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Abstract

In real-world machine learning systems, labels
are often derived from user behaviors that the
system wishes to encourage. Over time, new
models must be trained as new training ex-
amples and features become available. How-
ever, feedback loops between users and models
can bias future user behavior, inducing a pre-
sentation bias in the labels that compromises
the ability to train new models. In this pa-
per, we propose counterfactual augmentation,
a novel causal method for correcting presen-
tation bias using generated counterfactual la-
bels. Our empirical evaluations demonstrate
that counterfactual augmentation yields better
downstream performance compared to both un-
corrected models and existing bias-correction
methods. Model analyses further indicate that
the generated counterfactuals align closely with
true counterfactuals in an oracle setting.

1 Introduction

Deployment of machine learning models is ubiq-
uitous in the real world, ranging from web search
ranking to movie recommendation. To ensure good
performance, new models must be trained period-
ically, since new training examples may become
available, and the types of features that are col-
lected can evolve over time (e.g., from tabular to
multimodal data). For user-facing models like rec-
ommenders, labels are often derived from user be-
haviors that the model wishes to encourage, and
user-model interactions continuously produce new
data that can be used for training models. Modern
NLP, for instance, relies heavily on models that
learn from user feedback, not the least of which
are ChatGPT and other large language models that
comprise the current state-of-the-art.

In practice, however, feedback loops between
the user and the model can influence future user

*The majority of this work was conducted while this author
was an intern at Microsoft.

Figure 1: An illustration of how presentation bias may
arise from feedback loops (e.g., in a movie recommen-
dation system). The top sequence depicts uncorrected
presentation bias, while the bottom sequence demon-
strates how our method, counterfactual augmentation,
can correct presentation bias.

behavior, inducing presentation bias over the labels
(Joachims et al., 2017; Pan et al., 2021). By shifting
the label distribution away from users’ true pref-
erences, presentation bias compromises the ability
to train new models (Schmit and Riquelme, 2018;
Krauth et al., 2020). For example, an algorithm
may present future content based on a user’s inter-
actions with prior content. As the user engages with
the algorithm’s recommendations or outputs, it will
recommend more of that same type of content—
even if there are other types of content the user
might also enjoy (Figure 1).
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Presentation bias negatively affects the data dis-
tribution in two major ways. (1) Bias amplification.
New labels are dependent on the prior behavior of
the model, so they may not reflect the user’s true
preferences. This bias will amplify as more training
loops are completed on biased data. (2) Label ho-
mogenization. As the model learns user behaviors,
most users’ responses to its recommendations will
be positive, so variation in user feedback decreases.

In this paper, we aim to correct the presenta-
tion bias resulting from feedback loops. We first
propose that presentation bias arises due to the
causal relationship between a model’s recommen-
dations and a user’s behavior, which affects which
labels are observed. Users tend to interact with
recommended items, so under presentation bias,
we are more likely to observe labels for recom-
mended items—while without presentation bias,
users would interact with all items (or a random
subset), so labels would be observed for the full dis-
tribution. We conclude that we can break the causal
link behind presentation bias with a counterfactual
question: how would users have reacted had they
interacted with all items, contrary to reality?

With this idea as our foundation, we introduce
counterfactual augmentation (Figure 1), a causal
approach for reducing presentation bias using gen-
erated counterfactual labels. 1 Because “true” coun-
terfactuals are by definition unknown, counterfac-
tual augmentation leverages the causal relationship
between the model’s behavior and the user’s behav-
ior to generate realistic counterfactual labels. We
generate counterfactuals for the labels that are un-
observed due to presentation bias, then augment the
observed labels with the generated ones. Intuitively,
this supplies labels over the full data distribution,
yielding a bias-corrected dataset.

We evaluate our method on predictive tasks in
language and multimodal settings that reflect real-
world presentation bias. We consider data with
evolving feature spaces, where over time the fea-
tures transition from simpler features to richer lan-
guage or multimodal ones.2 In our experiments,
we demonstrate that counterfactual augmentation
effectively corrects presentation bias when training
predictive models, outperforming both uncorrected

1Our code is publicly available at https://github.
com/microsoft/causaltransfer.

2Although we choose this setting to more accurately rep-
resent real-world data, counterfactual augmentation does not
require an evolving feature space. In the appendix (Section
B.1), we empirically show the effectiveness of counterfactual
augmentation in data settings without feature evolution.
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Figure 2: Proposed mechanism of presentation bias. Xt,
Wt, and Yt denote simple features, rich features, and
labels at time t (no subscript for t = 1), while Rt is
a model (e.g., a recommender) trained over the input
features and labels. A indicates which items a user
interacts with.

models and existing bias correction methods. We
conduct model analyses that examine why coun-
terfactual augmentation is effective for reducing
presentation bias and discover that our generated
counterfactuals align closely with true counterfac-
tuals in an oracle setting.

2 Problem Statement

We formalize the problem of presentation bias in
machine learning systems in causal terms (Figure
2). These systems usually consume both simple
features, such as metadata, and rich features, such
as text or images, training on user interactions with
different items to produce recommendations.

Let t be a time index, and let Xt denote the
simple features defined over the feature space X.
Similarly, let Wt denote rich features defined over
the feature space W. We denote true user item
preferences as Yt ∈ Y and predicted user item
preferences as R (for simplicity, we can think of
these as binary recommendations). Finally, let At

be an indicator of which items the user interacts
with. Due to feature evolution, only Xt is observed
at earlier time points, while later both Xt and Wt

are observed. Without loss of generality, assume
that the feature evolution occurs in the first two time
points t = 0 and t = 1. For ease of notation, we
do not include time index subscripts when t = 1.

At t = 0, a predictive model R0 is trained on
an observed feature set X0 and labels Y0. This
model makes predictions about user preferences
for unseen items and recommends items to the user.
These recommendations influence A—which of
those items the user subsequently interacts with—
because users are much more likely to interact with
recommended items, such that P (A = 1|R0 =
0) ≪ P (A = 1|R0 = 1). In turn, this induces a
presentation bias in the distribution of observed Y ,
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the user’s measured preferences at t = 1. Due to
the presentation bias, there is a very high probabil-
ity of observing Y when R0 = 1 and a very low
probability of observing Y when R0 = 0.

At t = 1, a full set of simple and rich features
(X , W ) is observed due to feature evolution. How-
ever, because the distribution of Y has been influ-
enced by R0, a second model R trained on X , W ,
and Y will not correctly learn user preferences.

Example. Consider a system that must catego-
rize a user’s emails as important and unimportant.
X is email metadata, and W is the text of the email.
Y is an indicator of whether the user interacted with
the email positively (e.g., replied) or negatively
(e.g., reported spam). R0 is a classifier trained on
X0 and Y0 to label emails as important or unimpor-
tant. Users preferentially interact with important
emails, so emails with R0 = 1 have a much higher
chance of user interaction (i.e., A = 1) and there-
fore of having an observed label Y , inducing a bias
in Y that depends on R0. After R0 is trained, the
system’s administrators want to train a new, im-
proved model R using both X and W . However,
the bias in Y will affect the ability to train R.

3 Methods

To eliminate presentation bias, we notice that we
must block the causal path between R0 and Y so
that R0 no longer influences which Y are observed.
Because these two variables are linked by the me-
diator A, we can block the path by controlling for
A. To do so, we define the counterfactual Y A=a,
the value Y would have taken had A = a.

3.1 Counterfactual augmentation

Using Y A=a, we block the path between the rec-
ommender R0 and the label Y with the following
intuition. A indicates which items users interact
with and thus which labels are observed. We can
therefore eliminate the influence of A by generat-
ing a synthetic data distribution in which all items
receive user interaction and all Y are “observed.”

Formally, let P (Y ) denote the marginal distri-
bution of the labels and P (X,Y ) denote the joint
marginal distribution of the features and the la-
bels. In an unbiased setting, a model f is opti-
mized over data (x, y) ∼ P (X,Y ). Under presen-
tation bias, however, only a portion of P (Y ) is ob-
served: the conditional distribution P (Y |A = 1).
Consequently, the model f is trained over data
(x, y) ∼ P (X,Y |A = 1), which may lead to con-

vergence to a non-optimal solution.

Definition 3.1 (Counterfactual augmentation). To
correct presentation bias in the data distribution,
counterfactual augmentation creates an approxima-
tion of the marginal label distribution P (Y ) using
the estimated distribution of counterfactual labels
Y A=1, or what Y would have been had A = 1.
This allows us to define PCA(Y ), a counterfactu-
ally augmented marginal label distribution:

PCA(Y ) = P (Y |A = 1)P (A = 1)

+ P̂ (Y A=1|A = 0)P (A = 0)︸ ︷︷ ︸
counterfactual augmentation

Combining labels from PCA(Y ) with the known
features, we have PCA(X,Y ), a counterfactually
augmented marginal data distribution:

PCA(X,Y ) = P (X,Y |A = 1)P (A = 1)

+ P (X, Ŷ A=1|A = 0)P (A = 0)︸ ︷︷ ︸
counterfactual augmentation

From PCA(X,Y ), bias-corrected data can be
sampled, such that the model f is now optimized
over (x, y) ∼ PCA(X,Y ). Supposing PCA(X,Y )
is a good approximation of P (X,Y ), f should
converge to a near-optimal solution.

3.2 Multimodal counterfactual GAN

We implement counterfactual augmentation with
a generative adversarial network (GAN) capa-
ble of generating realistic counterfactual labels
given multimodal input data.3 Inspired by the
work of Yoon et al. (2018), who propose a GAN
(GANITE) specifically for estimating individual
causal effects, we generate labels—both factual and
counterfactual—with a generator G, then train a
discriminator D to distinguish factual from counter-
factual labels. Our architecture (Figure 3) extends
their work in several core aspects:

Mediators. Rather than estimating the direct
effect of an intervention A on an outcome Y , we
seek to model the indirect effect of a variable R on
an outcome Y through the mediator A. We account
for both of these dependencies, allowing us to later
block the effect of R on Y by intervening on A.

3We note that the main novelty of our paper is the princi-
ple of counterfactual augmentation for correcting presentation
bias, rather than the particular means by which the counter-
factual is estimated. Empirically, however, we found our
counterfactual GAN implementation to generalize well.
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Figure 3: Diagram of our multimodal counterfactual GAN architecture. In the counterfactual block, a generator G
takes multimodal data as input and generates a factual label ỹf and a counterfactual label ỹcf . As the true factual
label yf is known, it is used to learn a supervised loss between yf and ỹf that helps to train G. At random, either
the true factual label yf or the generated counterfactual label ỹcf is passed to a discriminator D, conditional on the
recommendation r corresponding to the label. The discriminator must determine whether the label it has received is
factual or counterfactual, and its loss Dloss is used to further train both G and D. After the GAN has been trained,
its counterfactuals are used to augment data that is used for predictive tasks (e.g., prediction block).

Language and multimodal data. Where GAN-
ITE was designed for tabular data only, our im-
plementation handles richer features like text and
images. We integrate language and image encoders
into the architecture that can be simultaneously
fine-tuned as the counterfactual GAN is trained.

Correcting the discriminator constraint. Let
Ycf denote a counterfactual label and Yf denote
a factual label. The discriminator of GANITE
encourages P̂ (Ycf |X) → P (Yf |X), i.e., the es-
timated distribution of counterfactual labels should
converge to the true distribution of factual labels.
However, in feedback loops, the label is much more
likely to be observed (i.e., factual) when R = 1
than when R = 0. Then the discriminator may
enforce P̂ (Ycf |X,R = 0) → P (Yf |X,R = 1),
which would mean that labels follow the same dis-
tribution regardless of whether R = 1 or R = 0.

We address this problem by defining two sep-
arate discriminators—one for each recommenda-
tion condition. Each discriminator is arbitrarily
passed a factual or counterfactual label from its
recommendation condition, and it must identify
whether the label is factual or counterfactual. The
separate discriminators encourage the realistic con-
straints P̂ (Ycf |X,R = 0) → P (Yf |X,R = 0)

and P̂ (Ycf |X,R = 1) → P (Yf |X,R = 1).

4 Experiments

We conduct empirical evaluations to assess how
well counterfactual augmentation corrects presen-
tation bias, with the aim of improving downstream
performance. We evaluate on predictive machine
learning tasks, which reflect real-world models’
goals of predicting user behavior, and in multiple
data settings, both synthetic and real-world. To
facilitate detailed analysis of our models, we intro-
duce a procedure for inducing realistic presentation
bias in unbiased datasets. All data and code for our
experiments will be publicly released.

4.1 Datasets

To recreate feature evolution in our experiments,
we evaluate on datasets that contain both tabular
features and rich features like text or images. We
select two datasets from the Multimodal AutoML
Benchmark (Shi et al., 2021): Airbnb and Cloth-
ing. Airbnb consists of 22,895 Airbnb listings for
the city of Melbourne, including metadata, text de-
scriptions, and images of the property. The nightly
price of the listing is the label. Clothing comprises
23,486 reviews of women’s clothing from an online
retailer, with metadata, the title, and the text of the
review. The review score is treated as the label.
Both labels can be predicted directly via regression,
but they can also be discretized to be used in clas-
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sification tasks (as we do in our evaluation). For
our binary classification tasks, we binarize both
datasets in a 0-1 proportion of approximately 0.25
to 0.75 to reflect real-world data, in which the ma-
jority of feedback received from users is positive.

We further create a synthetic version of the
Airbnb dataset (Synthetic) in which the features
are taken from the real dataset, but the label is syn-
thesized as a noisy function of the tabular features
and the multimodal features. The purpose of this
dataset is to evaluate the efficacy of counterfactual
augmentation in a “best-case scenario” in which we
know that there is some signal about the label that
can be gained independently from both the simple
features and the rich features. We use a binary la-
bel, again to reflect a “best-case scenario” in which
the downstream task is relatively easy (compared
to multi-class classification or regression), with a
0-1 proportion of approximately 0.25 to 0.75.

Additional details about the datasets are pro-
vided in the appendix (Section A.1).

4.2 Method for inducing presentation bias

To induce presentation bias in these datasets in a
way that will allow for post-hoc model analysis,
we use a procedure that mimics feedback loops in
real-world systems. We first create three splits of
the data, which correspond to the three data batches
in Figure 1. We refer to these splits as Doriginal,
Dtrain, and Deval. On Doriginal, which has no
presentation bias, we fit a model Mtab on the labels
Yoriginal, using only tabular features.

We use Mtab to predict labels Rtrain for
Dtrain using tabular features, where Rtrain =
Mtab(Xtrain). Rtrain corresponds to R0 in our
causal structure. Next, we drop 90% of the labels
from samples in Dtrain where Rtrain = 0 (where
Y is multi-class or binary, we use a threshold value
instead). This induces presentation bias by creat-
ing the causal dependency R0 → A → Y , where
labels are observed with high probability when
R0 = 1 and with low probability when R0 = 0.
We also randomly drop ∼35% of samples from
Dtrain with equal probability (reflecting the re-
maining items that users do not interact with).

Finally, for Deval, we create an unbiased ver-
sion in which we leave Deval as it is, and a biased
version Dbiased. For Dbiased, we again use Mtab

to predict labels Reval using only tabular features,
where Reval = Mtab(Xeval). We then drop 90%
of the samples in Dbiased where Reval = 0.

4.3 Models

Baselines. We compare counterfactual augmenta-
tion against several baselines. First, we include
a model without bias correction (Uncorrected).
To provide the best chance of achieving good per-
formance, we use pre-trained transformer architec-
tures fine-tuned on the respective task datasets: Dis-
tilBERT (Sanh et al., 2020) for language and ViT
(Dosovitskiy et al., 2021) for images. These mod-
els are used as encoders for the text and images of
the datasets. Once embeddings are obtained, they
are concatenated with the tabular data and passed
to a final layer fine-tuned for the predictive task.

Our remaining baselines are implementations of
existing methods for correcting presentation bias,
both of which we describe further in Section 6. In
our experiments, the IPW baseline is implemented
identically to the uncorrected baseline; however,
when fine-tuning the final task layer, an inverse
propensity weighted loss (Wang et al., 2016) is
used. The Dragonnet baseline is an adaptation of
a method proposed by Shi et al. (2019) for jointly
estimating causal treatments and outcomes with a
single neural network. To make this method com-
patible with our data setting, we pre-embed the text
and images before passing them to Dragonnet, and
we also modify the final layer to output estimated
counterfactuals rather than estimated causal effects.

Counterfactual augmentation. In our proposed
method, counterfactual augmentation (CA), we
train our multimodal counterfactual GAN on a bi-
ased dataset, then use the GAN to generate the
counterfactual labels for all samples for which la-
bels are not observed. Combining the generated
labels with the observed labels, we have a bias-
corrected dataset. With this bias-corrected data,
we encode text and images using fine-tuned Dis-
tilBERT and ViT, combine them with the tabular
data, and train a final layer for the specific task.

Additional details about the training procedures
are provided in the appendix (Section A.2).

4.4 Evaluation

In our evaluation, our models are fit on Dtrain

(which contains presentation bias) and evaluated
on both Deval and Dbiased. Evaluation on Deval

indicates how well our model predicts the label in a
setting where presentation bias is not a factor (i.e.,
if we knew all labels). Evaluation on Dbiased indi-
cates how well our model predicts the label given
the data that is available to us in reality.
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Synthetic Airbnb Clothing
Acc. F1 F1mac F1min Acc. F1 F1mac F1min Acc. F1 F1mac F1min

Uncorrected 81.7 76.9 58.4 27.2 84.8 82.5 69.5 48.0 77.5 68.1 45.5 3.8
IPW 82.0 78.4 62.0 34.4 86.0 84.7 74.2 56.8 79.6 73.8 56.8 25.4

Dragonnet 81.9 79.8 65.9 42.5 81.8 79.9 65.7 42.1 77.1 67.1 43.5 0.0
CA (ours) 82.7 82.0 71.1 52.8 87.4 87.4 80.2 68.2 80.3 76.7 63.1 37.9

Improvement 0.7% 2.2% 5.2% 10.3% 1.5% 2.7% 6.0% 11.5% 0.7% 2.9% 6.3% 12.5%

Oracle 82.6 79.7 64.8 39.7 88.5 88.4 81.8 70.7 80.1 74.6 58.3 28.2

Table 1: Results on binary classification tasks (unbiased evaluation dataset).

Synthetic Airbnb Clothing
Acc. F1 F1mac F1min Acc. F1 F1mac F1min Acc. F1 F1mac F1min

Uncorrected 85.1 80.5 54.9 17.9 88.2 86.1 67.1 40.8 79.9 71.3 45.7 2.5
IPW 85.0 81.0 56.9 22.0 88.5 87.1 70.7 47.8 81.4 75.7 55.5 21.5

Dragonnet 81.0 79.3 57.1 25.0 86.4 81.1 51.4 10.2 79.6 70.6 44.3 0.0
CA (ours) 84.9 83.0 64.0 36.6 88.7 88.2 74.5 55.6 80.5 74.6 53.6 18.2

Improvement - 2.0% 6.9% 11.6% 0.2% 1.1% 3.9% 7.8% - - - -

Oracle 85.1 81.6 58.8 25.9 89.7 89.5 77.9 61.7 81.8 76.3 56.8 24.0

Table 2: Results on binary classification tasks (biased evaluation dataset).

Regression Multi-class

Airbnb Clothing Clothing
R2 RMSE R2 RMSE Acc. F1 F1mac

Uncorrected 0.126 0.935 0.092 0.953 55.7 39.9 14.4
IPW 0.127 0.934 0.120 0.938 56.0 40.9 15.7

Dragonnet - - - - - - -
CA (ours) 0.186 0.902 0.197 0.896 57.1 44.6 20.1

Improvement 5.9% 3.2% 7.6% 4.1% 1.1% 3.7% 4.4%

Oracle 0.131 0.932 0.194 0.898 57.2 44.3 19.2

Table 3: Results on regression and multi-class classifi-
cation tasks (unbiased evaluation dataset). Our RMSE
metric is normalized RMSE, or RMSE divided by the
standard deviation of the evaluation set.

Regression Multi-class

Airbnb Clothing Clothing
R2 RMSE R2 RMSE Acc. F1 F1mac

Uncorrected 0.112 0.942 0.083 0.958 58.4 43.2 14.9
IPW 0.112 0.942 0.098 0.950 58.6 43.8 15.8

Dragonnet - - - - - - -
CA (ours) 0.134 0.930 0.128 0.934 58.6 43.9 16.1

Improvement 2.2% 1.2% 3.0% 1.6% - 0.1% 0.3%

Oracle 0.108 0.944 0.156 0.919 59.3 46.0 18.2

Table 4: Results on regression and multi-class classifi-
cation tasks (biased evaluation dataset).

We note that as a consequence of presentation
bias, any class or distribution imbalance in the la-
bels Y will be amplified, since there is a positive
relationship between the predicted labels R and
the true labels Y . This imbalance reflects the real-

world tendency for users to like their recommen-
dations and for positive labels to dominate. There-
fore, in classification tasks, overall accuracy and
F1 score will be artificially high for a model that
simply predicts the most common class. Impor-
tant measures of success for a method will instead
be F1mac , or macro F1 score (F1 score uniformly
weighted across all classes), and for binary classifi-
cation, F1min , or F1 score on the minority class.

5 Results and Discussion

5.1 Prediction task results

We evaluate counterfactual augmentation against
our baselines in the Synthetic, Airbnb, and Cloth-
ing data settings on binary classification tasks (Ta-
bles 1 and 2) and multi-class classification and
regression tasks (Tables 3 and 4). “Improvement”
is computed by taking the difference between the
CA score and the score of the next-best method for
that metric, which is generally IPW.

We observe that when evaluating in an unbiased
setting (which reflects “true” preferences), counter-
factual augmentation offers the best performance
across all metrics for all tasks on all datasets, often
by a significant margin. It outperforms not only the
uncorrected baseline but also both bias-correction
baselines, IPW and Dragonnet. When evaluating
in a biased setting (which reflects the evaluation
data we have available in reality), counterfactual
augmentation also improves performance across
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metrics, tasks, and datasets. In general, it outper-
forms competing bias-correction methods, with the
single exception being the binary classification task
for the Clothing Review dataset, where it does not
achieve as much improvement as IPW but still of-
fers substantial gains over the uncorrected model.

Importantly, the biggest improvements result-
ing from counterfactual augmentation are in the
minority classes. As we mention previously, due
to the imbalance in the distribution of Y , macro
and minority class F1 score are the best measures
of performance. Furthermore, since the generated
counterfactual labels correspond largely to the mi-
nority classes, the relatively high minority class F1

scores suggest that the generated counterfactuals
are sufficiently realistic to allow the model to learn.

Taken together, these results suggest that coun-
terfactual augmentation is indeed successful in cor-
recting presentation bias—and that it does a better
job than existing bias-correction methods. From an
empirical standpoint, counterfactual augmentation
is both useful and stable across settings and tasks,
yielding consistently good performance.

5.2 Model analysis: Why does counterfactual
augmentation work?

Counterfactual augmentation produces clear empir-
ical gains in downstream performance over both
uncorrected models and existing bias-correction
methods. In this section, we analyze our generated
counterfactuals to better understand these improve-
ments. Although true counterfactuals are never
known in the real world, in these experiments we
do have access to the true counterfactuals of Dtrain,
which we withheld in the process of inducing pre-
sentation bias. We use these as a basis for compari-
son with our generated counterfactuals.

Comparing counterfactual distributions. To
assess how well our generated counterfactuals cor-
respond to real counterfactuals, we plot their dis-
tributions together for each combination of dataset
and task (Figure 4). We observe that for the easier
binary classification task, the distribution of gener-
ated counterfactuals closely reflects that of the true
counterfactuals across all data settings. On these
tasks, it appears that the generated counterfactuals
are a good approximation of the true counterfactu-
als. For the more difficult multi-class classification
and regression tasks, the difference between the
generated and true distributions is greater.

Reducing presentation bias helps correct the la-

bel imbalance that exists in the overall label distri-
bution (Figure 5). However, the generated counter-
factual distribution also tends to be more uniform
compared to the true counterfactual distribution
(seen in 4 out of 6 plots in Figure 4). Therefore,
even aside from the reduced presentation bias, the
greater uniformity of the generated counterfactuals
may further correct label imbalance. In general, we
observe that the bias-corrected label distribution
PCA(Y ) is more balanced than the uncorrected
label distribution P (Y |A = 1). This reduction in
label imbalance better enables a model to learn on
the bias-corrected set.

Performance of an oracle. Because we have
access to the true counterfactuals, we can train an
oracle model over an unbiased version of Dtrain.
By comparing the oracle to counterfactual augmen-
tation, we can determine how well counterfactual
augmentation recovers performance compared to
the original unbiased data. We report the results of
the oracle in Tables 1 through 4.

For most tasks and data settings, we observe
that—as expected—counterfactual augmentation
still results in some loss of performance compared
to the oracle.4 However, the performance gap be-
tween CA and the oracle is generally substantially
less than the performance gap between CA and the
next-best bias-correction method. These results
suggest that although CA constitutes a significant
improvement over existing methods, further refine-
ment of the counterfactual generation method may
be able to yield even better results.

6 Related Work

Presentation bias may be considered a type of selec-
tion bias, in which the sampling distribution differs
from the population distribution. Selection bias
is a core challenge of observational causal infer-
ence, where the causal effect of a treatment A on
an outcome Y is estimated not from a randomized
trial but from observed data. Since the treatment
assignment mechanism is not random, it must be
accounted for during estimation.

One common method for addressing selection
bias in causal inference is inverse propensity

4In some cases, we see that the oracle achieves worse per-
formance than CA. We posit that the tendency of the generated
counterfactual distribution toward the uniform “over-corrects”
label imbalance, so the bias-corrected label distribution is
more uniform than the unbiased label distribution. This may
make model training easier on the bias-corrected distribution
(e.g., on sparser portions of the unbiased distribution).
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Figure 4: Comparison of the distributions of the generated counterfactuals and the true counterfactuals.

Figure 5: Comparison of uncorrected label distributions and label distributions after bias-correction with CA.

weighting (IPW) (Robins et al., 1994; Hernán and
Robins, 2006). At a high level, IPW up-weights
samples corresponding to treatment conditions that
are unlikely to be observed and down-weights sam-
ples corresponding to treatment conditions that are
likely to be observed, such that all treatment con-
ditions appear to be equally likely over the data
distribution. This blocks the causal path between
the treatment assignment and the outcome.

IPW for presentation bias correction. Using
this principle, a number of works propose an in-
verse propensity weighted empirical loss function
that can be used to reduce the effects of presen-
tation bias when training a model on biased data
(Wang et al., 2016; Schnabel et al., 2016; Joachims
et al., 2017). Several works also engage with IPW
in more complex ways. Krauth et al. (2022) address
a longitudinal bias setting and propose an algorithm
that maximizes the desired outcome at each time

step using an IPW-based estimator. Shi et al. (2019)
introduce Dragonnet, a fully-connected multi-head
neural network that jointly predicts the treatment
and the outcome, simultaneously yielding both a
propensity score estimate and a predicted outcome.

Task-based presentation bias correction. Be-
cause presentation bias can appear in many task
settings, there exist a number of task-specific ap-
proaches for reducing presentation bias. In infor-
mation retrieval, for example, unbiased learners of
click data (Ai et al., 2018) and propensity-weighted
rank metrics (Agarwal et al., 2019) have been pro-
posed, while in the recommender literature, meth-
ods have been developed for the matrix factoriza-
tion setting (Bonner and Vasile, 2018; Wang et al.,
2020). However, the task-specific nature of these
methods limits their generalizability compared to
counterfactual augmentation.

Estimating counterfactuals. The inability to
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know an individual’s counterfactual is a central
challenge of causal inference. However, recent
works in the deep learning literature have made
large inroads toward estimating individual treat-
ment effects (Shalit et al., 2017; Louizos et al.,
2017; Yoon et al., 2018), which is an adjacent task
to estimating individual counterfactuals. We draw
upon this body of work as a basis for obtaining
high-quality counterfactuals.

Counterfactuals in NLP. Our work is contex-
tualized within a recent body of research that has
shown that counterfactuals are an effective sup-
plement to training data when learning language
models (Wang and Culotta, 2021; Qian et al., 2021;
Yang et al., 2021; Howard et al., 2022). Existing
works largely rely on manually created counterfac-
tuals or programmatically generated counterfactu-
als. Our method advances beyond prior works by
leveraging the causal mechanism behind the miss-
ing portions of the data distribution to efficiently
generate targeted, high-quality counterfactuals.

7 Conclusion
In this paper, we introduced counterfactual aug-
mentation, a causal method for correcting presen-
tation bias using generated counterfactuals. We
described the causal mechanism behind presenta-
tion bias in real-world machine learning systems
that rely on user feedback, and we explained the
causal reasoning behind counterfactual augmen-
tation. We presented empirical evaluations using
counterfactual augmentation to reduce presenta-
tion bias, and we found that our approach signifi-
cantly outperforms existing methods. Finally, we
conducted a model analysis to explore why coun-
terfactual augmentation is effective in addressing
presentation bias. Given the prevalence of presen-
tation bias in real-world deployments of machine
learning models, our findings suggest that counter-
factual augmentation has the potential to improve
the quality of user-facing machine learning models
across many types of applications.
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9 Limitations

The most significant limitation of counterfactual
augmentation is its requirement that the gener-
ated counterfactuals be sufficiently close to true
counterfactuals; otherwise, the counterfactually
augmented data distribution PCA(X,Y ) is not
a good approximation of the true data distribu-
tion P (X,Y ). If poor-quality counterfactuals are
produced and PCA(X,Y ) is very different from
P (X,Y ), counterfactual augmentation could in-
stead hurt models that are trained on the augmented
data. Although our multimodal counterfactual
GAN generates high-quality counterfactuals for
the tasks and data settings that we evaluate, we
do not know if this will be the case across every
task and data setting. A different counterfactual
estimation method may be required depending on
the particular problem.

Based on failure modes of causal effect estima-
tion in statistical causal inference, we hypothesize
that lower-quality counterfactuals may be produced
if:

• The causal mechanism of presentation bias is
misspecified.

• The feature data is very noisy or sparse, mak-
ing it difficult to learn counterfactuals.

• The counterfactual generation model does not
have enough capacity to model the data (could
be more of a problem for “traditional” statisti-
cal linear models).

10 Ethics Statement

Broader impact. Deep learning models have been
shown to perpetuate and even amplify the biases in
their training data (Bolukbasi et al., 2016; Swinger
et al., 2019; Caliskan et al., 2017). Often, these
biases manifest in a similar way to presentation
bias: that is, only a portion of the theoretical data
distribution is contained in the model’s training
dataset, which impacts what the model learns.
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Therefore, we believe that counterfactual aug-
mentation may be helpful not only in correcting
presentation bias but also in reducing social biases
in data. In principle, counterfactual augmentation
can be used to correct any type of bias for which
the causal mechanism is known. The causal mech-
anism is used to generate counterfactuals, which
augment the unobserved portion of the data distri-
bution. Consequently, counterfactual augmentation
may also be helpful in correcting social biases and
helping make data more fair.

Ethical considerations. When used in conjunc-
tion with multimodal data, as it is in this paper,
counterfactual augmentation relies in part on large
pre-trained models to generate counterfactuals. As
a result, it is also possible that the generated coun-
terfactuals themselves may encode the biases con-
tained in large pre-trained models. Users should
be cautious when employing counterfactual aug-
mentation in sensitive settings or when using it to
reduce biases on protected attributes.

Additionally, we acknowledge the environmen-
tal impact of large language and image models,
which are used in this work.
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A Experimental Details

A.1 Data
Details of our data splits are provided in Table
5, including dataset composition and licensing in-
formation. Both Airbnb and Clothing are publicly
available datasets, and the Synthetic dataset is avail-
able on our GitHub. This release of the Synthetic
dataset—for research purposes only—is compati-
ble with the intended use of the Airbnb dataset, on
which it is based. All datasets are in English.

A.2 Training details
Our use of all pre-existing models is limited to
research purposes only and is compliant with their
intended use.

Language and image models. Our language
and image transformer models were built on the
HuggingFace5 transformers library (version
4.18.0), with pre-trained models taken from the
HuggingFace model hub. For fine-tuning, we
used an Adam optimizer and learning rates [2 ×
10−1, 2 × 10−2, 2 × 10−3, 2 × 10−4, 2 × 10−5],
and we found 2× 10−5 to be the best learning rate
across all models. We trained for 5 epochs and
selected the model with the best validation loss.
All other hyperparameters were set to Trainer class
defaults from the transformers library.

Dragonnet. Our implementation of Dragonnet
was based on its public code release,6 which uses
Tensorflow (version 2.8.0). All hyperparameters
were kept to their default values from the original
code.

Multimodal counterfactual GAN. Our imple-
mentation of our multimodal counterfactual GAN
uses PyTorch (version 1.11.0) and was built on

5https://huggingface.co/
6https://github.com/claudiashi57/

dragonnet
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Dataset Doriginal Dtrain Deval Dbiased ntotal License

Synthetic 4,572 5,400 9,135 5,400 22,895 CC0 1.0
Airbnb 4,572 5,400 9,135 5,400 22,895 CC0 1.0

Clothing 4,698 5,400 9,394 5,400 23,486 CC0 1.0

Table 5: Composition of data splits. For each dataset, the number of samples in Doriginal, Dtrain, Deval, and
Dbiased is given, along with total samples for each dataset. Licensing information is also provided.

skeleton code from the public code release7 of
GANITE. We tune over the following hyperparam-
eters (best in bold):

• Hidden layer size of generator and discrimi-
nator: [128, 256, 512, 1024]

• Number of generator iterations: [200, 500,
1000, 2000]

• Number of discriminator iterations: [5, 6, 7,
8, 9, 10]

• Learning rate: [10−1, 10−2, 10−3, 10−4,
10−5]

• Separate discriminators: [yes, no]
• Scaling data: [yes, no8]
• Fine-tune encoders and GAN sequentially:

[yes, no]

The number of parameters and licenses for each
of the models is reported in Table 6.

Model # parameters License

Dragonnet 474,603 Unknown
DistilBERT 66,955,010 Apache-2.0

ViT 85,800,194 Apache-2.0
Counterfactual GAN 500,601 BSD-3-Clause

Table 6: Number of parameters and license for each
model. Note that because the best-performing configura-
tion for the counterfactual GAN trains the language and
image encoders and the GAN sequentially, the number
of parameters for the counterfactual GAN excludes the
encoder parameters. When the encoders are fine-tuned
in parallel with the GAN, we consider the number of pa-
rameters for the counterfactual GAN to be 153,713,529.

A.3 Runtimes
Counterfactual augmentation is computationally ef-
ficient, and its computational overhead is minimal
compared to the computation required to learn task

7https://github.com/vanderschaarlab/
mlforhealthlabpub/tree/main/alg/ganite

8For the clothing multi-class classification task only, scal-
ing was the better option.

Synthetic
Runtime Added time

Uncorrected 1304 -
IPW 1350 46

Dragonnet 1494 190
CA (ours) 1361 57

Table 7: Runtimes (in seconds) of all models and bias-
correction methods for the Synthetic binary classifica-
tion task. “Added time” denotes the additional time the
bias-correction method requires relative to the uncor-
rected model.

models. We provide runtimes of all models and
bias-correction methods for each of our evaluation
tasks in Tables 7, 8, and 9. For every task, either
IPW or counterfactual augmentation is the most
efficient bias-correction method.

A.4 Computing resources
A portion of our experiments were conducted using
machines with consumer-level NVIDIA graphics
cards. Our remaining experiments were conducted
using cloud computing resources. We estimate the
number of GPU hours used to be around 150.

B Additional Experiments

B.1 Counterfactual augmentation without
feature evolution

In this section, we present results (Tables 10, 11,
12, and 13) that verify that counterfactual augmen-
tation does not require feature evolution to suc-
cessfully correct presentation bias. We follow the
same experimental procedures as in Section 4; how-
ever, for all three datasets—Synthetic, Airbnb, and
Clothing—we use only tabular features for all data
splits Doriginal, Dtrain, Deval, and Dbiased.

We observe that as is the case in our main re-
sults, counterfactual augmentation generally pro-
duces improvements in overall performance and
macro/minority class performance, both relative
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Airbnb

Binary classification Regression
Runtime Added time Runtime Added time

Uncorrected 1319 - 1320 -
IPW 1367 48 1431 111

Dragonnet 1423 104 - -
CA (ours) 1383 64 1334 14

Table 8: Runtimes (in seconds) of all models and bias-correction methods for the Airbnb tasks. “Added time”
denotes the additional time the bias-correction method requires relative to the uncorrected model.

Clothing

Binary classification Multi-class classification Regression
Runtime Added time Runtime Added time Runtime Added time

Uncorrected 251 - 246 - 247 -
IPW 272 21 271 25 273 26

Dragonnet 351 100 - - - -
CA (ours) 265 15 260 14 317 71

Table 9: Runtimes (in seconds) of all models and bias-correction methods for the Airbnb tasks. “Added time”
denotes the additional time the bias-correction method requires relative to the uncorrected model.

Synthetic Airbnb Clothing
Acc. F1 F1mac F1min Acc. F1 F1mac F1min Acc. F1 F1mac F1min

Uncorrected 79.7 70.8 44.6 0.5 86.7 86.1 77.2 62.5 77.1 67.2 43.8 0.5
IPW 82.0 78.6 62.7 35.8 86.7 86.5 78.4 64.9 77.1 67.2 43.8 0.5

Dragonnet 82.2 79.3 63.5 37.5 81.6 79.2 64.6 40.1 80.1 76.5 63.0 37.8
CA (ours) 82.7 81.5 69.7 49.9 86.2 86.6 79.4 67.5 80.3 76.7 63.0 37.9

Improvement 0.5% 2.2% 6.2% 12.4% - 0.1% 1.0% 2.6% 0.2% 0.2% 0.0% 0.1%

Table 10: Results on binary classification tasks without feature evolution (unbiased evaluation dataset).

Synthetic Airbnb Clothing
Acc. F1 F1mac F1min Acc. F1 F1mac F1min Acc. F1 F1mac F1min

Uncorrected 84.7 77.7 46.2 0.7 89.1 88.4 74.6 55.5 79.6 70.7 44.5 0.4
IPW 85.0 80.0 53.5 15.2 88.6 88.4 75.2 56.9 79.6 70.7 44.5 0.4

Dragonnet 84.9 78.9 49.8 7.8 85.7 80.9 51.9 11.6 80.7 74.9 54.6 20.2
CA (ours) 85.0 81.7 59.2 26.7 88.3 88.2 75.2 57.2 80.5 74.6 53.6 18.2

Improvement - 1.7% 5.7% 11.5% - - 0.0% 0.3% - - - -

Table 11: Results on binary classification tasks without feature evolution (biased evaluation dataset).

to the uncorrected baseline and to the competing
bias-correction baselines, IPW and Dragonnet.

Performance of both the baselines and counter-
factual augmentation is less consistent compared

to the feature evolution setting (this is particularly
evident in the clothing regression task, where R2

is negative). We hypothesize that there is not suf-
ficient information encoded in the tabular data to
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Regression Multi-class

Airbnb Clothing Clothing
R2 RMSE R2 RMSE Acc. F1 F1mac

Uncorrected 0.079 0.959 -0.419 1.191 55.6 39.8 14.3
IPW 0.083 0.958 -0.419 1.191 55.6 39.8 14.3

Dragonnet - - - - - - -
CA (ours) 0.269 0.855 -0.133 1.064 57.2 44.6 20.2

Improvement 18.6% 10.3% 28.6% 12.7% 1.6% 4.8% 5.9%

Table 12: Results on regression and multi-class classification tasks without feature evolution (unbiased evaluation
dataset). Our RMSE metric is normalized RMSE, or RMSE divided by the standard deviation of the evaluation set.

Regression Multi-class

Airbnb Clothing Clothing
R2 RMSE R2 RMSE Acc. F1 F1mac

Uncorrected 0.041 0.979 -0.329 1.153 58.4 43.0 14.7
IPW 0.043 0.979 -0.329 1.153 58.4 43.0 14.7

Dragonnet - - - - - - -
CA (ours) 0.207 0.891 -0.130 1.063 58.6 43.9 16.1

Improvement 16.4% 8.8% 19.9% 9.0% 0.2% 0.9% 1.4%

Table 13: Results on regression and multi-class classification tasks without feature evolution (biased evaluation
dataset).

learn certain tasks well. Furthermore, it is also
more difficult to generate the counterfactuals for
counterfactual augmentation, since the GAN now
also has access only to tabular data.

B.2 Modality ablations
To further demonstrate the utility of counterfactual
augmentation in natural language settings, in this
section we report results from experiments with
ablated (language-only) versions of the Airbnb and
Synthetic datasets (Tables 14, 15, 16). Again, we
follow the same experimental procedures as in Sec-
tion 4, but we make only language features avail-
able in Dtrain, Deval, and Dbiased.

We find that—consistent with our other results—
counterfactual augmentation continues to out-
perform uncorrected models and existing bias-
correction methods. Interestingly, we observe that
bias correction appears to work better in some data
settings given only the text modality, relative to
models that have access to both text and images.
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Synthetic Airbnb
Acc. F1 F1mac F1min Acc. F1 F1mac F1min

Uncorrected 79.7 70.8 44.5 0.4 82.9 78.8 61.4 32.6
IPW 81.8 77.5 59.8 30.1 86.3 85.7 76.5 61.3

Dragonnet 80.6 74.8 53.2 17.3 81.5 78.8 63.4 37.6
CA (ours) 82.2 81.0 68.9 48.6 87.4 87.7 81.2 70.3

Improvement 0.4% 3.5% 9.1% 18.4% 1.1% 2.1% 4.7% 9.0%

Table 14: Results on binary classification tasks with the language modality only (unbiased evaluation dataset).

Synthetic Airbnb
Acc. F1 F1mac F1min Acc. F1 F1mac F1min

Uncorrected 84.6 77.6 45.8 0.0 87.4 83.8 59.9 26.7
IPW 84.9 79.3 51.0 10.2 88.3 87.5 72.2 51.1

Dragonnet 84.7 78.0 46.8 1.9 86.3 80.9 51.2 9.8
CA (ours) 84.6 81.3 58.4 25.4 88.6 88.6 76.4 59.5

Improvement - 2.0% 7.4% 15.2% 0.3% 1.2% 4.2% 8.5%

Table 15: Results on binary classification tasks with the language modality only (biased evaluation dataset).

Airbnb (unbiased) Airbnb (biased)
R2 RMSE R2 RMSE

Uncorrected 0.031 0.984 -0.007 1.004
IPW 0.038 0.981 -0.005 1.002

Dragonnet - - - -
CA (ours) 0.224 0.881 0.200 0.894

Improvement 18.5% 10.0% 20.5% 10.8%

Table 16: Results on regression and multi-class classification tasks with the language modality only (unbiased
evaluation dataset). Our RMSE metric is normalized RMSE, or RMSE divided by the standard deviation of the
evaluation set.
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