
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 6274–6287
December 6-10, 2023 ©2023 Association for Computational Linguistics

Narrative Order Aware Story Generation via Bidirectional Pretraining
Model with Optimal Transport Reward

Zhicong Lu1,2, Li Jin1†, Guangluan Xu1, Linmei Hu3, Nayu Liu4

Xiaoyu Li1, Xian Sun1, Zequn Zhang1, Kaiwen Wei1,2
1 Key Laboratory of Network Information System Technology (NIST), Aerospace

Information Research Institute, Chinese Academy of Sciences
2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences

3 Beijing Institute of Technology 4 School of Computer Science and Technology, Tiangong University
{nazaritelzc, jinlimails}@gmails.com

Abstract

To create a captivating story, a writer often
plans a sequence of logically coherent events
and ingeniously manipulates the narrative or-
der to generate flashback in place. However,
existing storytelling systems suffer from both
insufficient understanding of event correlations
and inadequate awareness of event temporal or-
der (e.g., go to hospital <after> get ill), making
it challenging to generate high-quality events
that balance the logic and narrative order of
story. In this paper, we propose a narrative
order aware framework BPOT (Bidirectional
Pretraining Model with Optimal Transport Re-
ward) for story generation, which presents a
bidirectional pretrained model to encode event
correlations and pairwise event order. We also
design a reinforcement learning algorithm with
novel optimal transport reward to further im-
prove the quality of generated events in the
fine-tuning stage. Specifically, a narrative order
aware event sequence model is pretrained with
the joint learning objectives of event blank in-
filling and pairwise order prediction. Then, re-
inforcement learning with novel optimal trans-
port reward is designed to further improve the
generated event quality in the fine-tuning stage.
The novel optimal transport reward captures the
mappings between the generated events and the
sentences in the story, effectively measuring
the quality of generated events. Both automatic
and manual evaluation results demonstrate the
superiority of our framework in generating log-
ically coherent stories with flashbacks.

1 Introduction

As the fundamental element of numerous literary
genres, stories have played a significant role in var-
ious social domains, such as literature, education,
and entertainment. However, manually creating
high-quality stories is often time-consuming and
laborious. Therefore, developing an AI system that

†Corresponding author.

Input the police were trying to catch a neighborhood thief.
Fine-tuned Bart
(Lewis et al., 2020)

the thief was wearing a mask. the mask was fake.
the police caught the thief. he was arrested.

Megatron-124M
(Xu et al., 2020)

they had not arrested him yet. they put him in a jail
cell for a month. the jail cell was full of people.
they brought him to a jail cell.

Flashback
(Han et al., 2022)

the thief had stolen a wallet from a neighbor’s car.
the police arrested the thief. he was sentenced to
community service. now, the police are trying to
apprehend the thief!

Table 1: Stories generated by existing storytelling sys-
tems. The red texts and brown texts indicate logical
incoherence and flashback respectively.

Figure 1: An example of flashback generation. Tem-
poral prompts (<before>, <after>) hint at the pairwise
event order, thereby manipulating the narrative order to
generate flashbacks (the brown texts) in place.

can generate stories like human writer is meaning-
ful. Story generation aims to generate a series of
events and organize them into a reasonable story
given limited information (Huang et al., 2021).

Recently, a significant process has been made in
story generation. Similar to human writers, Martin
et al. (2018); Yao et al. (2019); Xu et al. (2018)
introduced a planning-based method, namely plan-
ning sketch prior to writing story. To improve
the controllability of story generation (Kong et al.,
2021; Xie et al., 2022), different attributes (e.g.,
style, psychology) were added to sketch. Besides,
Guan et al. (2020); Xu et al. (2020) leveraged ex-
ternal knowledge bases to generate commonsense
stories. Although existing methods can generate
fluent stories related to the desired attribute, they
pay little attention to event correlations, resulting
in insufficient understanding of event correlations.
This makes it difficult to maintain logical coherence
as a whole story (Zhou et al., 2022c). Moreover,
they rarely consider the crucial role of narrative
order in story generation. For example in Table 1,

6274

all storytelling systems exhibit logical incoherence
and only the last system reverses narrative order in
place to generate flashback.

Flashback is a common writing technique that
describes the past events to provide context for
the current narrative. It arouses reader’s interest
and deepens their understanding of the narratives.
To generate flashback in story, Han et al. (2022)
proposed temporal prompt. As shown in Figure 1,
<after> hints at the pairwise event order, which trig-
gers model to reverse the narrative order to describe
the past events for flashback generation ("catch a
neighborhood thief" occurs later than "had stolen
a wallet"). However, they face the problems of
inefficient prompt and deteriorating logic in some
cases (shown in section 4.5). It is probably because
model always unidirectionally reasons event from
order, lacking the process of inversely inferring or-
der from pairwise events, resulting in inadequate
awareness of event temporal order. Additionally,
when generating high-quality events in story, it is
intrinsically more challenging to balance the logic
and narrative order than merely focusing on logic.

In this paper, we propose a narrative order aware
framework BPOT for story generation, which
presents a bidirectional pretrained model to encode
event correlations and pairwise event order. We
also design a reinforcement learning (RL) algo-
rithm with novel optimal transport (OT) reward to
further improve the quality of generated events in
the fine-tuning stage. Specifically, a narrative order
aware event sequence model is pretrained with the
joint learning objectives of event blank infilling and
pairwise order prediction. Then, we employ OT to
capture the mappings between the generated events
and the sentences in the story. Based on the map-
pings, we construct a novel reward to effectively
measure the quality of generated events, further
improving the generated event quality under the
optimization of the RL algorithm. In summary, our
main contributions include:

1) We propose a narrative order aware frame-
work BPOT for story generation, which pretrains
an event sequence model with the joint learning
objectives of event blank infilling and pairwise or-
der prediction to encode the event correlations and
pairwise event order.

2) We design an RL algorithm with novel OT
reward to further improve the quality of generated
event in the fine-tuning stage. The novel OT reward
effectively measures the generated event quality

based on the mappings captured by OT.
3) Extensive evaluation results demonstrate the

superiority of our framework in generating logi-
cally coherent stories with flashbacks.

2 Preliminaries

This section provides a description of the sketch
used in this work, followed by an introduction to
the basic concept of OT.

2.1 Sketch Details
We follow the line of the planning-based method
(Martin et al., 2018; Yao et al., 2019) for story gen-
eration. Our sketch S is composed of alternating
splicing of event e and temporal prompt t, where
t ∈ {<before>, <after>, <vague>}. It hints at
the pairwise event order, thereby manipulating the
narrative order. Note that <vague> represents arbi-
trary event order. Formally, an event e is a structure
(a0, v, a1), which is extracted from the correspond-
ing sentence s in story Y by semantic role labeling
(SRL) tools (Gardner et al., 2018). v is the trigger
(Wei et al., 2021) describing the event, a0 and a1

are its relevant arguments (Wei et al., 2022). We
only consider one event in each sentence for sim-
plicity. Let ei,n = (a0i,n, vi,n, a1i,n) denotes the n-th
event in i-th sketch Si, ti,n denotes the event order
between the n-th event and the (n+1)-th event in
Si. Then a sketch with m events can be represented
as Si = {ei,1, ti,1, ..., ei,m, <eoe>}, where <eoe>
refers to event ending. A sketch with five events is
shown at the bottom of Figure 3.

2.2 Optimal Transport
OT has recently been introduced to numerous tasks
in NLP (Wei et al., 2023). Its original objective
is to find the OT maps between two data distri-
butions with minimum cost (Kantorovich, 2006).
Formally, given two complete metric spaces X and
Y, let u(x) and v(y) denote two discrete probabil-
ity distributions on X and Y respectively, where∑n

i=1 u(xi) =
∑m

j=1 v(yj) = 1. Then the OT
maps T ∗ between u(x) and v(y) is obtained by
solving the optimization problem (1):

T ∗ = argmin
T

∑

i,j=1

tij · c(xi, yj)

s.t.
∑

j=1

tij = u(xi) ∀i ∈ {1, ..., n}

∑

i=1

tij = v(yj) ∀j ∈ {1, ...,m}

T ∈ Rn×m
+

(1)

6275

where c is the cost function. To effectively solve
(1), researchers have proposed some approximation
algorithms, such as Sinkhorn (Cuturi, 2013), IPOT
(Xie et al., 2020). In this work, we adopt IPOT.

3 Methodology

In this section, we detail our proposed narrative
order aware framework BPOT for story generation,
which presents a bidirectional pretrained model to
encode event correlations and pairwise event or-
der. As shown in the upper of Figure 3, an RL
algorithm with novel OT reward is designed to
further improve the generated event quality. Par-
ticularly, a narrative order aware event sequence
model is pretrained with the joint learning objec-
tives of event blank infilling and pairwise order
prediction as shown in Figure 2. In the fine-tuning
stage, we employ OT to capture the mappings be-
tween the generated events and the sentences in the
story. Based on the mappings, a novel reward is
constructed to effectively measure the quality of
generated events, further improving the generated
event quality under the RL optimization.

3.1 Vanilla Pipeline Generation

The vanilla pipeline generation of our framework
is shown at the bottom of Figure 3. Following the
line of the planning-based method, we plan sketch
prior to writing story. Firstly, golden sketch Ŝi

is extracted from golden story Ŷi as mentioned in
section 2.1. Temporal prompts are obtained by
identifying the pairwise event order between sen-
tences by ECONET (Han et al., 2020) in advance.
Then all events are masked in Ŝi except for the in-
put event to obtain input xti. Last, we require sketch
model to generate sketch Si given on xti and story
model to unfold Si into story Ŷi. The pretrained
BART-base (Lewis et al., 2020) is served as both
sketch model and story model. Formally, Let α and
θ denote the parameters of sketch model and story
model respectively, per sample loss for two models
during training can be expressed as (2), (3):

Lα = −logp(Ŝi|xt
i) = −

|Ŝi|∑

k=1

logp(Ŝi,k|xt
i, Ŝi,<k) (2)

Lθ = −logp(Ŷi|Si) = −
|Ŷi|∑

k=1

logp(Ŷi,k|Si, Ŷi,<k) (3)

We use Si rather than Ŝi to reduce the discrepancy
between training and inference.

Figure 2: An illustration of the bidirectional pretraining
of event blank infilling and pairwise order prediction

3.2 Bidirectional Pretraining

Intuitively, the quality of sketch greatly influences
the generated story. However, due to suffering
from both insufficient understanding of event corre-
lations and inadequate awareness of event temporal
order, it is challenging for sketch model to generate
high-quality events that balance the logic and nar-
rative order of story. Therefore, we present a joint
pretraining of event blank infilling and pairwise
order prediction to encode event correlations and
pairwise event order as shown in Figure 2.
Event Blank Infilling demands model to reason
blank event from the given pairwise event order.
It requires the generated event to not only be rea-
sonable in event correlations but also conform to
a specific event order. Concretely, for each event
êi in Ŝi, we mask it with a probability of 0.25 to
obtain Se

i and keep all temporal prompts t̂ visible.
If no events are selected for masking, we randomly
choose one to mask. By doing so, the model is
able to pay more attention to understanding event
correlations conditioned on a specific order.
Pairwise Order Prediction requires model to rea-
son order from the given pairwise events within the
generated paradigm. Concretely, we mask all tem-
poral prompts t̂ in Ŝi, where <eoe> is also masked
to facilitate model to understand the story ending.
To prevent excessive deviation from the sketch gen-
eration, we additionally mask an event to obtain St

i .
If an event is chosen to mask, the corresponding
temporal prompt or <eoe> will be restored. Since
only one event is masked, model reasons pairwise
event order in most cases, which facilitates model
to have a better awareness of event temporal order.

To jointly encode event correlations and event
temporal order, we first obtain Se

i and St
i from

Ŝi for each sample. Then, we execute different
learning objectives in parallel and combine their
loss in a varying ratio to jointly guide optimization.
Per sample loss Lp can be represented as (4):

6276

Figure 3: An illustration of our framework for story generation. We take an example of a five-sentence story. The
bottom shows the vanilla pipeline generation. The upper shows the specific details of constructing the novel OT
reward. For illustration purposes, we add tag ([ei], [si]) for each event and sentence (i.e., not required in reality).

Lp = −
|Ŝi|∑

k=1

(γ1logp(Ŝi,k|Se
i , Ŝi,<k)+

γ2logp(Ŝi,k|St
i , Ŝi,<k))

(4)

where γ1 and γ2 are weight factors, varying with
the pretraining process.

3.3 Optimal Transport Reward
An apparent problem with the planning-based
method is sketch model can’t adjust with
story model as the sketch generation is non-
differentiable. This leads to sketch model not know-
ing how the generated sketch affects the final story.
To overcome this barrier, we design an RL algo-
rithm with novel OT reward, further improving the
generated event quality.

We briefly introduce how to utilize RL to opti-
mize sketch model. Particularly, a reward R̂ is con-
structed based on the feedback from story model.
Later, the policy gradient (Sutton et al., 1999) is
adopted to optimize sketch model through maxi-
mizing the expected reward Eα[R̂i] in (5). The
gradient of sketch model can be represented as (6)
according to the policy gradient theorem, which
can be approximated with the sampling techniques.

Eα[R̂i] = E[R̂i · log(p(Ŝi|xt
i, α)] (5)

∇J(α) = E[R̂i · ∇logp(Ŝi|xt
i, α)] (6)

Therefore, the core idea is to design an effective
reward R̂i that guides sketch model to generate bet-
ter sketch. A naive approach is regarding negative
sentence loss as the corresponding event reward.
Because low-quality event in sketch will make it
harder for story model to reconstruct the original
sentence in story, leading to higher sentence loss
and smaller event reward. However, the mappings
between each event ei in sketch and the sentence
sj in story modeled by the naive approach are one-
to-one as the reward for ei is only determined by si.
But they should be one-to-many as an event may
contribute multiple sentences. To overcome this
barrier, we design a novel OT reward.

As shown in the upper of Figure 3, we extract
the event semantics He = {hei}lei=1 and sentence
semantics Hs = {hsj}lsj=1 by averaging the repre-
sentations of the included tokens from the last hid-
den state of sketch model and story model. Here, le
and ls represent the number of events in sketch and
sentences in story respectively. The sentence loss
Ls = {Lsk}lsk=1 is also computed by adding up the
loss of the included tokens. Later, we view the pro-
cess of unfolding sketch into story as moving the
event semantic distribution to sentence semantic
distribution, and employ OT to capture the map-
pings between them. Concretely, the cost matrix
C ∈ Rle×ls is first calculated based on the simi-

6277

Algorithm 1: Training And Optimization
Input: Dtrain = {xt

i, Ŷi}N
i=1, η weight factor for OT loss, α,

θ parameters of sketch model and story model.
1 pretrain sketch model based on (4)
2 for sample P = {xt

i, Ŷi} ∈ Dtrain do
3 Compute loss Lα, Lθ by (2), (3).
4 Extract He, Hs, Ls from the output
5 Compute cost matrix C by (7)
6 Compute transport matrix T by IPOT
7 Compute compact reward Ri and OT Loss Lot by (8), (9)
8 Expand Ri to get final reward R̂i

9 ∇J(α) = R̂i · ∇logP (Ŝi|xt
i, α)

10 ∇α = ∇J(α) + η∇Lot

11 ∇θ = ∇Lθ + η∇Lot

12 optimize the entire model based on ∇α, ∇θ

13 end

larity between events and sentences measured by
RBF kernel as (7).

cij = 1− exp(
−||hei − hsj ||2

2β2
) (7)

It means the closer the semantics of hei and hsj , the
smaller the transportation cost between them. Then,
IPOT is adopted to compute the transport matrix
(maps) T ∈ Rle×ls based on C, He and Hs. Tij

can be understood as the semantic transportation
or contribution from ei to sj . After obtaining the
mappings T , we construct the compact reward R =
{ri}lei=1 and compute the OT loss Lot as below:

Ri = −TLs (8)

Lot = trace(TTC) (9)

where ri indicates the reward for ei. Last, we ex-
pand each ri to make its dimension consistent with
the number of tokens contained in the correspond-
ing event to get the final reward R̂. In this way, ri
is not only determined by the sentence loss si, but
also by other sentence loss. The reward intensity of
sj to ei depends on the semantic contribution (Tij)
from ei to sj captured by OT. Consequently, each
event reward comprehensively considers the feed-
back of all sentences, thus effectively measuring
the quality of events in sketch. Furthermore, sketch
model can perceive the generated event quality and
understand event correlations through comparing
the reward of different events, thereby adjusting
itself accordingly. It facilitates sketch model to
improve the quality of generated events. The entire
flow is shown in Algorithm 1.

4 Experiments

In this section, we first introduce the datasets, the
compared models, and the evaluation measures in
the experiments. Then, we show the experimental
results and provide a detailed analysis.

4.1 Datasets

To verify the effectiveness of our framework in
generating both short and long stories, we choose
ROCStories (ROC) (Mostafazadeh et al., 2016) and
WritingPrompts (WP) (Fan et al., 2018) as bench-
mark datasets. For pretraining data, we adopt the
event sequences provided by Lin et al. (2020) and
further process it as follows. For each pairwise
events, the event triggers and contexts are fed into
ECONET (Han et al., 2020) to obtain their pairwise
event order. Last, we repeat the operations in sec-
tion 3.1 and obtain a total of 100k event sequences
for pretraining. More details about the datasets and
pretraining data are shown in appendix A.1.

4.2 Compared Models

Baselines. (1) Bart (Lewis et al., 2020) is a typi-
cal seq2seq model for natural language generation.
We directly fine-tuned Bart-base on both datasets.
(2) Bart (planning) adopted the planning-based
method based on (1). (3) TemporalBart (Lin et al.,
2020) is pretrained with temporal event ordering
and event infilling tasks. We utilize its pre-trained
weights to initialize our sketch model. (4) Mega-
tron (Xu et al., 2020) fine-tuned GPT2 (Radford
et al., 2019) and leveraged external knowledge
bases to enrich the generated stories on ROCSto-
ries. (5) ContentPlanning (Goldfarb-Tarrant et al.,
2020) adopted the planning-based Bart-large model
on WritingPrompts. (6) Flashback (Han et al.,
2022) utilized temporal prompt to generate flash-
back in place, which is the strongest baseline for
our framework. We also compare with its three
variants for fair, which are only RL, only Pre-
trained and the integration of RL and Pretrained
(PR), respectively. For RL, it regarded the negative
story loss as the final reward R̂. For Pretrained,
it adopted an autoregressive manner at pretrain-
ing stage. Note that Flashback and its variants all
served event arguments as mask unit. (7) Chat-
GPT is selected as its powerful ability in natural
language generation. More details about the base-
lines are in Appendix A.3.
Ablation Variants. In addition to the baselines,
we present the ablation variants of our framework.
(1) Vanilla performs vanilla pipeline generation as
shown in the bottom of Figure 3. (excluding bidi-
rectional pretraining) (2) BP adopts bidirectional
pretraining of event blank infilling and event tem-
poral order based on (1). (3) OTRL attaches the
RL algorithm with OT reward based on (1).

6278

Models
ROCStories

PPL↓ B-3↑ RL↑ R-2↓ D-4↑
WritingPrompts

PPL↓ B-3↑ RL↑ R-3↓ D-4↑ Tks↑
Bart 20.24 4.98 19.11 47.78 62.44 31.15 0.57 9.28 20.92 59.37 148.6

Bart (planning) 27.30 5.13 19.29 49.77 61.80 31.04 0.67 9.43 23.40 60.27 160.2

TemporalBart* 24.65 5.01 19.12 50.62 62.13 - - - - - -

Flashback 22.85 5.07 19.39 46.11 63.42 30.77 1.44 10.95 23.70 59.83 208.6

+ Pretrained* 21.16 5.06 19.43 49.16 62.79 30.70 1.68 11.13 25.90 58.90 226.7

+ RL 15.67 5.12 19.41 49.43 64.10 30.98 1.39 10.78 23.60 59.12 203.8

PR* 15.45 5.20 19.49 50.05 64.76 30.73 1.64 11.03 24.20 58.86 222.4

Vanilla 25.51 5.08 19.40 47.68 62.55 30.71 1.97 11.34 25.20 57.89 248.9

+ BP* 25.35 5.06 19.43 46.02 64.21 30.62 2.10 11.51 24.80 59.99 255.7

+ OTRL 14.73 5.27 19.61 49.01 65.09 30.41 2.09 11.51 26.10 60.15 256.9
BPOT* 14.85 5.31 19.64 48.17 65.51 30.54 2.04 11.43 24.60 60.39 253.9

Table 2: Automatic evaluation results. * represents that it includes pretraining stage. The bottom shows the results
of our framework and its ablation variants. Best in bold, the runner-up with an underline.

4.3 Evaluation Measures

Automatic Evaluation We use the following auto-
matic metrics to evaluate stories. PPL represents
the model’s perplexity of the stories. Repeat-n
(R-n) (Shao et al., 2019) reflects the redundancy
of the stories by computing the ratio of the stories
that repeat at least one n-gram. Distinct-n (D-n)
measures the diversity of the stories by computing
the ratio of n-gram types to all generated n-grams.
Tks is the average length of the stories. We also re-
port standard BLEU-3 (B-3) (Papineni et al., 2002)
and ROUGEL(RL) (Lin, 2004).
Manual Evaluation We conduct a manual eval-
uation on ROCStories to verify whether the sto-
rytelling system can generate the high-quality
events that balance the logic and narrative or-
der in generating stories with flashbacks. Specif-
ically, we randomly choose 100 stories that have
<after> in test sets. For each story, we obtain six
versions which are generated by the ablation vari-
ants of our framework and three strong baselines.
Then, the annotators are required to evaluate stories
on three aspects: Narrative order, Coherence and
Overall. For Narrative order, we ask them to label
all pairwise event orders in each story. Then the
ratio of each narrative order is calculated, and we
further compute the entropy to represent Narrative
Order Diversity (NOD). Meanwhile, Narrative
Order Accuracy (NOA) is measured by calculat-
ing the ratio of the annotated results that are consis-
tent with the given temporal prompts. For Coher-
ence, we have the annotators rate each story (1-5)
according to the inter-sentence logic and whether
the generated story deviates from the given input.
For Overall, the annotators are required to rank

stories based on the overall quality of the story and
their preferences. Also, they can line up two stories
together if they are fairly similar in quality. For
each set of stories, we have 5 workers to annotate
it. Appendix A.4 shows more details on automatic
and manual evaluation.

4.4 Experimental Results

Automatic Evaluation Results are reported in Ta-
ble 2. BPOT surpasses other baselines in all metrics
except for repetition, which indicates the generated
stories are more fluent and diverse, overlapping
more with the reference stories. For repetition,
our model outperforms other baselines under sim-
ilar configurations (e.g., RL vs OTRL) on ROC-
Stories, while showing slightly worse results on
WritingPrompts, probably because of the much
longer generated stories. Concretely, when com-
pared to the strongest baselines (Flashback and its
variants), Vanilla performs worse than Flashback
on ROCStroies. It could be that Flashback serves
event arguments as mask unit, which helps learn the
dependencies between event arguments. Instead,
Vanilla is better than Flashback on WritingPompts,
especially in Tks. It may be because the stories
in WritingPrompts are much longer. Thus, the de-
pendencies between event arguments are complex

Models B-3↑ RL↑ R-2↓ R-3↓ D-4↑ Tks ↑
Megatron (ROC) 2.57 19.29 60.75 - 85.42 -

ContentPlanning (WP) 3.46 14.40 - 95.60 78.16 252.3

OTRL (ROC) 5.27 19.61 49.01 - 65.09 -

OTRL (Bart-large) (WP) 3.26 13.21 - 30.80 61.29 323.4

Table 3: Comparison results on two datasets. PPL is
missing as it is not reported in original paper.

6279

Models NOD ↑ NOA ↑ Coherence ↑ Overall↓
TemporalBart* 0.913 0.903 2.543 3.398

PR* 1.037 0.913 2.923 2.975

Vanilla 0.954 0.900 2.400 3.555

OTRL 0.985 0.915 3.425 2.590

ChatGPT 0.474 0.745 4.403 1.530
BPOT* 1.115 0.958 4.113 1.820

Table 4: Manual evaluation results on ROCStories. Best
in bold, the runner-up with an underline.

Figure 4: Detailed statistics on the annotated results of
narrative order. For each set, the first line shows the ratio
of different narrative orders, the second and third line
shows the NOA on <after> and <before> respectively.

and hard to learn, while serving event as mask
unit makes it easier to learn event correlations,
thereby generating longer stories. When attach-
ing OT reward, OTRL outperforms all variants of
Flashback. Besides, although our pretraining data
is about 0.1 of Pretrained (1 million), BP performs
better, especially in diversity and repetition. BP
achieves a growth of 1.66 and 2.1 in Distinction
and a decline of 1.66 and 0.4 in Repetition on
two datasets, while Pretrained are −0.63, −0.93
and −3.05, −2.2 respectively. The superior perfor-
mance on two datasets demonstrates the effective-
ness of bidirectional pretraining and OT reward.
Moreover, since the experimental settings of
Megatron (Xu et al., 2020) and ContentPlanning
(Goldfarb-Tarrant et al., 2020) are different from
other baselines, we conducted separate experiments
to compare with them. The results are shown in Ta-
ble 3. Megatron achieves better results in diversity
as it served GPT2 as the backbone and leveraged
external knowledge bases to insert novel words
into stories. Content Planning outperforms ours in
some metrics because it used more training data
and designed a series of classifiers to refine sketch.
Manual Evaluation Results are shown in Table 4.
More detailed statistics on the annotated results of

Figure 5: The Perplexity (PPL) of different strategies in
pretraining stage.

Models PPL↓ B-3↑ RL↑ R-2↓ D-4↑
Autoregressive 15.35 5.22 19.53 49.06 64.97

Event Blank Infilling 15.34 5.23 19.55 49.94 65.11

Pairwise Order Prediction 15.04 5.26 19.48 48.73 64.46

BPOT* 14.85 5.31 19.64 48.17 65.51
RL 15.87 5.16 19.40 50.31 62.76

Naive-RL 15.37 5.12 19.48 46.74 63.57

OTRL 14.73 5.27 19.61 49.01 65.09

Table 5: The results of comparative experiments. The
upper represents different pretraining strategies com-
bined with OTRL. The bottom represents different re-
wards, the specific difference is shown in Appendix 8.

narrative order are shown in Figure 4. We can find
that the dominant narrative order of the generated
story is straightforward (<before>), which is con-
sistent with human writing habits and the findings
in Ning et al. (2018). BPOT performs best in NOD
(1.115) and NOA (0.958). It proves that inversely
inferring pairwise order through bidirectional pre-
training facilitates model to be more better aware
of <after>, thus reversing narrative order to gener-
ate flashback (highest after ratio 24% and highest
after accuracy 88.18%). Moreover, OTRL greatly
boosts the coherence and overall quality. We be-
lieve that the reason is that OT reward effectively
measures the quality of the generated events. There-
fore, sketch model can adjust with reward to gener-
ate higher-quality events. Besides, the bidirectional
pretraining also improves the coherence and overall
quality. We believe that it is because event correla-
tions encoded by bidirectional pretraining facilitate
sketch model to plan reasonable event logic, thus
alleviating the logical incoherence. Particularly, al-
though ChatGPT performs better in coherence and
overall due to its huge number of parameters and
rich training corpus, it is difficult for ChatGPT to
break the dominant narrative order <before> and

6280

Input
prompt

[s1] terry was in bed sleeping.
<before><before><after><before>

PR*

[s2] suddenly, he heard a loud crash.
[s3] he jumped out of bed to see what it was.
[s4] it was a car accident.
[s5] terry rushed to the hospital.

ChatGPT

[s2] suddenly, the alarm clock blared.
[s3] he turned it off and sat up.
[s4] he realized he wad late for an important meeting.
[s5] frantically, he rushed to get dressed and left the house.

BPOT*

[s2] suddenly, he heard a loud bang.
[s3] he looked out the window and saw a bear.
[s4] the bear had attacked terry’s house.
[s5] terry ran outside and called the police.

Input
prompt

[s1] a friend of mine just broke up.
<after><before><after><before>

PR*

[s2] she had a boyfriend who was cheating on her.
[s3] i tried to talk to him, but he wouldn’t talk to me.
[s4] i asked him why he cheated on me.
[s5] he told me that he didn’t want to be friends with me.

ChatGPT

[s2] i consoled him with ice cream and movies.
[s3] later, he admitted it was for the best.
[s4] after a few months, he found someone new.
[s5] now, he’s happier than ever before.

BPOT*

[s2] she had a boyfriend who was cheating on her.
[s3] i asked her why.
[s3] she told me that he cheated on her with another woman.
[s5] i felt bad for her.

Table 6: The generated stories from different models.
The brown and the yellow represent the correct and
failed generated flashbacks respectively. The red repre-
sents the logical incoherence.

follow <after> to generate flashback. It is reflected
in the poor performance of NOD (0.474), lowest
after ratio 8.25% and NOA (0.745) , lowest after
accuracy 16.36%.
Analysis of BP and OTRL To further verify the
effectiveness of BP and OTRL, we conduct compar-
ative experiments on ROCStories. As shown in Fig-
ure 5 and Table 5, we compare various pretraining
strategies and rewards under the same experimen-
tal settings (serving event as mask unit). We can
find that BP achieves the lowest PPL during pre-
training stage. After combing with OTRL, BPOT
outperforms other control groups in all metrics.
It proves that the bidirectional reasoning is supe-
rior to unidirectional reasoning and the autoregres-
sive manner. Besides, when compared to RL and
Naive-RL, OTRL performs best. It demonstrates
the effectiveness of measuring the event quality in
fine-grained way and further considering the one-
to-many mappings between the generated events
and the sentences in the story. Both comparative
experiments verify the superiority of bidirectional
pretraining and OT reward.

4.5 Case Study

Two cases are shown in Figure 7. We find that Chat-
GPT is almost able to generate reasonable event
logic. However, it fails to follow the <after> and re-
verse narrative order to generate flashback in place.
Moreover, for simple situations with one <after>,

PR sometimes generates correct flashback. But it
is faced with logical incoherence. Seeing the upper
example, "terry rushed to the hospital" follows "it
was a car accident". But the accident is not related
to terry so that there is no need for him to rush to the
hospital. Instead, BPOT generates the correct flash-
back ("had attacked terry’s house." occurs in the
past and explains why "hearing a loud bang") and
maintains the reasonable event logic. Besides, for
complex situations with multiple <after>, PR faces
the problems of inefficient prompt and deteriorat-
ing logic. As shown in the bottom example, it fails
to generate flashback with second <after> and the
conflicting relationship with that man has shifted
from my friend to me. In contrast, BPOT generates
two correct flashbacks ("had a boyfriend who was
cheating on her" occurs in the past and explains
"broke up", "cheated on her" occurs in the past and
explains "asked her why"). Both cases demonstrate
the effectiveness of our framework in generating
logically coherent stories with flashbacks. More
cases are shown in Appendix.

5 Related Work

Story Generation was first approached by sym-
bolic and logical planning (PÉrez and Sharples,
2001; Martens et al., 2014). Recently, significant
progress has been made in applying deep neural
networks in story generation. Fan et al. (2018);
Mao et al. (2019) reused a seq2seq model to trans-
late the prompt into a story. Xu et al. (2018); Yao
et al. (2019); Martin et al. (2018) introduced the
planning-based method, namely planning sketch
prior to writing story. Then, numerous works were
devoted to designing the format of sketch (Fan
et al., 2019; Chen et al., 2020) and enriching sketch
with external knowledge bases (Tan et al., 2021;
Xu et al., 2020). Moreover, researchers explored
controllable story generation through fine-grained
control of sketch, such as writing style (Kong
et al., 2021), protagonist’s personality (Zhang et al.,
2022). However, they faced the problem of logical
incoherence and rarely considered the crucial role
of narrative order in story generation. Although
Han et al. (2022) proposed the temporal prompt to
generate flashback, it faced the problems of ineffi-
cient prompt and deteriorating logic in some cases.
In this work, we focus on generating logically co-
herent stories with flashbacks.
Event Correlations and Temporal Order have
been proven useful in many event-related tasks

6281

(Chen et al., 2023; Liu et al., 2022). Recent works
paid attention to utilizing pretraining to encode
event correlations and event temporal order. Han
et al. (2020) learned to identify the temporal re-
lationship between events through masking event
triggers and temporal indicators. Lin et al. (2020);
Zhou et al. (2022a) explored temporal event or-
dering and event infilling tasks for mining tem-
poral knowledge. Zhou et al. (2022b,c) adopted
event-level pretraining with contrastive learning to
capture event correlations. However, they rarely in-
volve mutual reasoning between pairwise event and
event order. In this work, we jointly encode event
correlations and pairwise event order through the
bidirectional reasoning between event and order.

6 Conclusions

In this paper, we propose a narrative order aware
framework BPOT for story generation, which
presents a bidirectional pretrained model to encode
event correlations and pairwise event order. We
also design an RL algorithm with novel OT reward
to further improve the generated event quality in
the fine-tuning stage. Both automatic and manual
evaluation results demonstrate the superiority of
our framework in generating logically coherent sto-
ries with flashbacks. In the future, we will explore
how to control the narrative order of long texts
(paragraphs) or other narrative modalities (video).

Limitations

The performance of our proposed framework is re-
lated to the used pretrained language model (PLM).
Applying our proposed framework to stronger
PLM may lead to further improvements. Besides,
the temporal prompts are obtained by ECONET
through majority voting with different random
seeds. This inevitably introduces some noise in
the data, possibly affecting the final performance.

Acknowledgements

This research was funded by the National Natural
Science Foundation of China (62206267). We sin-
cerely thank Shiyao Yan, Changyuan Tian, and Wei
Jia for their constructive collaboration.

References
Gang Chen, Yang Liu, Huanbo Luan, Meng Zhang,

Qun Liu, and Maosong Sun. 2020. Learning to gen-
erate explainable plots for neural story generation.

IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 29:585–593.

Xiuying Chen, Mingzhe Li, Shen Gao, Zhangming
Chan, Dongyan Zhao, Xin Gao, Xiangliang Zhang,
and Rui Yan. 2023. Follow the timeline! generating
an abstractive and extractive timeline summary in
chronological order. ACM Transactions on Informa-
tion Systems, 41(1):1–30.

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed
computation of optimal transport. Advances in neu-
ral information processing systems, 26.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Long Papers), pages 889–
898.

Angela Fan, Mike Lewis, and Yann Dauphin. 2019.
Strategies for structuring story generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2650–
2660.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language process-
ing platform. In Proceedings of Workshop for NLP
Open Source Software (NLP-OSS), pages 1–6.

Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty, Ralph
Weischedel, and Nanyun Peng. 2020. Content plan-
ning for neural story generation with aristotelian
rescoring. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4319–4338.

Jian Guan, Fei Huang, Zhihao Zhao, Xiaoyan Zhu, and
Minlie Huang. 2020. A knowledge-enhanced pre-
training model for commonsense story generation.
Transactions of the Association for Computational
Linguistics, 8:93–108.

Rujun Han, Hong Chen, Yufei Tian, and Nanyun Peng.
2022. Go back in time: Generating flashbacks in
stories with event temporal prompts. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1450–1470.

Rujun Han, Qiang Ning, and Nanyun Peng. 2019. Joint
event and temporal relation extraction with shared
representations and structured prediction. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 434–444.

Rujun Han, Xiang Ren, and Nanyun Peng. 2020.
Econet: effective continual pretraining of language
models for event temporal reasoning. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 5367–5380.

6282

Qingbao Huang, Linzhang Mo, Pijian Li, Yi Cai, Qing-
guang Liu, Jielong Wei, Qing Li, and Ho-fung Leung.
2021. Story ending generation with multi-level graph
convolutional networks over dependency trees. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 13073–13081.

Leonid Vitalevich Kantorovich. 2006. On a prob-
lem of monge. Journal of Mathematical Sciences,
4(133):1383–1383.

Xiangzhe Kong, Jialiang Huang, Ziquan Tung, Jian
Guan, and Minlie Huang. 2021. Stylized story gen-
eration with style-guided planning. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 2430–2436.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Shih-Ting Lin, Nathanael Chambers, and Greg Durrett.
2020. Conditional generation of temporally-ordered
event sequences. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing, pages 7142–7157.

Nayu Liu, Kaiwen Wei, Xian Sun, Hongfeng Yu, Fang-
long Yao, Li Jin, Guo Zhi, and Guangluan Xu. 2022.
Assist non-native viewers: Multimodal cross-lingual
summarization for how2 videos. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6959–6969.

Huanru Henry Mao, Bodhisattwa Prasad Majumder,
Julian McAuley, and Garrison W Cottrell. 2019. Im-
proving neural story generation by targeted common
sense grounding. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 5988–5993.

Chris Martens, Joao F Ferreira, Anne-Gwenn Bosser,
and Marc Cavazza. 2014. Generative story worlds
as linear logic programs. Intelligent Narrative Tech-
nologies, 7:51.

Lara Martin, Prithviraj Ammanabrolu, Xinyu Wang,
William Hancock, Shruti Singh, Brent Harrison, and
Mark Riedl. 2018. Event representations for auto-
mated story generation with deep neural nets. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A corpus
and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839–849.

Qiang Ning, Hao Wu, Haoruo Peng, and Dan Roth.
2018. Improving temporal relation extraction with
a globally acquired statistical resource. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 841–851.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Rafael PÉrez Ý PÉrez and Mike Sharples. 2001. Mex-
ica: A computer model of a cognitive account of
creative writing. Journal of Experimental & Theoret-
ical Artificial Intelligence, 13(2):119–139.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Zhihong Shao, Minlie Huang, Jiangtao Wen, Wenfei Xu,
and Xiaoyan Zhu. 2019. Long and diverse text gen-
eration with planning-based hierarchical variational
model. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3257–3268.

Richard S Sutton, David McAllester, Satinder Singh,
and Yishay Mansour. 1999. Policy gradient methods
for reinforcement learning with function approxima-
tion. Advances in neural information processing
systems, 12.

Bowen Tan, Zichao Yang, Maruan AI-Shedivat, Eric P
Xing, and Zhiting Hu. 2021. Progressive generation
of long text with pretrained language models. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4313–4324.

Kaiwen Wei, Xian Sun, Zequn Zhang, Li Jin, Jingyuan
Zhang, Jianwei Lv, and Zhi Guo. 2022. Implicit
event argument extraction with argument-argument
relational knowledge. IEEE Transactions on Knowl-
edge and Data Engineering.

Kaiwen Wei, Xian Sun, Zequn Zhang, Jingyuan Zhang,
Guo Zhi, and Li Jin. 2021. Trigger is not sufficient:
Exploiting frame-aware knowledge for implicit event

6283

argument extraction. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 4672–4682.

Kaiwen Wei, Yiran Yang, Li Jin, Xian Sun, Zequn
Zhang, Jingyuan Zhang, Xiao Li, Linhao Zhang,
Jintao Liu, and Guo Zhi. 2023. Guide the many-
to-one assignment: Open information extraction via
iou-aware optimal transport. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
4971–4984.

Yujia Xie, Xiangfeng Wang, Ruijia Wang, and
Hongyuan Zha. 2020. A fast proximal point method
for computing exact wasserstein distance. In Uncer-
tainty in artificial intelligence, pages 433–453. Pro-
ceedings of Machine Learning Research (PMLR).

Yuqiang Xie, Yue Hu, Yunpeng Li, Guanqun Bi, Luxi
Xing, and Wei Peng. 2022. Psychology-guided con-
trollable story generation. In Proceedings of the 29th
International Conference on Computational Linguis-
tics, pages 6480–6492.

Jingjing Xu, Xuancheng Ren, Yi Zhang, Qi Zeng, Xi-
aoyan Cai, and Xu Sun. 2018. A skeleton-based
model for promoting coherence among sentences in
narrative story generation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4306–4315.

Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Raul
Puri, Pascale Fung, Anima Anandkumar, and Bryan
Catanzaro. 2020. Megatron-cntrl: Controllable story
generation with external knowledge using large-scale
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2831–2845.

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7378–7385.

Zhexin Zhang, Jiaxin Wen, Jian Guan, and Minlie
Huang. 2022. Persona-guided planning for control-
ling the protagonist’s persona in story generation. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 3346–3361.

Bo Zhou, Yubo Chen, Kang Liu, Jun Zhao, Jiexin Xu,
Xiaojian Jiang, and Qiuxia Li. 2022a. Generating
temporally-ordered event sequences via event op-
timal transport. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 1875–1884.

Yucheng Zhou, Xiubo Geng, Tao Shen, Guodong Long,
and Daxin Jiang. 2022b. Eventbert: A pre-trained

model for event correlation reasoning. In Proceed-
ings of the ACM Web Conference 2022, pages 850–
859.

Yucheng Zhou, Tao Shen, Xiubo Geng, Guodong Long,
and Daxin Jiang. 2022c. Claret: Pre-training a
correlation-aware context-to-event transformer for
event-centric generation and classification. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2559–2575.

A Appendix

A.1 Details on Datasets and Pretraining data

ROCStories (Mostafazadeh et al., 2016) It con-
tains 98,162 five-sentence short stories. The
average length of the story is about 42 words.
Following (Xu et al., 2020; Han et al., 2022)
we split the data into 88,344/4.908/4,909 for
train/validation/test sets.
WritingPrompts (Fan et al., 2018) It contains
30,335 pairs of prompts and stories. The average
length of the story is over 700 words. Thus, the
stories in WritingPrompts are much longer than
those in ROCStories. Following (Han et al., 2022),
we select stories with a maximum of 500 words,
leading to a total number of 96,488 training and
5,784 validation prompt-story pairs, respectively.
For the test set, we utilize the 1000 prompt-story
pairs provided by the compared baseline (Goldfarb-
Tarrant et al., 2020). The temporal prompts in both
datasets are provided by Han et al. (2022).
Pretraining data For pretraining data, we utilize
the event sequences provided by Lin et al. (2020).
It is originally used to pretrain with the tasks of
temporal event ordering and event infilling. Thus,
the event sequences are full of the knowledge of
event correlations and event temporal order. We
further process it as follows. For each event se-
quence, we segment all its pairwise adjacent events.
For each pairwise event, we separately restore their
original sentences and detect their event triggers
by Han et al. (2019). Then we feed their event trig-
gers and contexts into three ECONET (Han et al.,
2020) with different random seeds to get pairwise
event order. We only adopt the result when the
event orders judged by the three models are the
same. Otherwise, we label its pairwise event order
as <vague>, which means arbitrary event order.
Note that there may be multiple results of semantic
role labeling for a sentence in datasets, we choose
the results whose event trigger is the ROOT node
in the syntactic analysis as our event. By doing so,

6284

we finally obtain a total of 100k event sequences as
our golden sketches for pretraining.

A.2 Implementation Details

Unless specifically mentioned, we use the pre-
trained Bart-base * as our sketch model and story
model. The initial vocabulary of BART contains
50265 tokens. If the compared model which could
be baselines or ablation variants of our frame-
work adopts the planning-based method, we add an
event ending (<eoe>) token. If it inserts temporal
prompts into sketch, we add three additional narra-
tive order tokens (<before>, <after>, <vague>).
On ROCStories, we serve the event in the first sen-
tence of each story as the input event. On Writing-
Prompts, we serve the prompt as the input event.
For ROCStories, the hyper-parameters are learning
rate: 5e−5; batch size: 10; β: 0.7; gradient accu-
mulation: 1. To fairly compare with (Han et al.,
2022), we use three random seeds (5, 9998, 20016)
and report the average performance of all models
evaluated on ROCStories. For WritingPrompts,
the hyper-parameters are learning rate 2e−5; batch
size: 64; β:0.7, gradient accumulation: 8. For
both datasets, we fine-tune on a single Tesla V100
GPU with 32G memory. When compared with the
baseline ContentPlanning (Goldfarb-Tarrant et al.,
2020), we fine-tune Bart-large on a single A100
GPU with 80G memory. The training time for per
epoch on ROCStories and WritingPrompts is 2.5-
3.5 hours and 24 hours respectively. We train our
framework and its ablation variants for 10 epochs
and save the model with the best evaluation perplex-
ity. For pretraining, hyper-parameters are learning
rate 1e−5; batch size: 10; gradient accumulation:
10. We also pretrain 10 epochs and save the model
with the best evaluation perplexity. The weight
factor η1, η2 during pretraining are computed as
follows:

η1 = 3− 2 ∗ (global step/total step) (10)
η2 = 1 + 2 ∗ (global step/total step) (11)

where the global step represents the current number
of iterations that have been updated and the total
step represents the total number of iterations to be
updated. It means that the influence of event blank
infilling will gradually increase during pretraining,
while the influence of pairwise order prediction
will gradually decrease. It is because we hope

*https://huggingface.co/facebook/bart-base/tree/main

model can focus more on pairwise order predic-
tion in the early stage of pretraining, then utilizing
the awareness of event temporal order to generate
better events in event blank infilling.

A.3 Details on Baselines

Bart: (Lewis et al., 2020) It is a typical seq2seq
model for natural language generation. We fine-
tune it on both datasets. We directly serve the
first sentence of story on ROCStories and prompt
of story on WritingPrompts as the input, and the
entire story as labels to fine-tune the model.
Bart (planning): It adopts the planning-based
method based on Bart. We first use sketch model
to generate sketch and then use story model to gen-
erate story given on the generated sketch. The de-
tailed process is consistent with the vanilla pipeline
generation at the bottom of Figure 3 except that we
replace all temporal prompts with <eoe>.
TemporalBart: (Lin et al., 2020) It is designed
with the tasks of temporal event ordering and event
infilling. We pick it as it implicitly encodes event
correlations and event temporal order. Note that
the temporal prompt is not used during pretraining.
Concretely, we use its pre-trained weights to initial-
ize the sketch model and then adopt the workflow
of Flashback (Han et al., 2022) to complete the
subsequent fine-tuning.
Megatron: (Xu et al., 2020) It used GPT2(Radford
et al., 2019) and leveraged external knowledge
bases to generate the commonsense stories. We
picked it as it outperforms previous systems (Guan
et al., 2020) on ROCStories. Due to its operation
of delexicalization that replaces names and enti-
ties with [MALE], [FEMALE], and [NEUTRAL],
when compared with it, we strive to recover its
original entities and name.
ContentPlanning: (Goldfarb-Tarrant et al., 2020).
It adopted the planning-based method on Writing-
Prompts. As reported in Han et al. (2022), our final
training data is about two-thirds of theirs. More-
over, they do not adopt end-to-end training as they
additionally design a series of classifiers to refine
the sketch.
Flashback: (Han et al., 2022). It first consid-
ered the crucial role of narrative order in story
generation and proposed temporal prompt to gen-
erate flashback. It is the strongest baseline for
our work. The detailed process is consistent with
the bottom of Figure 3 except it served event ar-
guments as mask unit. Concretely, each masked

6285

event in input is represented as "<mask> ; <mask>
; <mask> ; <Temporal Prompt>" rather than
"<mask><Temporal Prompt>" in our framework.
We serve event as mask unit as we deem that it fa-
cilitates model to directly learn event correlations,
especially in long stories. The results of automatic
evaluation on WritingPrompts also demonstrate it.
To further verify the effectiveness of our methods,
we compare with its three variants. The only RL
simply regards the negative story loss as reward R̂,
which means that it returns an identical reward for
all events in the generated sketch. The Pretrained
used 1 million event sequences which are ten times
for our pretraining data. Moreover, it adopts au-
toregerssive manner during pretrianing stage. The
autoregressive manner represents that it unidirec-
tionally reasons all event arguments from left to
right. The PR is the integration of RL and Pre-
trained, which means that it uses the pre-trained
weights to initialize sketch model and combines
with RL in the fine-tuning stage.
ChatGPT: we pick it because of its powerful abil-
ity in NLP. We only compare with it on ROCStories.
Because the stories in WritingPrompts are much
longer and contain dialogue or short phrases with-
out events, which makes it hard for annotators to
judge the order of pairwise event. Referring to the
tutorial †, we design the instruction for ChatGPT as
shown in Figure 6. Note that we prompt ChatGPT
to generate stories no more than 48 words as the
average length of the story on ROCStories is about
42. If the length is not constrained, the stories gen-
erated by ChatGPT are much longer than 42 words,
which is adverse to fair comparison. Moreover, al-
though we hint the story should be five-sentence,
ChatGPT sometimes generates more than five sen-
tences. In this case, we only choose the first five
sentences as the final story.

A.4 Details on Evaluation Measures

Automatic Evaluation Measures: We find that
our models can achieve nearly 0 in Repeat-3 on
ROCStories and in Repeat-4 on WritingPrompts,
which is in line with the findings in Han et al.
(2022). Therefore, we report Repeat-2 on ROCSto-
ries and Repeat-3 on WritingPrompts. For Tks, we
only report on WritingPrompts. Because the stories
on ROCStories are relatively short so that the gener-
ated stories are almost the same length through full

†https://platform.openai.com/docs/guides/completion/prompt-
design

Figure 6: The instructions for ChatGPT on ROCStories.

training. For WritingPrompts, it is hard for models
to generate such long stories in training sets due to
the limitation of the model’s capacity. Therefore,
the Tks can reflect the performance of the model
to some degree.
Manual Evaluation Measures: We randomly sam-
ple 100 stories from the test sets of ROCStories.
For each story, we get 6 versions which are gen-
erated by different storytelling systems. Each set
of stories is evaluated by 5 annotators on three as-
pects: Narrative Order, Coherence, Overall. It
should be noted that all annotators have linguistic
backgrounds and the order of storytelling systems
in each set is shuffled. The specific instructions are
shown in Figure 7 and Figure 9. Specifically, we
clearly introduce the definition of the task and the
evaluation method for each metric. Moreover, we
provide an example with the detailed explanation
for the corresponding task. For each set of stories,
we require four annotators to rate coherence and
rank overall. Then, we average their values and
obtain the final results reported in the manual eval-
uations. We also ask one annotator to label the
pairwise event order to get the narrative order.

A.5 Comparison of Reward

The comparison of various rewards is shown in
Figure 8. The RL in (Han et al., 2022) is con-
structed at the story-level, which means that all

6286

Figure 7: Instruction for narrative order

Figure 8: Comparison of different rewards in reinforce-
ment learning

events in the generated sketch receive the identi-
cal reward. The reward is regarded as the negative
story loss. Therefore, it cannot measure the quality
of the generated events because there is no dif-
ference between their rewards. The Naive-RL is
constructed at the event-level, which means that
different events in the generated sketch receive the
different rewards. The reward is regarded as the
negative sentence loss. Therefore, the sketch model
can perceive the quality of generated event through
comparing the reward of different events. However,
the mappings between the generated events and
the sentences in the story are modeled by one-to-
one. But they actually should be one-to-many as
an event may influence multiple sentences in story.
Therefore, it can’t effectively measure the event
quality as the mappings are inaccurate. The OT-
RL is constructed at the event-level. It also means
that different events in the generated sketch receive
the different rewards. The reward is regarded as the
weighted sum of sentence loss. The weights are
the mappings between the generated events and the
sentences in the story, which are captured by OT.

Figure 9: Instruction for coherence and overall

Input
prompt

[s1] my friend joe has kidney problems.
<before><after><vague><vague>

PR*

[s2] he is trying to get better.
[s3] he went to the doctor for a checkup.
[s4] the doctor told joe he had kidney stones.
[s5] joe said it was not a problem.

ChatGPT

[s2] he undergoes a successful transplant.
[s3] he feels like a new person.
[s4] he starts volunteering at the hospital.
[s5] he inspires others to give thegift of life.

BPOT*

[s2] he went to the hospital to get his kidney checked out.
[s3] the doctor said joe had kidney stones.
[s4] joe was in a lot of pain.
[s5] he had surgery to remove the stones.

Input
prompt

[s1] kim had a burning sensation in her bladder.
<before><after><before><before>

PR*

[s2] she went to the bathroom to find out what it was.
[s3] she realized she had flushed the toilet.
[s4] she called the plumber.
[s5] he came and fixed the toilet for her.

ChatGPT

[s2] she rushed to the restroom, but it was occupied.
[s3] the discomfort grew unbearable.
[s4] finally, she found relief and sighed in relief.
[s5] kim made a mental note to take care of her health.

BPOT*

[s2] she went to the bathroom to see what was wrong.
[s3] she realized that she had a clogged bladder.
[s4] kim had to go to the emergency room.
[s5] the doctor gave her some medication to help her.

Input
prompt

[s1] tom was depressed.
<after><before><vague><before>

PR*

[s2] he didn’t have much money.
[s3] he decided to buy a lottery ticket.
[s4] he spent a lot of money.
[s5] tom won the jackpot.

ChatGPT

[s2] he didn’t feel like doing anything.
[s3] he lay in bed all day, scrolling through social media.
[s4] as the day went on, he felt worse.
[s5] he decided to call a friend for help.

BPOT*

[s2] he didn’t have anything to cheer him up.
[s3] he decided to go to the doctor.
[s4] the doctor gave him a prescription for antidepressants.
[s5] tom felt much better.

Table 7: More case studies on ROCStories. The brown
and the yellow represent correct and failed flashbacks.
The red represents the logical incoherence.

6287

