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Abstract

Current language models are mainly trained
on snap-shots of data gathered at a particular
time, which decreases their capability to gener-
alize over time and model language change. To
model the time variable, existing works have
explored temporal language models (e.g., Tem-
poBERT) by directly incorporating the times-
tamp into the training process. While effective
to some extent, these methods are limited by
the superficial temporal information brought by
timestamps, which fails to learn the inherent
changes of linguistic components. In this paper,
we empirically confirm that the performance of
pre-trained language models (PLMs) is closely
affiliated with syntactically changed tokens.
Based on this observation, we propose a sim-
ple yet effective method named Syntax-Guided
Temporal Language Model (SG-TLM), which
could learn the inherent language changes by
capturing an intrinsic relationship between the
time prefix and the tokens with salient syn-
tactic change. Experiments on two datasets
and three tasks demonstrate that our model
outperforms existing temporal language mod-
els in both memorization and generalization
capabilities. Extensive results further con-
firm the effectiveness of our approach across
different model frameworks, including both
encoder-only and decoder-only models (e.g.,
LLaMA). Our code is available at https://
github.com/zhaochen0110/TempoLM.

1 Introduction

While Pre-trained Language Models (PLMs) have
achieved remarkable success on most of NLP
tasks (Qiu et al., 2020), they neglect the time
variable due to their training on snap-shots of
data collected at a particular point of time (De-
vlin et al., 2019; Liu et al., 2019). However,
our language is constantly evolving and chang-
ing with new words being created (Huang et al.,
2014; Rudolph and Blei, 2018; Amba Hombaiah
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2018: Trump walks out from the Oval Office.
2015: Sydney defeats Paris by points at Oval.

2018: He feel pressure to justify himself.
2015: I use the Bible to justify my views.

Syntax role - amod
Syntax role - nmod

Syntax role - acl
Syntax role - advcl
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Figure 1: Representative examples of syntactic role
changes across time. We track the two most frequent
syntactic roles of the word “oval” and “justify” from
2015 to 2018, where the syntactic role distribution of
the word “justify” is stable across years, while the word

“oval” varies dramatically at different times.

et al., 2021) and existing words changing in mean-
ings and usage (Labov, 2011; Eisenstein et al.,
2014; Giulianelli et al., 2020; Montanelli and Periti,
2023). This “static” training paradigm prevents
PLMs from generalizing over time and modeling
language change (Lazaridou et al., 2021; Søgaard
et al., 2021; Loureiro et al., 2022).

To make the model training more “dynamic”,
existing studies have explored temporal language
models (TLMs), which model temporality by in-
corporating timestamp directly into representation
when pre-training LMs, i.e., TempoBERT (Rosin
et al., 2022), TempoT5 (Dhingra et al., 2022). Their
methods involve prepending a special time token
to each sequence in the training data. Through
stacking multiple attention layers, each token at dif-
ferent positions can capture the temporal informa-
tion brought by time. With different time prefixes,
PLMs can adaptively compute the corresponding
temporal representations. Moreover, TLMs have
better generalization1 capability over time as stan-
dard LMs are unaware of which data is “new” and
which is “old” due to the absence of timestamps
during the training process (Dhingra et al., 2022).

Though the methods mentioned above can cap-

1Temporal generalization (Lazaridou et al., 2021) refers to
a model is trained on data before time T but is tested after T .
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ture temporal information to a certain degree, they
can merely incorporate “superficial” temporal infor-
mation provided by the time prefix with the Masked
Language Model (MLM) objective. Thus, it is nat-
ural to leverage more temporal-specific informa-
tion captured by textual tokens, e.g., utilizing a
small set of lexicons with salient lexical semantic
change (Hamilton et al., 2016; Giulianelli et al.,
2020; Tahmasebia et al., 2021) in the very recent
LMLM method (Su et al., 2022). In this paper, we
launch a thorough study to explore the effects of
different methods for lexicon selection based on
statistical patterns or linguistic attributes and find
that the distributional change of syntactic roles (Ku-
tuzov et al., 2021) is the most effective strategy in
temporal-specific lexicon selection. As shown in
Figure 1, the discrete syntactic role distribution of
the word “oval” dramatically changes over time,
while the word “justify” is stable across years.

Based on the above observations, we propose a
Syntax-Guided Temporal Language Model (SG-
TLM), which consists of two masking strategies: a
Syntax-Guided Masking (SGM) and a Temporal-
Aware Masking (TAM) strategy. Experimental re-
sults demonstrate that our proposed method sig-
nificantly improves performance over other TLMs
methods on two datasets and three tasks. Exten-
sive results further confirm the efficiency of our
method than the state-of-the-art lexicon selection
solution based on semantic change, remarkable
transferability across various model frameworks,
and its positive impact on adaption to future data.

Summary of Contributions: (i) We explore the
task of efficient syntax-guided lexicon selection,
which is more challenging for static PLMs to pre-
dict on the time-stratified data. (ii) We propose
a simple yet effective Syntax-Guided Temporal
Language Model (SG-TLM). (iii) SG-TLM ex-
hibits excellent performance than other TLMs in
terms of memorization and generalization for down-
stream tasks. (iv) Our method demonstrates supe-
rior efficiency than the SOTA solution, exhibiting
high transferability across different model frame-
works and positive adaptive ability to future data.

2 Preliminary Study

2.1 Temporal Language Model

Previous works have explored temporal language
models to enhance the capability of PLMs in mod-
eling language change and generalizing over time.

One popular method is to prepend a timestamp in
different forms to a textual sequence, e.g., “<2015>
Sydney defeats Paris by points at Oval.” (Rosin
et al., 2022), “year: 2015 text: Sydney defeat Paris

by points at Oval.” (Dhingra et al., 2022), and
utilize MLM objective to capture the temporal in-
formation brought by the time prefix. Through
interacting each time prefix with the correlated tex-
tual tokens equally, temporal information can be
injected into the pre-trained representation, which
ignores the diachronic change degree of different
tokens, e.g., time-specific tokens and time-agnostic
tokens2. Thus, it is natural to enhance existing tem-
poral language models by “accurately” injecting
time information into these time-specific tokens,
i.e., the core of building better temporal language
models is to select these tokens with the time at-
tribute. Normally, it is difficult to directly compute
or estimate the diachronic change degree or the
time attribute of tokens. Existing works mainly
leverage the discrepancy of data across different
periods to approximate the diachronic change de-
gree of tokens. For instance, Su et al. (2022) mea-
sures the statistical distance of token representation
across years to select these tokens (i.e., a lexicon)
with salient lexical semantic change. Though ef-
fective, existing semantic-based lexicon selection
methods require forwarding all training data with
a large-scale language model in the data process
stage and neglect structure information within the
language. To accelerate the lexicon selection pro-
cess and leverage structure information within lan-
guages, we explore the potential of syntactic role
changes of different tokens in this paper that may
benefit from the speed superiority of various syn-
tactic parsing tools. We elaborate on more details
of syntax-based lexicon selection below.

2.2 Syntax-Guided Lexicon Selection

We construct “syntax-guided lexicons” based on
diachronic differences in syntax. According to Su
et al. (2022), we first adopt YAKE! (Campos
et al., 2018), a feature-based and unsupervised
system to extract the candidate keywords Wt =
{wt

1, w
t
2, · · · , wt

k} from the texts Dt of time t.
Then, we utilize off-the-shelf Stanza3 (Manning
et al., 2014) to automatically parse the syntax in-
formation for each sentence in the texts Dt and

2Time-specific tokens refer to these with salient (larger
than a threshold) lexical semantic change, while the left tokens
treated as time-agnostic ones in Su et al. (2022).

3https://github.com/stanfordnlp/stanza
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count the frequency of syntactic roles for each can-
didate word wi and store them in the set Rt =
(rt1, r

t
2, · · · , rti , · · · , rtN ). This set is a collection

of dictionaries, with each dictionary representing
the syntactic roles and their frequencies, which is
structured as follows: rti = {ktj : vtj}

|rti |
j=1, where ktj

represents the syntactic role for word wi in time
t, and vtj is its frequency. For example, if the can-
didate word “oval” has the syntactic roles “amod”
and “nmod” in time t with frequencies 150 and
100, respectively, the corresponding dictionary in
Rt would be rtoval = {amod : 150, nmod : 100}.

Using these syntactic dictionaries, we create fea-
ture vectors a⃗t and a⃗t′ to represent the syntactic
profiles of the candidate words in different periods.
The size of the feature vectors a⃗t and a⃗t′ may vary
across words since we create separate feature lists
for each word, including the corresponding syntac-
tic roles. To align the vectors for each time, we pad
the vectors with 0 for any missing syntactic roles.
Finally, we calculate the cosine distance between
a⃗t and a⃗t′ to measure the difference between the
syntactic profiles of the candidate words Wt. We
use a hyper-parameter k to control the degree of
syntactic change, ranking the candidate words Wt

based on their cosine values and selecting the top-k
words as the syntax-guided lexicon, which consists
of the tokens with significantly changed syntactic
roles across different periods. Our proposed lex-
icon selection method is much faster than those
used in LMLM (Su et al., 2022), in which their
computation cost will be discussed in Section 4.4.

2.3 Discussions and Observations

In Section 2.2, we propose a direct and efficient
syntax-guided approach for obtaining the lexicons
which have undergone significant syntactic change
over time. Following Su et al. (2022), we mask
the tokens in the selected lexicons and utilize per-
plexity (ppl.) as a qualitative measure to compare
the influence of different lexicon selection meth-
ods on static PLMs. To complete this, we build a
time-stratified corpus from publicly released crawl
news4 datasets, which contains 1M English news
articles for each year between 2014 and 2018. We
post-tune the BERT5 model with the data from
20146 and evaluate the four testing sets after 2015.

4https://data.statmt.org/news-crawl/
5We initialize parameters from BERT-BASE-UNCASED.
6To eliminate the impact of domain divergence (Gururan-

gan et al., 2020) on the performance of testing, we post-tune
the uniform BERT with the news data in 2014.
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Figure 2: Results of the ppl. score. S-DMLM achieves
the highest ppl. values among six selection methods.

Methods for Comparison We introduce six ap-
proaches to lexicon construction: (i) We first adopt
two methods for extracting lexicons: random selec-
tion and frequency-aware selection. (ii) Besides,
we introduce two approaches to selecting the lex-
icons with salient linguistic changes: lexical se-
mantic change, i.e., LMLM (Su et al., 2022) and
syntactic role change, i.e., our proposed syntax-
guided method (SMLM) introduced in Section 2.2.
(iii) Additionally, we consider words that are de-
pendent on the tokens with significant diachronic
change, as identified from the syntactic parsing
process7, i.e., the head node in the dependency
parsing tree (McDonald et al., 2005), and propose
two methods to include these words dependent on
extracted lexicons based on LMLM and SMLM,
named L-DMLM and S-DMLM, respectively.

The Influence of Lexicon Selection Methods
The results are shown in Figure 2. We can see that:
(i) In the absence of adding dependent words, the
ppl. of SMLM is much higher than the other three
lexicon selection methods, which indicates that it is
more challenging for static PLMs to predict the lex-
icons selected from the syntactic perspective. (ii)
After adding dependency information, both SMLM
and LMLM methods show an apparent increase
in their ppl. values, i.e., L-DMLM and S-DMLM,
suggesting the positive impact of adding dependent
words from syntactic parsing in lexicon selection.
(iii) Above all, S-DMLM (marked with ) achieves
the highest ppl. values among six methods, which
can select diachronic change lexicons that impose
the most significant challenge to static LMs.

7This allows us to capture more nuanced and subtle tempo-
ral information present in the text, which is crucial for tasks
that require temporal understanding and knowledge retention.
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Figure 3: The overall structure of our proposed Syntax-Guided Temporal Language Model (SG-TLM). We construct
the syntax-guided lexicons across time (①) and post-train with two components: Syntax-Guided Masking (SGM)
scheme (②) and Temporal-Aware Masking (TAM) scheme (③).

3 Syntax-Guided TLM

The Masked Language Model (MLM) objec-
tive (Devlin et al., 2019) is a widely-adopted self-
supervised training method that involves randomly
masking a certain percentage of the tokens in a
text sequence and training a model to predict the
masked tokens based on their context. Previous
TLMs add a timestamp token at the beginning of
the input sequence and utilize the MLM objective
to predict the random masked tokens based on the
context and the timestamp. However, these meth-
ods disregard inherent temporal-specific informa-
tion provided by lexicons with salient change to-
kens. Based on the aforementioned observation8,
we propose Syntax-Guided Temporal Language
Model (SG-TLM), which consists of two main com-
ponents: a Syntax-Guided Masking (SGM) scheme
and a Temporal-Aware Masking (TAM) method.
Our proposed model is illustrated in Figure 3.

Syntax-Guided Masking (SGM) We construct
the syntax-guided9 lexicons based on the distribu-
tional change of syntactic role across timestamps.
Formally, given the text set Dt = {dt1, dt2, · · · , dtn}
at time t, we first rank the lexicons according to
the word’s cosine values of syntactic change. Then,
we select k (k ∈ {100, 200, · · · , 500}) words with
relative high scores as the masking candidate words
Wmaskt. Considering the effectiveness of adding
dependent words, we treat the words that are de-
pendent by the candidate words Wmaskt within

8In Section 2.3, we discover that utilizing the distributional
change of syntactic roles is the most effective strategy when
selecting temporal-specific lexicons.

9In Appendix C, we will investigate the influence of pars-
ing toolkit’s performance on our SG-TLM.

the sentence as additional temporal information.
Specifically, given the masking ratio α10, we pri-
oritize masking the words in Wmaskt and their
corresponding words in the dependency relation-
ship11. We randomly mask the other tokens from
the sequence if there are no sufficient masking can-
didates to meet the required number of masking
tokens. Assuming it masks m tokens in total and
the sequence after masking at time t is dt

′
i . The

optimization objective of SGM can be written by:

LSGM = −
m∑

j=1

logP (x = wj |t, dt
′
i ; θ). (1)

Temporal-Aware Masking (TAM) Unlike pre-
vious work (Rosin et al., 2022), we predict
masked tokens with salient syntactic role change
and time tokens, given the remaining unmasked
words within the sequence. Formally, given
a sequence {di} at time t, we denote d

(0)
i for

its timestamp and prepend the time token t to
di. Now the inputs to the model are a se-
quence di = [t, d

(1)
i , d

(2)
i , d

(3)
i , · · · , d(n)i ]. Assum-

ing the set of masked token is {d(2)i }, we pre-
dict the time t by the whole input text: p(t) =

p(t|d(1)i , <MASK>, d
(3)
i , · · · , d(n)i ). As for the gran-

ularity of t, different values can be used according
to the use case. In this work, we experiment with
the granularity of a year for the WMT dataset, and
a month for the RTC dataset.

10In Appendix 4.4, we will analyze suitable values for the
masking ratio a and word counts k.

11In Section 4.2, we also explore training the model on
the tokens with salient syntactic change, without taking the
corresponding dependent words (STLM) into account, and the
results are shown in Table 1 (marked with †).
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4 Experiments

4.1 Experimental Setup

Datasets We conduct continual pre-training on
two datasets: WMT NEWS CRAWL (WMT) and
REDDIT TIME CORPUS (RTC), respectively. The
WMT12 dataset, an open-domain dataset, consists
of 4 million news articles published between 2015
and 2018: {D2015,D2016,D2017,D2018}. On the
other hand, the RTC (Röttger and Pierrehumbert,
2021) is a monthly time-stratified dataset from
March 2017 to February 2020. Unlike the WMT
dataset, it specifically focuses on the political do-
main, enabling us to explore temporal dynamics
within the specific domain. We select three months
{D2017−04,D2018−08,D2019−08} for pre-training,
each containing 1 million unlabeled comments.

Evaluation Following the pre-training period,
we evaluate the models’ memorization (Dhingra
et al., 2022) and generalization (Lazaridou et al.,
2021) abilities by measuring their performance on
downstream tasks13. To evaluate memorization,
the model is tested on the same time steps as the
pre-training data S1...T = {S1,S2, . . . ,ST }. To
evaluate generalization, the model’s performance
is measured on future times (ST ˜ ST+n), which is
invisible during the post-tuning stage.

After continual training on the WMT dataset,
two tasks are used for model evaluation: po-
litical affiliation classification (POLIAFF) (Luu
et al., 2022) and named entity recognition
(TWINER) (Rijhwani and Preoţiuc-Pietro, 2020).
The POLIAFF task involves fine-tuning the model
with 10,000 labeled sentences from 2015. Test-
ing includes {S2015,S2016,S2017,S2018} for mem-
orization and {S2019,S2020} for generalization,
with each year containing 2,000 specific sen-
tences. For the TWINER task, 2,000 labeled
tweets from 2015 are selected for fine-tuning.
We evaluate memorization abilities using datasets
{S2016,S2017,S2018} and generalization capabili-
ties using dataset {S2019}. Following pre-training
on the RTC dataset, the model is evaluated on the
political subreddit prediction (PSP) (Röttger and
Pierrehumbert, 2021) task. Specifically, the model
is fine-tuned on 20,000 labeled data samples from

12https://data.statmt.org/news-crawl/
13Previous works (Röttger and Pierrehumbert, 2021; Lazari-

dou et al., 2021) have discovered that the model’s performance
deteriorates as the gap between the training and testing time
increases. Following their setting, we evaluate the model that
was fine-tuned on the oldest time step.

April 2017, extracted from the same dataset used
for pre-training. Memorization and generalization
are tested on {S2017−04,S2018−08,S2019−08} and
{S2020−01,S2020−02}, respectively. We calculate
the F1-score as the testing results for all our experi-
ments. More details about the task and our model’s
training are shown in Appendix A.

4.2 Baselines
We establish several baselines that encapsulate dif-
ferent continual pre-training strategies. Firstly, we
consider two naive baselines that do not incorpo-
rate timestamps during the pre-training stage: (i)
BERT (w/o) (Devlin et al., 2019), which is di-
rectly fine-tuned on the downstream task without
pre-training. (ii) Uniform involves training the
model with mixed pre-trained data. Additionally,
we adopt three up-to-date TLMs, which utilize
timestamps during pre-training: (iii) TAda (Röttger
and Pierrehumbert, 2021), which involves contin-
ual pre-training on specific time buckets to obtain
separate models specialized for different periods.
(iv) Temporal (Dhingra et al., 2022) integrates
time t as a prefix to the input during pre-training,
with temporal-specific lexicons randomly gener-
ated. (v) LMLM (Su et al., 2022) is the SOTA
of temporal adaptation, which strengthens PLMs’
generalization with salient lexical semantic change.
We utilize their method of lexicon construction.
STLM and SG-TLM are our methods, with the
distinction of whether to add dependent words dur-
ing the lexicons construction. Appendix B offers
additional training details on the compared TLMs.

4.3 Main Results
Table 1 presents the results on the WMT dataset.
TLMs demonstrate superior performance compared
to models that do not consider timestamps. How-
ever, previous TLMs such as TAda and Temporal
show only marginal improvements over the Uni-
form model, indicating limited learned temporality
information from the timestamps. Conversely, in-
corporating linguistic information into TLM train-
ing significantly improves both memorization and
generalization. Among the evaluated baselines,
SG-TLM achieves the highest average F1-scores
on both datasets, i.e., 66.77 and 66.67, highlight-
ing the effectiveness of leveraging syntax and de-
pendency information within languages. Table 2
presents the results for the RTC dataset. Simi-
lar to the previous findings, SG-TLM consistently
achieves the best performance.
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Model POLIAFF TWINER

2015 2016 2017 2018 2019 2020 Avg. 2016 2017 2018 2019 Avg.

BERT 91.301.1 63.800.6 52.220.9 39.200.6 45.000.6 38.931.0 55.08 75.820.4 56.980.2 56.160.5 56.990.4 61.48
+ Uniform 91.330.8 74.870.5 66.010.6 54.670.7 55.750.5 46.570.9 64.87 77.040.6 59.050.4 58.520.5 59.070.3 63.42

+ TAda 90.790.9 74.400.7 65.330.4 55.230.6 53.190.4 44.950.6 63.98 75.500.4 60.690.3 60.720.4 60.120.1 64.25
+ Temporal 90.840.6 73.460.5 65.030.8 55.390.7 56.880.2 46.410.5 64.67 74.020.5 57.540.7 56.840.3 57.540.4 61.49
+ LMLM 92.810.7 75.820.5 64.830.3 55.460.4 57.120.5 48.200.6 65.71 79.340.3 60.750.4 60.010.6 60.760.3 65.22

+ STLM † 93.280.5 75.560.3 65.310.4 55.710.2 57.760.4 49.130.2 66.13 81.670.3 60.780.2 60.090.4 60.910.3 65.86
+ SG-TLM ‡ 93.690.3 76.690.2 66.580.1 55.940.4 57.410.1 50.320.2 66.77 81.780.2 61.850.3 61.180.1 61.870.2 66.67

Table 1: Results of the WMT dataset: memorization and generalization performance on the POLIAFF and
TWINER tasks. The timestamp represented in italics are not visible during the post-tuning stage, i.e., 2019 and
2020 in POLIAFF dataset and 2019 in TWINER dataset. We utilize the above testing sets to evaluate the models’
generalization and the left to test the memorization. STLM (marked with †) and SG-TLM (marked with ‡) are our
methods, the difference is whether to include dependent words during the masking scheme. Our proposed SG-TLM
achieves the highest average F1-score on two tasks. Each number is the average of 5 runs with different seeds.

Model RTC

17-04 18-04 19-08 20-01 20-02

BERT 49.610.8 41.741.1 38.230.5 38.841.2 39.970.3
+ Uniform 51.970.7 42.571.3 39.980.4 40.750.9 40.531.0

+ TAda 50.620.6 42.210.9 38.431.4 39.470.2 40.341.3
+ Temporal 51.691.0 43.331.5 39.240.3 40.120.7 39.500.4
+ LMLM 51.910.9 43.261.1 39.411.2 40.940.6 40.790.5

+ STLM † 52.480.6 43.670.2 39.600.8 41.211.1 40.520.9
+ SG-TLM ‡ 52.890.5 43.510.4 41.110.7 41.250.5 40.870.6

Table 2: Results of the RTC dataset: memorization and
generalization performance on the PSP task (average
of 5 runs). We utilize the set in 20-01 and 20-02 to test
generalization and the rest to test memorization. Our
proposed SG-TLM achieves the highest F1-score.

However, the performance differences among
the methods in the RTC dataset are relatively mi-
nor compared to the WMT dataset, which can be
attributed to the shorter time intervals and the rel-
atively stable and slight dynamic temporality of
the RTC dataset. Moreover, SG-TLM also shows
a notable drop in future years due to the inherent
uncertainty of future language changes (Lazaridou
et al., 2021) in both datasets. In Section 4.5, we
will investigate the approaches to refreshing the
models as new data arrives and compare the tem-
poral adaptation (Röttger and Pierrehumbert, 2021;
Luu et al., 2022) performance of different methods.

4.4 Detailed Analysis
Efficiency Comparison Table 3 shows the com-
parison of lexicon construction efficiency between
LMLM and SG-TLM. LMLM provides a fairly
complex and time-consuming method to select
semantic-based lexicons, i.e., 200 minutes for rep-
resenting and 360 minutes for clustering. However,
SG-TLM benefits from the speed superiority of syn-

LMLM (Su et al., 2022)

The speed of representation 200min (1.0×)
The speed of measuring 360min (1.0×)
F1-score on average 65.22 (–)

SG-TLM (Ours)

The speed of parsing 36min (5.5×)
The speed of measuring 2min (180×)
F1-score on average 66.67 (+1.45)

Table 3: Efficiency comparison between LMLM and
SG-TLM. SG-TLM is a faster and more effective model.

tactic parsing tools rather than large-scale PLMs,
resulting in a speedup ratio of 5.5× compared to
representation and 180× compared to measuring.
Furthermore, SG-TLM outperforms LMLM on the
TWINER task by achieving a 1.45 higher F1-score,
demonstrating its superior effectiveness.

Ablation Study To investigate the impacts of dif-
ferent components within SG-TLM, we remove
individual components from the complete model
and observe the resulting performance. The results
are shown in Table 4. Notably, excluding the SGM
objective leads to the most significant decline in
performance, highlighting its pivotal role within
the SG-TLM framework. Furthermore, each com-
ponent contributes positively to the overall perfor-
mance, indicating the utility and significant contri-
butions of all SG-TLM components in improving
the model’s effectiveness.

Scale Effects in Performance We also explore
whether our proposed SG-TLM would keep ef-
fective over random masking when increasing the
amount of data. Using the WMT dataset, we suc-
cessively expand the training data for both models,

6320



Model POLIAFF TWINER

2015 2016 2017 2018 2019 2020 Avg. 2016 2017 2018 2019 Avg.

Our model 93.69 76.69 66.58 55.94 57.41 50.32 66.77 81.78 61.85 61.18 61.87 66.67
θ - SMLM 92.66 75.08 65.35 53.14 55.61 48.10 64.98 82.71 59.25 60.52 59.56 65.51
θ - TMLM 92.86 76.75 66.02 55.48 57.12 49.20 66.20 78.62 60.37 60.42 60.37 64.95

Table 4: Ablation study: Results on the POLIAFF and TWINER task (average of 5 runs). We can discover that
removing SGM from the SG-TLM has the most significant impact.

Methods TWINER

2016 2017 2018 2019 Avg.

Uniform4M 77.04 59.05 58.52 59.07 63.42
SG-TLM4M 81.78 61.85 61.18 61.87 66.67

Uniform8M 77.18 56.78 55.21 56.8 61.49
SG-TLM8M 83.31 61.71 60.96 61.72 66.93

Uniform12M 79.12 59.12 58.03 59.32 63.89
SG-TLM12M 83.74 61.63 60.11 61.94 66.86

Uniform16M 81.31 59.94 60.38 58.96 65.14
SG-TLM16M 84.66 62.57 61.57 61.58 67.60

Uniform20M 80.47 60.01 59.40 60.41 65.07
SG-TLM20M 85.27 62.17 61.64 62.18 67.82

Table 5: Results of scale effects in performance (average
of 5 runs). In method names, "4M", "8M", etc., denote
the use of 4 million, 8 million, etc., datasets for pre-
training. SG-TLM and Uniform represent our proposed
method and the random masking strategy, respectively.

multiplying the volume by factors of 2, 3, 4, and 5.
The results of this scaling experiment are summa-
rized in Table 5. It is clear that the SG-TLM consis-
tently outperforms the uniform masking approach
across all years and data scales, demonstrating the
robustness of our approach with increasing data.

Hyper-Parameter Analysis Considering the cor-
relation between the masking ratio and the model’s
performance, we conduct experiments to explore
the most suitable masking ratio a and word counts
k for the SG-TLM objective. The results are shown
in Figure 5. Our SG-TLM achieves the best perfor-
mance when the masking ratio a is set to 30% and
the number of candidate words k is 200. To better
understand the insights of our presented SG-TLM,
we conduct token-level analysis on the selected
lexicons in Appendix D.

4.5 Temporal Adaptation to New Data

Unlike domain adaptation, temporal adapta-
tion (Röttger and Pierrehumbert, 2021) updates
models with current data to mitigate temporal mis-

Figure 4: Results of different TLMs’ adaptability per-
formance on the target year (average of 5 runs). The
horizontal axis indicates the different TLMs, and the
vertical axis shows the F1-score of the TWINER task.
Our proposed SG-TLM outperforms other models with
the highest F1-score among the nine settings.

alignment14. In this section, we consider the sce-
nario where we already have a trained model on the
2015-18 slices and new data from the 2019 slice.
We attempt to update the model by continuing pre-
training TLMs on the unlabelled target year data.
To compare the adaptability of different TLMs on
target year, we evaluate their performance on the
TWINER dataset. Precisely, we fine-tune the adap-
tation models on the labeled source year data15 and
then test models on 2019 data. Experiments are
conducted adapting three TLMs with three lexi-
con construction methods, totaling nine settings.
Results are shown in Figure 4.

4.6 Transferability Across PLM Frameworks

To verify the transferability of our methods across
different model frameworks, we implement our
method in both encoder-only and decoder-only
models and utilize random lexicon construction
as the baseline for comparison.

14In Appedix E, we will provide further analysis on SG-
TLM’s adaptability to temporal changes from the perspective
of token prediction.

15In previous experiments, we use 2015 as the source year.
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Figure 5: Results of the different masking strategies of SG-TLM (average of 5 runs). The horizontal axis indicates
the candidate word counts k and the vertical axis represents the F1-score of the TWINER task.

Model RTC

17-04 18-04 19-08 20-01 20-02

BERT 51.97 42.57 39.98 40.75 40.53
+ SG-TLM 52.89 43.51 41.11 41.25 40.87

RoBERTa 52.09 42.96 39.22 40.81 40.64
+ SG-TLM 54.01 44.81 40.11 41.44 41.84

Table 6: Results of different PLMs on the RTC task
(average of 5 runs). Our proposed SG-TLM achieves
the highest F1-score on both BERT and RoBERTa.

Effectiveness on Encoder-only PLMs We im-
plement our method on two popular encoder-only
PLMs, i.e., BERT and RoBERTa. As shown in Ta-
ble 6, we observe a significant improvement in each
PLM using our SG-TLM. On average, the BERT
model improves by 0.77 points, and the RoBERTa
model improves by 1.31 points. These findings
illustrate the versatility of our proposed SG-TLM,
as it enhances the performance of various PLMs by
incorporating syntax information.

Effectiveness on Decoder-only PLM We also
conduct experiments on large-scale decoder-only
language models, i.e., LLaMA-7B (Touvron et al.,
2023). In these experiments, we extract the word
selection component from our method and com-
pare two data selection methods: one based on our
Syntax-Guided (SyG.) approach and the other on
random selection. The perplexity of LLaMA-7b
is evaluated on the 2,000 sentences selected using
these two methods. As shown in Table 7, SG-TLM
yields higher perplexity than random selection in
the RTC datasets16. This highlights the complex-
ity and diversity of our selected data, indicating
the effectiveness of incorporating syntax into data
selection and the potential to enhance temporal
capture in large language models.

16Since the training data for LLaMA is cut off at 2022,
we crawl the latest Reddit data from https://files.
pushshift.io to complete the experiment.

Method RTC

21-02 21-08 22-02 22-08 23-02

Random 14.81 14.98 15.02 15.29 15.46
SyG. 15.82 16.02 16.37 16.55 16.90

Table 7: Comparative perplexity results of LLaMA-7B
on the RTC dataset using Syntactic-Guided (SyG.) and
random selection methods.

5 Related work

Temporal Language Model Several works have
explored the temporal effects in language mod-
els (Huang and Paul, 2018, 2019; Rijhwani and
Preoţiuc-Pietro, 2020; Lazaridou et al., 2021; Sø-
gaard et al., 2021; Agarwal and Nenkova, 2022;
Loureiro et al., 2022; Cao and Wang, 2022; Cheang
et al., 2023). Recently, existing works have investi-
gated the temporal language model to model tempo-
rality information and generalize over time. Dhin-
gra et al. (2022) and Rosin et al. (2022) directly
prefix the time token to text sequences and fine-tune
on time-stratified data. Hofmann et al. (2021) and
Rosin and Radinsky (2022) modify the structure of
the language model to create time-specific contex-
tualized word representations. Su et al. (2022) re-
cently proposed a semantic-based, lexical masking
strategy to enhance PLMs’ temporal generalization.
We extend this work with a detailed study using
syntactic role changes to harness temporal-specific
information efficiently.

Diachronic Language Change Diachronic lan-
guage change can be mainly divided into semantic
change (Kurtyigit et al., 2021; Montanelli and Per-
iti, 2023), morphological change (Hare and Elman,
1995; Ji et al., 2019; Giulianelli et al., 2022), and
syntactic change (Kroch, 2001; Seretan, 2011; By-
bee, 2017; Merrill et al., 2019). Previous work
focused on discovering the words that have un-
dergone diachronic change under the supervised
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settings (Kim et al., 2014; Basile et al.; Basile
and McGillivray, 2018; Tsakalidis et al., 2019;
Kurtyigit et al., 2021). Recently, several works
have demonstrated that contextualized word rep-
resentations have dynamic representation capabili-
ties (Pilehvar and Camacho-Collados, 2019; Chro-
nis and Erk, 2020; Garí Soler and Apidianaki, 2021;
Laicher et al., 2021; Qiu and Xu, 2022), which
are adopted with unsupervised methods to repre-
sent, cluster, and differentiate words across differ-
ent time periods (Giulianelli et al., 2020; Montariol
et al., 2021). Our method utilizes a syntax-based
method to detect the salient change words within
the text sequence, making the process more inter-
pretable (Merrill et al., 2019; Ryzhova et al.; Kutu-
zov et al., 2021). To our best knowledge, this is the
first work that incorporates syntactic knowledge
into the training of temporal language models.

6 Conclusion

In this paper, we enhance the temporal language
model from the syntactic perspective and discover
that predicting the syntax-guided lexicons is more
challenging for static PLMs compared to other
methods. Building upon these findings, we pro-
pose a syntax-guided temporal language model
(SG-TLM) that incorporates time information into
tokens with significant syntactic changes. Our SG-
TLM achieves the SOTA performance, reduces
computational costs during lexicon construction,
and demonstrates excellent transferability to new
data and frameworks compared to other baselines.

7 Limitation

There are still some limitations in our work which
are listed below:

• While we introduce a data selection strategy
that incorporates syntactic changes to identify
time-specific sentences, we only conduct prelimi-
nary validation of our method’s transferability on
Large Language Models (LLMs), without involv-
ing training and inference stages. Recent studies
highlight that LLMs continue to struggle with ef-
fective generalization when it comes to emerging
data (Wang et al., 2023). As a potential solution,
our future work aims to integrate our method
with in-context learning (Dong et al., 2022) to
enhance the temporal generalization capabilities
of LLMs.

• Recent studies (Kutuzov et al., 2021; Giulianelli
et al., 2022) show the effectiveness of utilizing

syntactic features in detecting lexical semantic
changes. This prompts us to investigate the com-
patibility of our method with the semantic lexi-
con solution. Given the lexicon constructed by se-
mantic change Wl and syntactic change Ws, we
conduct three straightforward methods to com-
bine the lexicons between Wl and Ws: Wl ∩Ws,
Wl∪Ws, Wl \Ws. Consistent with the previous
experiment, the masking ratio a is 30%, and k
is 200. The results are shown in Table 8. Con-
trary to our expectations, the combined model’s
performance is inferior as compared to the orig-
inal model, suggesting that this method fails to
merge information effectively from multiple di-
mensions. In future work, we will explore more
suitable methods to integrate semantic and syn-
tactic information.

Model RTC

17-04 18-04 19-08 20-01 20-02

Wl 51.91 43.26 39.41 40.94 40.79
Ws 52.89 43.51 41.11 41.25 40.87

Wl ∩Ws 50.20 42.25 38.60 39.54 39.65
Wl ∪Ws 50.34 42.32 38.28 40.12 39.99
Wl \Ws 50.24 42.33 38.66 40.13 39.86

Table 8: The compatibility of our method with semantic
lexicon solution. Wl represents lexical semantic solu-
tion, while Ws represents our syntactic role solution.
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A Implementation of Experimental Setup

A.1 Task Description

The task of political affiliation classification
(POLIAFF) revolves around determining the politi-
cal alignment of individuals based on a given text.
The model is fine-tuned to categorize the content
into Republican or Democrat, providing insights
into the individual’s political leaning. In contrast,
named entity recognition (TWINER) focuses on
the identification and classification of named en-
tities within a text. The model is tasked with rec-
ognizing and categorizing text into three distinct
entity types: people (PER), locations (LOC), and
organizations (ORG). Furthermore, political sub-
reddit prediction (PSP), derived from the Reddit
Time Corpus (RTC) dataset, is a five-way clas-
sification task. The goal is to categorize a pro-
vided text into one of five political subreddits:
r/donald, r/libertarian, r/conservative, r/politics,
and r/chapotraphouse.

A.2 Model Training & Hyper-Parameters

Architecture For all our experiments, we utilize
the Hugging-Face transformer package17 to imple-
ment language models. Our architecture is the
BERT-base uncased model, based on a large cor-
pus of English data with MLM objective for pre-
training. The model includes 12 transformer layers
and 12 attention heads; the hidden layer size is 768,
and the parameter number is 110 million in total.
For the downstream classification task, we add a
linear layer after the last BERT layer. The output
is generated using softmax. The maximum input
sequence length that the model can handle is 128.

Training details During the pre-training stage,
we set the candidate word counts k to 200 and
the masking ratio a to 30%. We analyze different
masking strategies in Appendix 4.4. In both the
pre-training and fine-tuning stages, we employ the
cross-entropy loss as the objective function and
utilize the AdamW (Loshchilov and Hutter, 2017)
optimizer. The learning rate is set to 5e-5, and the
weight decay is set to 0.01. To prevent overfitting,
we apply a dropout probability of 10% for regular-
ization. The model is pre-trained for five epochs
and fine-tuned until convergence. We use a batch
size of 128 and conduct the experiments on eight
NVIDIA A5000 GPUs.

17https://huggingface.co

Evaluation Metric We utilize the F1 score18 as
the evaluation metric in all the experiments.

B Implementation of the Baselines

This section further provides experimental details
of several TLMs used as baselines in Section 4.2:
TAda, Temporal, and LMLM. Following the strat-
egy by (Su et al., 2022), LMLM utilizes 500 can-
didate words and a mask ratio of 0.3. For the re-
maining baselines, the mask ratio aligns with the
standard BERT (Devlin et al., 2019) configuration
at 0.15.

TAda The TAda (Röttger and Pierrehumbert,
2021) approach underlines the importance of re-
flecting temporal dynamics by training distinct
models, each tailored to specific time intervals. To
this end, we initiate an ensemble of models, each
trained on unlabeled data corresponding to a spe-
cific year. Each model, or "yearly expert," thus
becomes specialized to the linguistic nuances of its
respective time bucket. During testing, a test input
is provided to the model that matches its timestamp.
If the timestamp of the test data falls outside the
range of the training data, we choose the model
trained on the closest year to make predictions.
This setup enables the model to adapt to temporal
changes by dedicating separate models to different
time periods.

Temporal On the other hand, the Tempo-
ral (Dhingra et al., 2022) baseline is trained on
the entire dataset as a single model. The unique
feature of this setup is the way it incorporates time
into the input. Specifically, the model takes in a
concatenation of the time t and the input x, that is,
P (y|x, t; θ) = P (y|t⊕ x; θ). This is achieved by
prefixing the input with a simple string representa-
tion of time, such as "year: 2014". Thus, the model
is trained to generate outputs based on both the
input and its associated time, allowing it to develop
a sense of temporal sensitivity.

LMLM In the lexical-based Masked Language
Model (LMLM) (Su et al., 2022) setup, the model
is trained to account for semantic shifts in words
over time. This is achieved by constructing a lexi-
con of words that have exhibited significant seman-
tic changes over time and then using this lexicon in
a masked language model setup during pre-training.

18https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.f1_score.html
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Methods TWINER

2016 2017 2018 2019 Avg.

Stanza 81.78 61.85 61.18 68.27 68.27
UDPipe 78.50 60.59 59.41 60.60 64.78

Table 9: Results of different syntactic methods under
the time-stratified settings (average of 5 runs).

The model is thus trained to predict the original
word based on the context and the time token, al-
lowing it to capture temporal dynamics in word
semantics.

For all these baselines, we perform fine-tuning
on the same downstream task data, ensuring fair
comparisons among the models. Moreover, we use
the same BERT-BASE-UNCASED pre-trained model
as the foundational language model for all base-
lines, setting a level playing field.

As a variant of LMLM and SG-TLM, we also
consider an additional baseline approach where
timestamps are treated as a prefix at the beginning
of the sentence and are randomly replaced with
the <MASK> token for prediction. Meanwhile, the
remaining tokens within the sentence are randomly
masked. This baseline is equivalent to employing
Temporal-Aware Masking (TAM) with random to-
ken masking in sentences, corresponding to the ex-
periment with θ - SMLM presented in Section 4.4.
Notably, despite these different masking conditions,
our proposed method SG-TLM consistently outper-
forms the other models.

C Parsing Toolkit Analysis

Since there is a strong correlation between the pars-
ing toolkit’s capability and the performance of our
SG-TLM, we compare the selected Stanza with
another commonly adopted parsing tool, i.e., UD-
Pipe19. As shown in Table 9, the results of utilizing
Stanza as the parsing method outperforms UDPipe
in all the timestamps, i.e., the average accuracy of
Stanza is 68.27, while UDPipe is 64.78, which in-
dicates that utilizing a more accurate parsing tool
can significantly improve the model’s performance.
Though the UDPipe does not depend on GPU re-
sources, this toolkit is unsuitable for parsing syn-
tactic roles in the selection process of lexicons.

19UDPipe (Straka and Straková, 2017) utilizes fast
transition-based neural dependency parser that follows the
same annotation schemes as Stanza.

Cos. (↑) 2015 2016 2017 2018 SyC.

0.00∼0.01 328 342 251 298 micro
0.01∼0.02 115 89 139 123 medium
0.02∼0.03 35 28 44 35 great
0.03∼1 22 41 66 44 great

Table 10: Distribution of the syntactic changed words,
where SyC. represents for the Syntactic Change.

Year ADJ ADV INTJ NOUN NUM PROPN VERB
2015 1,073 19 0 18,690 0 74,074 3,654
2016 1,715 0 0 26,718 12 68,690 6,887
2017 817 11 0 41,173 0 70,919 4,651
2018 673 493 1 25,688 0 56,576 4,171

Table 11: The distribution of the selected lexicons by
Part of Speech (POS) across various years in the WMT
pre-trained dataset.

D Token-level Analysis

From Figure 5, it is surprising that there is no pos-
itive correlation between the word counts and the
model’s performance. To understand the reason
behind this phenomenon, we select the top 500
words from the candidates Wt

mask according to
the cosine value. The distribution of those words
is shown in Table 10, which indicates that only
about 20% words have relatively significant syn-
tactic change (cosine value ≥ 0.01). This suggests
that performance mainly comes from correctly pre-
dicting a small number of keywords, such as topic
words and newly emerging words, which have rel-
atively salient syntactic change. Furthermore, we
also show the distribution of these lexicons by Part
of Speech (POS) across various years in Table 11.
From the data, it’s evident that the distribution of
POS remains relatively consistent year-over-year.
Nouns dominate the distribution, implying their
higher propensity for syntactic variation.

E Superiority in Adapting Temporal
Change

This section aims to demonstrate the superior per-
formance of the SG-TLM model in adapting to
temporal changes compared to other Temporal Lan-
guage Models (TLMs). Specifically, we compare
the SG-TLM model against established baselines,
i.e., Uniform, Temporal, and LMLM, as previously
introduced in Section 4.2. All models are further
pre-trained on BERT using 4 million data instances
spanning from 2015 to 2018 in the WMT dataset
and evaluated to predict masked tokens at differ-
ent timestamps using 2,000 data samples from the
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Figure 6: Results of adapting to the temporal shift. The
SG-TLM consistently achieves the lowest ppl. scores
compared to Uniform, Temporal, and LMLM models
from 2015 to 2020.

same source spanning six years (2015-2020). This
experimental setting has also been used to verify
the ability to adapt to temporal changes in Röttger
and Pierrehumbert (2021). The results of this com-
parison are presented in Figure 6. We can ob-
serve that the SG-TLM consistently outperforms
the other models across all examined years, achiev-
ing the lowest perplexity scores, which illustrates
the superior adaptability of the SG-TLM model
to temporal shifts. Notably, the SG-TLM model
also exhibits superior generalization capability with
respect to the 2019 and 2020 data that were not
present during the training period, outperforming
other baseline models, which further demonstrates
its robustness and reliability in handling temporal
shifts.
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