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Abstract

Code pre-trained models (CodePTMs) have re-
cently become the de-facto paradigm for var-
ious tasks in the domain of code intelligence.
To achieve excellent performance, the widely
used strategy is to fine-tune all the parame-
ters of CodePTMs. However, as the model
size increases along with the number of down-
stream tasks, this strategy becomes excessively
expensive. There are also some prior works
that utilize Parameter-Efficient Learning (PEL)
methods for model tuning in natural language
processing to mitigate similar problems, but
applying them directly to CodePTMs fails to
capture the inherent structural characteristics
of codes. To address the problem, in this paper,
we propose Pass-Tuning for structure-aware
Parameter-Efficient code representation learn-
ing. Specifically, a plug-and-play graph neu-
ral network module that can learn from Ab-
stract Syntax Tree (AST) is employed as a
tunable prefix. On the one hand, Pass-Tuning
can further exploit the structural information
of source code. On the other hand, it could
serve as a replacement for full fine-tuning. We
evaluate our method on multiple tasks across
eight programming languages, including code
understanding and generation. These results
demonstrate the effectiveness, robustness, and
universality of our method. Our codes and re-
sources are available at https://github.
com/nchen909/Pass-Tuning.

1 Introduction

Pre-trained language models (Devlin et al., 2019;
Liu et al., 2019) have significantly boosted a se-
ries of natural language processing (NLP) tasks.
These models mainly adopt deep transformer ar-
chitecture (Vaswani et al., 2017), which are pre-
trained on a large-scale unsupervised text corpus,
and then fine-tuned on downstream tasks. When
regarding a code snippet as a sequence of tokens,
it innately lends itself to these transformer-based
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models (Yang et al., 2019; Lewis et al., 2020; Raffel
et al., 2020) from NLP.
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(b) Comparison on code summarization (evaluated
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Figure 1: Pass-Tuning performs far beyond popular
Parameter-Efficient learning methods over both code
understanding and generation tasks. It also achieves
comparative performance to full fine-tuning with much
fewer tunable parameters. The size of the circle is pro-
portional to the number of tunable parameters. All the
methods are evaluated on the PLBART backbone model.

Under the assumption of “Software Natural-
ness” (Hindle et al., 2016; Buratti et al., 2020) and
inspired by the enormous success of pre-training,
code pre-trained models (CodePTMs) have also
been proposed and widely applied in the realm of
code intelligence (Feng et al., 2020; Guo et al.,
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2021; Wang et al., 2021; Ahmad et al., 2021; Guo
et al., 2022). Similarly, a straightforward approach
to adapting these large-scale CodePTMs to the
downstream tasks (e.g., code summarization, code
clone detection) is fine-tuning the whole model for
each task. However, the number of downstream
tasks is ever-increasing, and it is often necessary to
fine-tune the whole model for a specific program-
ming language in real-world applications (Ayupov
and Chirkova, 2022; Sun et al., 2023). The num-
ber of combinations of tasks and languages leads
to standard full fine-tuning solutions being pro-
hibitively expensive and cumbersome.

To reduce the cost of model tuning, researchers
employ strategies like Prefix-Tuning (Li and Liang,
2021) to condition language models with frozen
parameters to perform specific downstream tasks.
Notwithstanding, we experimentally observe that
current PEL methods (Ding et al., 2023) struggle
to reach the same stunning effect in code represen-
tation learning as in the NLP domain1. Motivated
to address the cost-performance dilemma for tun-
ing CodePTMs, we believe that a new Parameter-
Efficient Learning (PEL) approach with versatility
should be built beyond the NLP domain.

In our work, we present a Parameter-Efficient
tuning approach with Graph attention Network cap-
turing code structural information from abstract
syntax tree, namely Pass-Tuning, a versatile PEL
method with minor tuning cost and competitive
performance, to serve as a lightweight alternative
to fine-tuning. Specifically, we first construct tun-
able Graph Attention Network (GAT) modules as
tunable prefixes to capture the code structure infor-
mation contained in Abstract Syntax Trees (ASTs).
Then, we design a novel code retrieval strategy
based on attention distribution and AST token dis-
tances for better initialization. In order to adapt
our approach to more scenarios, we implement
a PEL framework for CodePTMs with different
architectures. Then, we evaluate Pass-Tuning on
multiple tasks over eight different programming
languages. Experiments show that our method can
provide competitive (and in some tasks even bet-
ter) performance while only modifying less than
1% of the parameters than full fine-tuning, sub-
stantially reducing the computational overhead for
per-task/per-language when tuning CodePTM on
downstream tasks. Our main contributions can be

1We take these PEL methods from NLP as strong baselines,
the results are shown in section 4.4 and section 4.5.

summarized as follows:
• We introduce Pass-Tuning framework for ap-

plying PEL on adapting CodePTMs to down-
stream tasks. It significantly reduces the tun-
able parameters in conjunction with the univer-
sality over models of different architectures.

• In Pass-Tuning, a plug-and-play graph atten-
tional module is adopted to capture the struc-
tural information of source codes. We also
design an ingenious code-retrieving method
to improve our framework’s performance by
better parameter initialization based on token
importance evaluation.

• As is depicted in Figure 1, our experiments
on multiple tasks across different program-
ming languages confirm the effectiveness of
Pass-Tuning. Moreover, we can even achieve
better results on some tasks than tuning all the
parameters.

2 Preliminaries

This section introduces basic concepts and nota-
tions used in this paper.

2.1 Code Basics
Each program can be represented in two modals:
the source code and the structure of code: Abstract
Syntax Tree (AST), as is shown in Figure 3.
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Figure 3: A Python code snippet and its parsed U-AST,
with connected Dataflow edges and Leaf edges. (Best
viewed in color.)

We use Tree-sitter2 to parse source codes. AST
contains rich structural information, while it has a
tree structure that may cause long-range problems
due to the long distance between leaf nodes. In-
spired by Wang et al. (2020) and Zhu et al. (2022),
We add data flow edges to enhance the connectivity
of the AST and name it as U-AST (upgraded AST).

2github.com/tree-sitter
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Figure 2: An illustration of Pass-Tuning based on a CodePTM, e.g., CodeBERT (Feng et al., 2020), CodeT5 (Wang
et al., 2021) with Transformer architecture. Graph Attentional Layers (GALs) designed to capture source codes’
structural information are prepended as prefixes to each layer of the backbone model. In the process of model tuning,
the parameters of the backbone model are frozen, and only these prefixes are modified. Besides, the Code Retriever
will help the GAT to get better initialization through token importance evaluation, as is stated in section 3.3. (Best
viewed in color.)

2.2 Code-related Tasks

Language Models’ ability to understand and gen-
erate programs can boost developers’ productiv-
ity. In order to better evaluate models’ capacity,
the following tasks are proposed to foster machine
learning research for code.

Code Understanding Code understanding tasks
assess models’ ability to understand codes and their
relationships. The most typical one is clone de-
tection (Svajlenko et al., 2014; Mou et al., 2016),
which measures the semantic similarity between
code snippets. Another representative code under-
standing task is defect detection (Zhou et al., 2019).
It identifies whether source codes contain defects
that may be vulnerable to attacks.

Code Generation Code generation tasks eval-
uate the capacity to tackle sequence-to-sequence
generation problems of models. These tasks could
be further divided into code-code and code-text.
For code-code tasks, code translation involves
translating a code snippet from one programming
language to another (Nguyen et al., 2015). Code
completion’s target is to predict the following to-
kens based on a code context (Raychev et al., 2016;
Allamanis and Sutton, 2013). Code refinement (Tu-
fano et al., 2019) is designed for automatic bug-
fixing for source code. And for code-text tasks,
code summarization (Iyer et al., 2016; Alon et al.,
2019) aims to generate comments (natural lan-
guage) for function-level code snippets.

2.3 Prefix-Tuning
Prefix-Tuning (Li and Liang, 2021) is a lightweight
alternative to Fine-Tuning. Instead of modifying
all parameters of a language model (LM), Prefix-
Tuning focuses on optimizing a continuous task-
specific vector (prefix) while keeping the LM’s
parameters frozen. This technique reduces the cost
of adapting LM to downstream tasks and eliminates
the necessity to store a full copy for each task.

2.4 Graph Attention Network (GAT)
Recently, graph neural network (Kipf and Welling,
2017) has emerged as a promising method for pro-
cessing graph-structured data. GAT (Graph At-
tention Network) (Veličković et al., 2018) is a
convolution-style graph neural network that lever-
ages the attention mechanism for homogeneous
graphs, which includes only one type of node or
edge. It first computes the attention coefficient be-
tween different nodes and then produces the new
feature of each node with neighborhoods’ features
through aggregation as output.

3 Pass-Tuning

In this section, we formally introduce our method:
Pass-Tuning at length. An overview of Pass-Tuning
is presented in Figure 2.

3.1 Overview
Compared with natural language, the most crucial
feature of code is that it has its own structure. Di-
rectly migrating the PEL methods in NLP to the
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code domain might seriously impair the perfor-
mance of several downstream tasks. Thus, we aim
to pursue the cost-effectiveness of tuning while
considering the code characteristics in this work.
Inspired by Li and Liang (2021), using tunable
prefixes to learn knowledge instead of modifying
all parameters would be promising to develop a
reliable PEL tuning method for CodePTMs. In
practice, we design a Structure Knowledge Injector
module (injector module) with graph attentional
architecture to play the role of “tunable prefix”.
It will learn from the code structures instead of
treating code as plain text, and then inject structure
knowledge into the Transformer-based models.

As is presented in Figure 2, each (self-)attention
layer of a Transformer block in the CodePTM is
concatenated with a Structure Knowledge Injector.
For the whole training procedure, only these mod-
ules are tuned while the parameters of the backbone
model remain unchanged.

3.2 Structure Knowledge Injector

We hold the view that the problem of using PEL
mentioned in section 3.1 is caused by a gap be-
tween texts and well-structured codes. Therefore,
to make full use of the structural information, here
we introduce Structure Knowledge Injector as a
prefix for each layer of the model. For simplicity,
we only show the key steps of injecting knowledge
into attention modules.

Given a CodePTM G with encoder-only archi-
tecture that has n transformer layers, the l-th model
layer is defined as G(l). The task is to train Struc-
ture Knowledge Injector module fl, as is demon-
strated in Figure 4, to capture code structure infor-
mation by the concatenation as follows:

Concat(fl, G(l)) (1)

Provided a code-related task dataset T with M
samples, each code snippet Tm is first parsed into
AST and then transformed into U-AST through
the same process as section 2.1, notated as S(Tm).
After that, an r × r adjacency matrix Ar×r

m is con-
structed based on the connected edges in S(Tm).
Then, Ar×r

m will be the input of the GALs, and each
node feature is represented as hi.

Through the computation of attention coefficient
αij and aggregation, as is shown in Equation 2, we
get the updated representation h′i, where Ni is the
neighborhood of node i in the graph.

h′i = σ(
∑

j∈Ni

αijWhj) (2)

And given the input hidden states of the model
as three vectors: Queries, Keys, and Values by
projection matrices W q

l , W k
l , and W v

l respectively.

W ′kl = Concat(fl(h′i),W
k
l ) (3)

W ′vl = Concat(fl(h′i),W
v
l ) (4)

After the concatenation, the original projection
matrices will be equipped with the knowledge from
the injector module in the specific layer l, repre-
sented as W ′

l v and W ′
l v.

In the training stage, the cross-entropy loss will
be computed based on the training sample Tm.

n∑

l=1

lossl ←
n∑

l=1

LTm(fl, G(l)) (5)

and each fl will be optimized by back-
propagation and G(l) is frozen at all time.

fl ← fl − α∇fl

n∑

l=1

lossl (6)

where α is the learning rate.

3.3 Code Retriever
Initialization is a crucial factor in the graph neu-
ral networks’ performance (Abboud et al., 2021).
Inspired by previous works that leverage a reparam-
eterization process for robustness, we employed a
two-stage initialization strategy for Pass-Tuning
that take backbone model, task, and code token
type into account. Given m code snippets repre-
sented as S, each sample S(i) is given a score
R(S(i)) based on the relationship between token-
level attention from the model and token distance
of the U-AST (Chen et al., 2022). Then, this parsed
U-AST first fed into the GAT as initialization. It
is noteworthy that we sample the code snippet for
initialization as follows:

P (S(i)) =
log |R(S(i))|+ δ∑m

k̃=1
log |R(S(k̃))|+ δ

(7)

It is worth noticing that we regard codes as doc-
uments and first use BM25 (Stephen et al., 1994)
to rank the input codes for the cold-start scenario.

3.4 Adaptation for Different Scenarios
Since there exist two kinds of CodePTMs: encoder-
only and encoder-decoder, we implement two sets
of Pass-Tuning for them respectively.
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Figure 4: An illustration of Injector modules with graph
attentional architecture employed as tunable prefixes in
Pass-Tuning, The input codes are parsed into U-ASTs
for constructing adjacency matrices, which are fed into
the GAT for the computation of the attention coefficient
and aggregation.

3.4.1 Code Generation
For the code generation tasks, the knowledge in-
jection process is similar to the description in sec-
tion 3.2 for all CodePTMs.

3.4.2 Code Understanding
For the code understanding tasks that can be ab-
stracted into classification tasks, we take different
strategies for knowledge injection.

Encoder-Only. For CodePTMs like CodeBERT
and GraphCodeBERT that only have transformer
encoders, the knowledge of code structure is in-
jected into the encoder modules layer-wise.

Encoder-Decoder. For models with Encoder-
Decoder architecture, e.g., CodeT5 and PLBART,
we inject the knowledge provided by the GAL into
each layer at the encoder modules, decoder mod-
ules, and cross-attention modules.

4 Experiments

In this section, we conduct extensive experiments
to evaluate Pass-Tuning and compare it against full
fine-tuning and strong baselines.

4.1 Datasets and Metrics

We evaluate Pass-Tuning on the following six
datasets covering eight programming languages
for both code understanding and generation.

Code Understanding For code understanding
tasks, we employ BigCloneBench (Svajlenko et al.,
2014) for clone detection and Devign (Zhou et al.,
2019) for defect detection. The Accuracy and F1-
score are reported for the two tasks respectively.

Code Generation For Code-Text generation, we
use CodeSearchNet (Husain et al., 2019) dataset for
code summarization and smoothed BLEU-4 (Lin
and Och, 2004) as the evaluation metric. And for
code generation, CONCODE dataset (Iyer et al.,
2018) is involved with exact match (EM), the
BLEU score (Papineni et al., 2002), and Code-
BLEU (Ren et al., 2020) as evaluation metrics.

Then, for Code-Code generation, we first use
Java-C# dataset (Nguyen et al., 2015) for code
translation, we report the exact match accuracy
(EM) and the BLEU score (Papineni et al., 2002).
Secondly, we employ two Java datasets provided
by Tufano et al. (2019): Refine Small and Refine
Medium for code refinement tasks. BLEU-4 and
EM are used for evaluation. Details of these four
datasets are listed in Appendix A.

4.2 Experimental Setup
Pre-trained Language Models We select six
representative pre-trained language models in our
experiment, including five CodePTMs: Graph-
CodeBERT (Guo et al., 2021), PLBART (Ahmad
et al., 2021), CodeT5 (Wang et al., 2021), and
UniXcoder (Guo et al., 2022).

Experimental Details For a fair comparison,
we adopt CodePTMs with the same number of
transformer layers. To be specific, we choose
GraphCodeBERT-base and UniXcoder-base from
microsoft3, PLBART-base from uclanlp4, and
CodeT5-base from Salesforce5 as our model back-
bones. Then, we set the max length 6 of the U-
AST token sequence fed into the graph attentional
architecture as 32 and 64, represented by Pass-
Tuning(32) and Pass-Tuning(64) in the following
experiments. We choose Adam optimizer (Kingma
and Ba, 2015) with a warm-up rate of 1,000 steps.

3https://huggingface.co/microsoft
4https://huggingface.co/uclanlp/

plbart-base
5https://huggingface.co/Salesforce/

codet5-base
6We find that the average length of the top K training

samples of each task differs and falls within a range between
32 and 64. As such, we have covered both 32 and 64 as the
lengths for the input code snippets. If the snippets exceed the
token length, they are truncated; if they are shorter, then they
are padded.
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All the experiments are implemented by PyTorch
1.5.1, and models are trained and evaluated with 4
interconnected NVIDIA GTX 3090 GPUs. More
details of the experimental implementation and hy-
perparameter settings of CodeBERT, GraphCode-
BERT, and UniXcoder are given in Appendix B.

In our experiments, we aim to answer the fol-
lowing research questions: 1) As a PEL method,
whether Pass-Tuning can achieve overall compar-
ative performance while significantly diminishing
the number of tunable parameters? 2) Can Pass-
Tuning obtain surpassing full fine-tuning perfor-
mance on some downstream tasks? 3) On which
kind of code-related tasks Pass-Tuning excel? Do
the tasks’ characteristics or the CodePTMs’ own
properties cause this phenomenon?

4.3 Baselines

To further demonstrate the effectiveness of Pass-
Tuning, we set the following PEL methods from
NLP as strong baselines: BitFit (Ben Zaken et al.,
2022), Adapter7 (Houlsby et al., 2019), and Prefix-
Tuning (Li and Liang, 2021). These methods all re-
quire minor modifications of parameters and keep
the backbone model frozen. Since there are no
ready-made implementations of these baseline tun-
ing methods that can be directly applied to code
representation learning, we implement them from
scratch based on encoder-only and encoder-decoder
architectures for various CodePTMs.

4.4 Performance of Code Generation

In this section, We evaluate Pass-Tuning on four
generation tasks with different CodePTMs as back-
bones. The results of code summarization on six
programming languages’ bimodal8 data of Code-
SearchNet (CSN) are in Table 1, and then we make
the following observations. 1) Even if we only
tune less than 1% of the model parameters, Pass-
Tuning can still reach state-of-the-art (SOTA) per-
formance based on CodeT5 and PLBART in sum-
marizing code for three and two subsets of lan-
guages respectively. 2) The experiments show that
Pass-Tuning can outperform all previous PEL meth-
ods when using PLBART as the backbone model.
3) For CodeT5, compared to full fine-tuning and
Adapter (with relatively richer parameters ), there

7Concurrent with our work, Ayupov and Chirkova (2022)
apply LoRA and adapters to CodeT5 and PLBART.

8Bimodal data means parallel data of NL-PL (Natural
Language-Programming Langauge) pairs and unimodal stands
for pure codes without NL texts.

exists only marginal performance gaps. 4) In terms
of absolute performance on code summarization,
CodeT5 performs slightly better. We take the view
that one potential reason for this is that CodeT5
utilizes the unimodal part of CSN during the pre-
training stage, whereas PLBART does not.

From Table 2, employing Pass-Tuning with
PLBART can reach SOTA results in EM, and com-
parable performance on other metrics for genera-
tion tasks. For using CodeT5 as the backbone, there
exists a gap between Pass-Tuning and fine-tuning.
However, our method can surpass all previous PEL
methods although we have much lesser parameters.

Table 3 demonstrate the performance of code
translation and code refinement. For the translation
task, it is self-evident that the number of parame-
ters is positively correlated with the performance,
and it’s hard for all PEL methods to conduct this
seq2seq task since the number of parameters con-
straints models’ capability. Nevertheless, there is
no denying that Pass-Tuning outperforms both Bit-
Fit and P-Tuning V2 by a significant margin. The
situation is different for code refinement, whether
we use CodeT5 or PLBART as backbones, Pass-
Tuning can surpass the performance of full fine-
tuning on at least one of the metrics.

Moreover, Table 14 to Table 16 enumerate addi-
tional generation tasks using GraphCodeBERT and
UniXcoder as backbones.

4.5 Performance of Code Understanding

The results of code understanding tasks: defect de-
tection and clone detection, are shown in Table 4.
We make the following observations that 1) For
the CodeT5 backbone, by comparing with other
strong PEL baselines, Pass-Tuning can reach simi-
lar performance but lower the cost of tuning further.
2) When using PLBART as the backbone, we can
see that Pass-Tuning demonstrates excellent perfor-
mance on Clone detection that surpasses full fine-
tuning. 3) For the defect detection task, tuning all
the parameters still exhibits dominant performance.
We hold the view that this phenomenon is caused
by the difficulty in understanding the semantics of
defects in context, and there exists a bottom-line
number of parameters that makes the representa-
tion learning of code defects feasible. Moreover,
the amount of data in the Devign dataset is much
smaller than that in BigCloneBench, which might
lead to overfitting problems. Similarly, Table 17
lists the results of conducting the same experiments
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Methods Params Ruby JavaScript Go Python Java PHP Overall

CodeT5
Fine-Tuning 224M 15.24 16.21 19.53 19.90 20.34 26.12 19.56
BitFit 0.001M 1.75 1.05 1.19 2.15 1.40 0.97 1.42
Adapter 14.22M 15.45 16.04 19.40 20.22 20.19 24.90 19.37
P-Tuning V2 0.633M 15.22 15.63 18.92 20.18 19.71 25.43 19.18
Pass-Tuning(32) 3.068M 15.30 15.70 19.51 20.24 20.27 25.57 19.43
Pass-Tuning(64) 3.068M 15.47 15.92 19.74 20.48 20.35 25.83 19.63
PLBART
Fine-Tuning 139M 13.97 14.13 18.10 19.33 18.50 23.56 17.93
BitFit 0.126M 8.38 5.21 12.18 12.78 9.08 11.57 9.87
Adapter 7.11M 3.91 2.05 11.62 15.20 13.54 24.01 11.72
P-Tuning V2 0.329M 13.43 13.93 17.18 18.16 16.96 23.21 17.15
Pass-Tuning(32) 1.879M 14.30 14.29 18.00 19.15 17.78 23.72 17.87
Pass-Tuning(64) 1.879M 14.23 14.52 17.84 19.13 18.30 23.82 17.97

Table 1: Performance on Code Summarization task.

Methods Params BLEU EM CodeBLEU

CodeT5
Fine-Tuning 224M 40.73 22.25 43.20
BitFit 0.001M 0.13 0.00 12.36
Adapter 14.22M 33.28 21.20 39.81
P-Tuning V2 0.633M 28.87 19.50 32.02
Pass-Tuning(32) 3.068M 33.60 22.15 36.97
Pass-Tuning(64) 3.068M 34.12 22.75 37.38
PLBART
Fine-Tuning 139M 32.42 16.55 35.39
BitFit 0.126M 2.70 0.25 0.67
Adapter 7.11M 4.40 6.35 13.72
P-Tuning V2 0.329M 26.92 16.75 30.65
Pass-Tuning(32) 1.879M 30.33 19.75 33.96
Pass-Tuning(64) 1.879M 29.86 19.88 33.01

Table 2: Performance on Code Generation task.

Methods Params
Java to C# C# to Java Refine Small Refine Medium

BLEU EM BLEU EM BLEU EM BLEU EM

CodeT5
Fine-Tuning 224M 84.15 65.30 79.12 66.40 77.39 21.35 91.04 7.82
BitFit 0.001M 0.25 0.00 0.24 0.00 1.28 0.00 5.14 0.00
Adapter 14.22M 75.43 52.40 73.10 57.70 77.41 18.58 91.01 3.61
P-Tuning V2 0.633M 59.86 33.70 57.10 41.00 78.99 4.56 91.02 0.79
Pass-Tuning(32) 3.068M 75.46 52.30 75.38 60.70 79.51 11.85 91.22 5.72
Pass-Tuning(64) 3.068M 72.86 48.70 73.19 58.40 79.69 12.55 91.06 5.45
PLBART
Fine-Tuning 139M 77.05 62.60 79.29 62.80 73.32 12.71 83.88 4.24
BitFit 0.126M 16.48 0.10 17.43 0.90 74.08 1.45 85.41 0.42
Adapter 7.11M 66.72 42.10 68.70 51.00 73.58 10.90 84.72 3.12
P-Tuning V2 0.329M 22.87 1.00 48.08 33.80 73.87 2.07 73.58 0.03
Pass-Tuning(32) 1.879M 64.95 44.00 64.14 52.20 74.37 5.07 86.38 6.09
Pass-Tuning(64) 1.879M 64.68 41.90 63.38 49.70 74.45 5.01 87.26 6.24

Table 3: Performance on Code Translation & Code Refinement Tasks.

Methods Params
Defect Clone

Accuracy F1

CodeT5
Fine-Tuning 224M 64.35 94.97
BitFit 1.183M 55.05 69.52
Adapter 15.40M 59.74 94.47
P-Tuning V2 1.182M 54.61 79.83
Pass-Tuning(32) 0.591M 58.09 93.16
Pass-Tuning(64) 0.591M 56.83 88.25
PLBART
Fine-Tuning 139M 62.27 92.85
BitFit 1.308M 56.30 92.42
Adapter 8.29M 61.60 92.74
P-Tuning V2 1.182M 53.81 75.88
Pass-Tuning(32) 0.591M 56.41 93.41
Pass-Tuning(64) 0.591M 56.09 92.75

Table 4: Performance on Code Clone Detec-
tion & Code Defect Detection Tasks.

on GraphCodeBERT and UniXcoder.

4.6 Ablation Study

We choose CodeT5 backbone9 for ablation study.

Effectiveness of Injector Module. Pass-Tuning
employs a Structure Knowledge Injector with GAT
network architecture as the tunable prefixes in order
to capture code structure. The results of ablation
studies are shown in Table 5, and we can see that
the two variants (removing the injector module and
using GCN replacement) of prefix design lead to
worse performance on code summarization tasks
in most languages, and can no longer reach sur-
passing fine-tuning results. which indicates the
effectiveness of our designation.

Effectiveness of Code Retriever. We design a
code retriever in section 3.3 for better GAT initial-
ization in Pass-Tuning. To confirm its effectiveness,
we replace it by selecting code snippets randomly.
Based on the observation in Table 5, it is clear that
using random initialization causes slightly worse
results among all programming languages.

9Experiments on other models are listed in Appendix C.3

Effectiveness of Modeling AST To demonstrate
the necessity of explicitly modeling AST, we con-
duct comparative experiments for all involved tasks.
As showcased in Table 12 and Table 13, model-
ing using AST achieves better results across all
tasks compared to directly employing the code se-
quences.

4.7 Efficiency Analysis
Our approach offers a new path to get out of the
cost-performance dilemma of using CodePTMs. To
quantify our efficiency, Table 6 list the tunable pa-
rameters of all tuning strategies covered in this pa-
per. Compared with PEL baselines, the tuning cost
of our method is lower or at the same level, while
Pass-Tuning evidently outperforms these methods
across all the tasks. When compared with full fine-
tuning, our approach can achieve overall compara-
tive results by modifying less than 1% of the param-
eters, which further proves the cost-effectiveness
of Pass-Tuning.

5 Related Works

Code Pre-trained Language Models. Trans-
former based models (Vaswani et al., 2017; Devlin
et al., 2019) significantly advance the performance

583



Methods Ruby JavaScript Go Python Java PHP Overall

Full-Tuning 15.24 16.21 19.53 19.90 20.34 26.12 19.56
Pass-Tuning(64) 15.47 15.92 19.74 20.48 20.35 25.83 19.63
w/o. Code Retriever 15.24 15.70 19.38 20.01 20.32 25.41 19.34
w/o. Knowl. Injector 15.22 15.63 18.92 20.18 19.71 25.43 19.18
with GCN 15.41 15.83 19.44 20.20 19.76 25.48 19.35

Table 5: Ablation study of Pass-Tuning based on CodeT5 in code summarizaton tasks.

Methods
PLBART CodeT5

CLS
MB

GEN
MB

CLS
MB

GEN
MB

Fine-Tuning 139M 139M 224M 224M
Bitfit 1.308M 0.126M 1.183M 0.001M
Adapter 8.29M 7.11M 15.40M 14.22M
P-Tuning V2 1.182M 0.329M 1.182M 0.633M
Pass-Tuning 0.591M 1.879M 0.591M 3.068M

Table 6: Comparison of the number of learnable param-
eters between Pass-Tuning and other PEL strategies.

of various natural language processing (NLP) tasks.
With the brilliant achievements of these pre-trained
models in the field of NLP, recent works attempt
to apply them to codes in order to boost the de-
velopment of software engineering and code in-
telligence. CodeBERT (Feng et al., 2020) is pre-
trained on NL-PL data. It follows RoBERTa (Liu
et al., 2019), which uses multi-layer bidirectional
Transformers as the architecture with masked lan-
guage modeling (MLM) and replaced token detec-
tion (RTD) (Yang et al., 2019) pre-training tasks.
GraphCodeBERT (Guo et al., 2021) is a variant of
CodeBERT that integrates the data-flow to facili-
tate code representation learning. PLBART (Ah-
mad et al., 2021) is based on BART (Lewis et al.,
2020) with a denoising objective in pre-training.
CodeT5 (Wang et al., 2021) utilizes the T5 (Raffel
et al., 2020) architecture, leveraging code seman-
tics through identifier tokens and applying multi-
task learning (MTL) to a unified framework. UniX-
coder (Guo et al., 2022) adapts the UniLM (Dong
et al., 2019) architecture and is pre-trained on uni-
fied cross-modal data to support both code under-
standing and generation tasks.

Parameter-Efficient Learning. The idea of
Parameter-Efficient Learning (PEL) (Ding et al.,
2023) is to optimize a small portion of parameters
while keeping the model backbone frozen. As long
as the data is sufficient, PEL can reach comparable
performance to full model tuning (He et al., 2022).
Houlsby et al. (2019) insert task-specific neural
modules called adapters into the transformer-based

models, and only these adapters are trained during
fine-tuning. Mahabadi et al. (2021) propose a bet-
ter trade-off between performance and the number
of tunable parameters through combining adapters
and low-rank optimization. Inspired by the suc-
cess of prompting methods that guide large lan-
guage models (Brown et al., 2020) through textual
prompt (Liu et al., 2021), Prefix-Tuning (Li and
Liang, 2021) concatenate tunable prefix vectors
with the keys and values of each attention layer
inside the model, and only train these soft prompts
when being fine-tuned. Then, it is further simpli-
fied by prompt-tuning (Lester et al., 2021) that only
prepends to the input in the first layer. After that,
BitFit (Ben Zaken et al., 2022) employs a sparse
method that only tunes the bias terms of the model.
LoRA (Hu et al., 2022) has utilized low-rank matri-
ces for approximating parameter updates. Recently,
Wang et al. (2023) employ uncertainty estimation
in PEL for cost-effective self-training. Compared
to full fine-tuning, these techniques have all demon-
strated competitive performance on a series of NLP
tasks while only updating less than 10% of the
model parameters.

6 Conclusion

In this work, we present a novel Pass-Tuning frame-
work for adapting CodePTMs with different archi-
tectures to downstream tasks. To our best knowl-
edge, we are the first to propose a lightweight al-
ternative to full fine-tuning in the domain of code
representation learning and significantly reduce the
number of trainable parameters for a series of tasks.
Besides, we consider source codes’ structure infor-
mation and employ tunable prefixes with GAL ar-
chitecture. Moreover, a distinct initialization strat-
egy is designed for prefixes to exploit the character-
istics of codes. Extensive experiments have demon-
strated the effectiveness of our method and Pass-
Tuning can steadily outperform all PEL baselines.
In comparison with full Fine-Tuning, we only mod-
ify less than 1% of the parameters while achieving
competitive results. Further ablation studies indi-
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cate the robustness and rationality of our strategies.
In our future work, we will explore more Parameter-
Efficient learning approaches for code and move
one step forward to further utilize code structure
information for tuning CodePTMs.

Limitations

Our method has mainly two limitations. First, when
performing an NL-PL task such as code summa-
rization, our approach cannot provide additional in-
formation to natural language comments. Secondly,
we obtain ASTs with high connectivity by adding
data-flow edges and using them as input. How-
ever, different token types have different salience
for various CodePTMs (Chen et al., 2022). Thus,
feature engineering for AST may further enhance
the performance, which we leave as future work.

Broader Impact and Ethical Consideration

To our best knowledge, we are the first to propose a
Parameter-Efficient tuning method for CodePTMs
while considering code structure. Pass-Tuning will
not introduce additional model bias and does not
involve misuse of code and natural language com-
ments. Our approach significantly reduces the com-
putation and operational costs when applying pre-
trained models to downstream tasks. We believe it
will be beneficial to the NLP community.
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A Statistics of Datasets

A.1 Code Generation & Translation

Dataset Language Training Dev Testing

CONCODE NL - Java 100,000 2,000 2,000
CodeTrans Java - C# 10,300 500 1,000

Table 7: CONCODE (Iyer et al., 2018) and Code-
Trans (Nguyen et al., 2015) datasets statistics for code
generation and code translation tasks.

A.2 Code Refinement

Dataset Language Training Dev Testing

RefinementSmall Java 46,680 5,835 5,835
RefinementMedium Java 52,364 6,545 6,545

Table 8: Code Refinement (Tufano et al., 2019) dataset
statistics.

A.3 Defect Detection & Clone Detection

Dataset Language Training Dev Testing

BigCloneBench Java 900K 416K 416K
Devign C 21K 2.7K 2.7K

Table 9: BigCloneBench (Svajlenko et al., 2014) and
Devign (Zhou et al., 2019) datasets statistics for Clone
detection and Defect Detection tasks.

A.4 Code Summarization

Language Training Dev Testing

Go 167,288 7,325 8,122
Java 164,923 5,183 10,955
JavaScript 58,025 3,885 3,291
PHP 241,241 12,982 14,014
Python 251,820 13,914 14,918
Ruby 24,927 1,400 1,261

Table 10: CodeSearchNet (Husain et al., 2019) data
statistics for the code summarization task.

Hyperparameter value

Batch Size 8,16,32
Learning Rate {8e-6, 2e-5, 1e-4, 5e-4}
Max Source Length {130, 240, 256, 320, 512}
Max Target Length {3, 120, 150, 240, 256, 512}
GAL max Length {32, 64}
Epoch {2, 30, 50, 100}
Smoothing Factor δ {0.05, 0.1}

Table 11: Hyperparameters for Pass-Tuning

B Implementation Details

C Supplementary Experiments

In this section, we provide additional experiments
that are not demonstrated in section 4.

C.1 Supplementary Analysis of Explicitly
Modeling AST

To demonstrate the necessity of explicitly model-
ing the AST, we design additional experiments to
compare its performance improvement relative to
simply modeling code tokens (directly constructing
sequences in the order of code). In the experiments,
we set the maximum sequence length to 32.

Tasks Clone Defect Java → C# C# → Java

Metrics F1 Acc BLEU EM BLEU EM

CodeT5
Token Modeling 92.97 55.82 74.60 52.10 74.64 59.50
AST Modeling 93.16 58.09 75.46 52.30 75.38 60.70

PLBART
Token Modeling 93.02 55.60 64.65 41.20 64.69 52.80
AST Modeling 93.41 56.41 64.95 44.00 64.14 52.20

Table 13: Effectiveness of explicitly modeling AST for
clone detection, defect detection, and code translation
tasks.

C.2 Supplementary Experiments on More
Backbones

This section provides supplementary experiments
on more backbones in Table 14, Table 15, Table 16,
and Table 17.

C.3 Supplementary Ablation Studies
This section provides supplementary experiments
of detailed ablation studies in Table 18, Table 19,
Table 20, and Table 21.
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Languages Ruby JavaScript Go Python Java PHP Overall

CodeT5
Token Modeling 15.17 15.64 19.33 19.92 20.08 25.52 19.27
AST Modeling 15.30 15.70 19.51 20.24 20.27 25.57 19.43

PLBART
Token Modeling 14.28 13.17 17.33 17.08 17.41 23.54 17.13
AST Modeling 14.30 14.29 18.00 19.15 17.78 23.72 17.87

Table 12: Effectiveness of explicitly modeling AST for code summarization.

Methods Ruby JavaScript Go Python Java PHP Overall

GraphCodeBERT
Fine-Tuning 11.94 15.05 18.43 19.27 18.72 25.37 18.13
Pass-Tuning(32) 12.94 14.19 18.34 19.19 18.75 25.51 18.15
UniXcoder
Fine-Tuning 14.66 15.39 19.01 19.75 20.19 26.08 19.18
Pass-Tuning(32) 14.69 14.82 19.84 20.10 19.42 24.97 18.97

Table 14: Performance on Code Summarization task based on GraphCodeBERT and
UniXcoder.

Methods BLEU EM CodeBLEU

GraphCodeBERT
Fine-Tuning 31.08 18.35 35.00
Pass-Tuning(32) 30.58 17.10 26.05
UniXcoder
Fine-Tuning 31.35 18.80 35.41
Pass-Tuning(32) 29.72 19.23 34.69

Table 15: Performance on Code Generation tasks
based on GraphCodeBERT and UniXcoder.

Methods
Java to C# C# to Java Refine Small Refine Medium

BLEU EM BLEU EM BLEU EM BLEU EM

GraphCodeBERT
Fine-Tuning 74.69 54.10 69.94 57.40 78.44 16.13 90.68 7.74
Pass-Tuning(32) 63.71 45.40 58.99 49.20 79.80 13.22 90.93 5.44
UniXcoder
Fine-Tuning 77.21 61.00 72.37 62.30 64.05 14.34 75.12 5.78
Pass-Tuning(32) 65.90 48.20 62.76 46.70 63.75 7.78 76.44 5.92

Table 16: Performance on Code Translation & Code Refinement Tasks.

Methods
Defect Clone

Accuracy F1

GraphCodeBERT
Fine-Tuning 62.88 95.30
Pass-Tuning(32) 57.28 93.14
UniXcoder
Fine-Tuning 62.34 91.36
Pass-Tuning(32) 54.28 87.74

Table 17: Performance on Code Clone
Detection & Code Defect Detection
Tasks.

Methods Ruby JavaScript Go Python Java PHP Overall

CodeT5
Fine-Tuning 15.24 16.21 19.53 19.90 20.34 26.12 19.56
Pass-Tuning(64) 15.47 15.92 19.74 20.48 20.35 25.83 19.63
w/o. Code Retriever 15.24 15.70 19.38 20.01 20.32 25.41 19.34
w/o. GAT Module 15.22 15.63 18.92 20.18 19.71 25.43 19.18
with GCN 15.41 15.83 19.44 20.20 19.76 25.48 19.35

PLBART
Fine-Tuning 13.97 14.13 18.10 19.33 18.50 23.56 17.93
Pass-Tuning(64) 14.23 14.52 17.84 19.13 18.30 23.82 17.97
w/o. Code Retriever 14.00 14.42 17.31 18.72 18.28 23.65 17.73
w/o. GAT Module 13.43 13.93 17.18 18.16 16.96 23.21 17.15
with GCN 14.10 14.40 17.91 18.85 17.22 23.58 17.71

Table 18: Detailed comparison of code summarization tasks based on PLBART and
CodeT5 with variant Pass-Tuning implementation

Methods BLEU EM CodeBLEU

CodeT5
Fine-Tuning 40.73 22.25 43.20
Pass-Tuning(64) 34.12 22.75 37.38

w/o. Code Retriever 30.51 20.85 33.92
w/o. GAT Module 28.87 19.50 32.02
with GCN 31.51 20.65 35.11

PLBART
Fine-Tuning 32.42 16.55 35.39
Pass-Tuning(32) 30.33 19.75 33.96

w/o. Code Retriever 27.42 18.70 30.97
w/o. GAT Module 26.92 16.75 30.95
with GCN 27.47 18.94 31.08

Table 19: Detailed comparison of code generation
tasks based on PLBART and CodeT5 with variant Pass-
Tuning implementation
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Methods
Java to C# C# to Java Refine Small Refine Medium

BLEU EM BLEU EM BLEU EM BLEU EM

CodeT5
Fine-Tuning 84.15 65.30 79.12 66.40 77.39 21.35 91.04 7.82
Pass-Tuning(32) 75.46 52.30 75.38 60.70 79.51 11.85 91.22 5.72
w/o. Code Retriever 64.19 49.60 63.60 49.00 79.44 7.69 91.02 1.70
w/o. GAT Module 59.86 33.70 57.10 41.00 78.99 4.56 91.02 0.79
with GCN 69.37 43.80 67.91 51.80 79.59 8.68 91.10 2.46

PLBART
Fine-Tuning 77.05 62.60 79.29 62.80 73.32 12.71 83.88 4.24
Pass-Tuning(32) 64.95 44.00 64.14 52.20 74.37 5.07 86.38 6.09
w/o. Code Retriever 55.55 29.10 55.67 38.60 74.37 3.18 57.00 0.09
w/o. GAT Module 22.87 1.00 48.08 33.80 73.87 2.07 73.58 0.03
with GCN 52.20 27.80 56.64 42.30 74.63 3.48 79.04 0.05

Table 20: Detailed comparison of code translation and refinement tasks based on
PLBART and CodeT5 with variant Pass-Tuning implementation

Methods
Defect Clone

Accuracy F1

CodeT5
Fine-Tuning 64.35 94.97
Pass-Tuning(32) 58.09 93.16

w/o. Code Retriever 54.98 92.20
w/o. GAT Module 54.61 79.83
with GCN 54.94 92.96

PLBART
Fine-Tuning 62.27 92.45
Pass-Tuning(32) 56.41 93.41

w/o. Code Retriever 53.66 77.46
w/o. GAT Module 53.81 75.88
with GCN 53.37 78.37

Table 21: Detailed comparison of code
understanding tasks based on PLBART
and CodeT5 with variant Pass-Tuning
implementation

Dataset CodeTrans Bugs2Fix

Task Code Translation Code Refinement

Language Java (java-cs) CSharp(cs-java) Java(small) Java(medium)

Sample Size 10300 10300 46680 52364

Rank Token Type Frequency Token Type Frequency Token Type Frequency Token Type Frequency

1 public 10300 identifier 10300 identifier 46680 identifier 52364
2 identifier 10300 { 10300 ( 46680 ; 52364
3 ; 10300 } 10296 ) 46680 ( 52364
4 ( 10300 ; 10294 ; 46674 ) 52364
5 ) 10300 ( 10293 { 45800 { 52360
6 { 10300 ) 10293 } 45800 } 52360
7 } 10278 public 10286 . 41536 . 51122
8 type_identifier 8693 . 8020 public 35972 type_identifier 46686
9 return 7329 return 7280 type_identifier 34420 = 42125
10 = 6174 = 6866 void_type 27452 public 37333
11 . 4967 , 5933 , 20905 , 36045
12 , 3189 new 5176 return 18961 void_type 30241
13 int 2447 predefined_type 4986 = 17800 if 28548
14 new 2315 virtual 4458 if 9985 return 24441

Table 22: Frequent token types for CodeTrans and Bugs2Fix datasets.

Dataset CodeSearchNet

Task Code Summarization

Language Ruby JavaScript Go Python Java PHP

Sample Size 24927 58025 167288 251820 164923 241241

Rank Token Type Frequency Token Type Frequency Token Type Frequency Token Type Frequency Token Type Frequency Token Type Frequency

1 def 24927 function 58025 func 167288 def 251820 identifier 164923 function 241241
2 identifier 24927 ( 58025 identifier 167288 identifier 251820 ; 164923 name 241241
3 end 24149 ) 58024 ( 167288 ( 251820 ( 164923 ( 241241
4 ) 23963 { 58024 ) 167288 ) 251820 ) 164923 ) 241240
5 ( 23961 identifier 57920 { 167288 : 251820 { 164923 { 241237
6 . 23694 } 57830 } 167256 . 240830 } 164923164893 } 241189
7 = 20458 ; 56535 type_identifier 167124 , 231582 type_didentifier 155261 ; 241177
8 , 19763 property_identifier 56230 . 160184 = 224000 . 154207 $ 240579
9 constant 16005 . 55902 field_identifier 153297 " 170662 , 122881 -> 210556
10 " 13367 , 49939 , 138470 ] 134779 = 119607 = 207844
11 string_content 13281 = 49366 return 133661 [ 134778 return 115325 return 193817
12 } 13156 return 40431 * 132700 if 134518 public 112995 , 188558
13 if 12390 if 39780 := 107524 return 119020 if 96105 string_value 165950
14 ] 11759 string_fragment 34220 package_identifier 101431 in 105395 new 79605 public 163542

Table 23: Frequent token types for CodeSearchNet dataset.
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Dataset BigCloneBench Devign CONCODE

Task Clone Detection Defect Detection Code Generation

Language Java C Java

Sample Size 901028 21800 100000

Rank Token type frequency Token type frequency Token type frequency

1 identifier 901028 identifier 21800 identifier 100000

2 ; 901028 ( 21800 type_identifer 99834

3 ( 901028 ) 21798 ; 98005

4 ) 901028 { 21783 . 78004

5 { 901028 ; 21602 void_type 61779

6 } 900430 primitive_type 20988 > 33964

7 . 899241 * 20741 < 33911

8 type_identifier 895508 } 20352 boolean_type 33322

9 = 894986 type_identifier 20264 int 30689

10 new 898876 , 20056 , 25166

11 , 792560 = 19084 ] 18274

12 string_literal 712764 number_liternal 17494 [ 18272

13 try 665816 field_identifier 16811 long 11661

14 public 623123 -> 16188 ERROR 10146

Table 24: Frequent token types for BigCloneBench, Devign, and CONCODE dataset.
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