as our method can con-
struct a small yet effective model without requiring
any costs to make the small pre-trained language
model.

G.2 Results on NLU Tasks

We also compare NASH to the baseline methods on
the GLUE and SuperGLUE benchmarks, which
are focused on NLU tasks. Since these tasks in-
volve relatively longer input sequences and shorter

6092

M
at

th
ew

 C
or

re
la

tio
n

(%
)

45

50

55

60

65

Speedup
1.0 1.5 2.0 2.5 3.0

CoLA (GLUE)

Ac
cu

ra
cy

 (%
)

70

75

80

Speedup
1.0 1.5 2.0 2.5 3.0

RTE (GLUE)

Ac
cu

ra
cy

 (%
)

74

76

78

80

Speedup
1.0 1.5 2.0 2.5 3.0

BoolQ (SuperGLUE)

Ac
cu

ra
cy

 (%
)

82
84
86
88
90
92
94

Speedup
1.0 1.5 2.0 2.5 3.0

CB (SuperGLUE)

T5-Base 95% T5-Base CoFi-T5 NASH-T5 T5-Small

Figure 10: Accuracy vs. speedup on various natural language understanding tasks (CoLA, RTE, BoolQ and CB). We
compare NASH on 220M T5-Base against CoFi-T5 on T5-Base and 60M T5-Small. On all datasets, NASH is able to
outperform CoFi-T5.

Table 11: The summary of Figure 10 which compares the understanding accuracy and latency speedup of NASH
against other acceleration methods on GLUE (Wang et al., 2018) and SuperGLUE (Wang et al., 2019) benchmarks.
The number of parameters for all models is around 60M, except for T5-Base. For NASH, we apply two layers of
decoder sub-network. The best results of sharing the dataset are highlighted in bold.

Task GLUE SuperGLUE

Dataset QNLI SST-2 CoLA MRPC RTE STS-B BoolQ WiC COPA CB

T5-Base (Teacher) 93.26 95.53 63.14 89.71 78.70 90.85 79.45 72.57 70.00 91.07

T5-Small 91.03 92.32 44.93 88.73 68.95 89.27 75.87 69.28 55.00 82.14
Speedup↗ 2.5× 2.8× 2.5× 2.4× 2.3× 2.6× 3.0× 2.0× 2.0× 2.6×
CoFi-T5∗ 87.88 91.28 42.92 75.74 66.96 86.49 78.69 68.97 65.00 87.50
Speedup↗ 2.1× 2.1× 2.0× 2.1× 1.7× 1.9× 2.0 × 2.0× 2.2× 2.2×
NASH (Ours) 91.19 92.74 56.56 86.27 76.17 90.39 79.51 71.16 69.00 89.29
Speedup↗ 3.0× 2.8× 3.0× 3.3× 3.0× 2.9× 2.9× 2.6× 3.0× 2.7×

output sequences compared to NLG tasks, our pro-
posed method exhibited less effectiveness. How-
ever, NASH still demonstrates superiority over the
baselines, as depicted in Figure 10. It is impor-
tant to note that the performance of our method
remains robust across different compression rates.
We also provide detailed performance results of
our proposed method for the full GLUE and Su-
perGLUE benchmarks in the Appendix G.2 in Ta-
ble 11. The results demonstrate the effectiveness
of our proposed NASH method in achieving high
output quality while significantly improving in-
ference speed. The superior performance of NASH
across both GLUE and SuperGLUE benchmarks
highlights its potential as an efficient acceleration
method for NLU tasks as well as for NLG tasks.

6093

