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Abstract
The inductive inference of the knowledge
graph aims to complete the potential relations
between the new unknown entities in the graph.
Most existing methods are based on entity-
independent features such as graph structure
information and relationship information to
inference. However, the neighborhood of these
new entities is often too sparse to obtain enough
information to build these features effectively.
In this work, we propose a knowledge graph
inductive inference method that fuses ontol-
ogy information. Based on the enclosing
subgraph, we bring in feature embeddings of
concepts corresponding to entities to learn the
semantic information implicit in the ontology.
Considering that the ontology information of
entities may be missing, we build a type
constraint regular loss to explicitly model the
semantic connections between entities and
concepts, and thus capture the missing concepts
of entities. Experimental results show that
our approach significantly outperforms large
language models like ChatGPT on two bench-
mark datasets, YAGO21K-610 and DB45K-
165, and improves the MRR metrics by 15.4%
and 44.1%, respectively, when compared with
the state-of-the-art methods.

1 Introduction

Knowledge graphs (KGs) store a large amount of
structured real-world knowledge through a set of
triples, and they have been widely used in many do-
mains, such as natural language processing (Zhang
et al., 2019), recommendation systems (Wang et al.,
2018), and question answering (Huang et al., 2019).
However, even the most knowledge-rich KGs suffer
from incompleteness, such as DBpedia (Lehmann
et al., 2015), YAGO (Mahdisoltani et al., 2014),
and WikiData (Vrandečić, 2012). To complete the
KGs, knowledge graph inference aims to predict
the missing links between entities in KGs.

*Equal Contributions.
†Corresponding authors.
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Figure 1: Two examples of inductive inference. As
shown in Test Graph A, structure-based inductive
inference methods have difficulty predicting relations
between newly added entities that lack sufficient neigh-
borhood information. Our work helps achieve inductive
relation inference by using ontology information (Test
Graph B).

In past studies, most methods (Bordes et al.,
2013; Yang et al., 2015) mainly learn the specific
embeddings of entities and relations and predict
missing links by various mapping operations. Since
the embeddings in such methods depends on
specific entities, it requires that the entities in
the graph are fixed, which is referred to as the
transductive setting (Yang et al., 2016). However,
in fact, new emerging entities are continuously
added to real-world KGs over time, such as new
users and products in e-commerce knowledge
graphs and new molecules in biomedical knowl-
edge graphs (Trivedi et al., 2017). Works adopting
the transductive setting often require expensive
retraining to make predictions for these added
entities. As the amount of data increases this
overhead will become unaffordable (Schlichtkrull
et al., 2018). To deal with this problem, inductive
inference gains the ability to extend what is learned
from training entities to unknown entities by
learning entity-independent semantic information
(Teru et al., 2020).

However, most of the existing inductive infer-
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ence work (Chen et al., 2021; Mai et al., 2021)
has only focused on various structural features in
KGs (e.g., enclosing subgraphs induced by paths
between nodes), ignoring the important ontology
information. In general, newly emerging entities
tend to lack sufficient neighbor relationships,
leaving them without much contextual information
to refer to in terms of structure (As shown in Test
graph A in fig. 1) (Xu et al., 2022). As an abstract
description of the real world, various concepts in
ontology provide the basic type information for the
affiliated entities, which can help the model achieve
inductive link prediction. For example, in Test
Graph B, despite lacking the neighbor relationship,
with the help of the type information provided by
the concepts "Person" and "City" for "J.Butler"
and "Miami" respectively, we can predict that
the relation between them is most likely to be
"lives_in". In fact, the ontology information of
entities also suffers from missing problems, so it is
not easy to use ontology information effectively.

To solve the above problem, we propose a
knowledge graph inductive inference method
combining ontology information. Specifically,
based on the enclosing subgraph, we bring in
feature embeddings of corresponding concepts at
the node initialization of entities to obtain the
semantic information in the ontology. To deal
with the problem of missing ontology information,
we build a type constraint regular loss that
captures the missing concepts of entities by
explicitly modeling the semantic associations
between entities and concepts. In addition, we
train the link prediction on the ontology triples.
The final training is performed using a joint
strategy. Experimental results show that the method
significantly outperforms ChatGPT as well as state-
of-the-art inductive baselines. Our codes are
publicly available at GitHub.*

Our contributions can be summarized in the
following three points: (1) we propose a knowl-
edge graph inductive inference method com-
bining ontology information, which effectively
improves the inductive inference performance
on newly emerging entities; (2) we build type-
constrained regular loss to alleviate the problem
of missing ontology information; (3) we achieve
a remarkable improvement on two benchmark
datasets, demonstrating the effectiveness of using
ontology information to enhance the effectiveness

*https://github.com/chasers-of-Qs/OEILP

of inductive link prediction.

2 Related Works

Transductive Link Prediction: Most existing
knowledge graph inference methods are
embedding-based transductive learning. These
methods can be broadly classified into: 1)
translation-based(Bordes et al., 2013; Wang
et al., 2014; Lin et al., 2015; Sun et al., 2019);
2) semantic matching-based, (Yang et al., 2015;
Trouillon et al., 2016; Nickel et al., 2016); 3)
GNN-based(Schlichtkrull et al., 2018; Vashishth
et al., 2020; Liu et al., 2021). The difference
between them mainly lies in how to design the
score function.
Inductive Link Prediction: As inductive inference
models have the ability to extend from known
entities to unknown entities, these methods(Ali
et al., 2021; Gesese et al., 2023) show great
potential for link prediction tasks on new entities.
BLP(Daza et al., 2021) learns the embedding
representations of entities based on the architecture
of the pre-trained language model to obtain the
required generalization capabilities. GraIL(Teru
et al., 2020) suggests modeling enclosing sub-
graphs around the target triple for the first time,
based on the graph neural network framework.
TACT(Chen et al., 2021) models the semantic
correlation between relations as several topological
patterns and uses a relational correlation network
(RCN) to learn the importance of different patterns
for inductive link prediction. SNRI(Xu et al.,
2022) enhances the processing for sparse subgraphs
by exploiting full neighbor relationships and by
applying mutual information (MI) maximization to
knowledge graphs.
Ontology Enhanced Inference: Incorporating
ontology information through various methods(Xie
et al., 2016; Ren et al., 2021), it helps models
learn richer semantic information. TransC (Lv
et al., 2018) models the embedding of concepts
as a sphere and assumes that the embedding
corresponding to the entity belonging to the
concept should be in this sphere. Considering the
limitation of relation information in the ontology,
TransO (Li et al., 2023) computes the weights of
the type mapping matrix based on domain and
range. JOIE (Hao et al., 2019) proposes the first
approach of jointly embedding entity and ontology
knowledge graphs to build a unified representation
learning framework from multiple levels. These
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Figure 2: Overview of the proposed method. The training pipeline consists of two parts: extracting the enclosing
subgraph of the target triple from KG and initializing the node embeddings with ontology information (Step①);
optimizing the score function fe used to infer relations between unknown entities (Step②) In addition, we optimize
the embedding of the ontology by ontology training and construct a type constraint to capture the semantic
connections between concepts and entities (Step ③).

methods are all transductive link predictions on
the original KGs. Inductive link prediction for
unknown entities is still an urgent but under-
researched task.

3 Approach

We start with task formulation. Unlike transductive
link prediction which predicts unknown triples on a
fixed entity graph, for inductive link prediction, the
goal is to predict unknown triples (u, rt, v) in the
unseen entity graph by learning from the seen entity
graph. The entities in these two graphs are disjoint.
Specifically, given the seen entity graph Gek and
the migratable information (e.g., ontology graph
Gc and type links between entities and concepts Tt),
we optimize the score function f(s, r, t) at training
time, where the score reflects the likelihood of the
existence of target relation r between target nodes
s and t. In testing, combined with the migratable
information, we use the score function f to predict
the unknown triples (u, rt, v) in the unseen entity
graph Geu .

3.1 Method Overview

In this work, we propose an inductive link pre-
diction method that combines entity and ontology
information. The method brings in ontology
information to enhance inductive inference on

unknown entities and effectively captures the
missing ontology information of entities by type
constraint. As shown in fig. 2, the whole training
consists of three steps:

Step ①: This part aims to integrate ontology
information. First, we extract the enclosing
subgraph around the target node and obtain the
position feature hposi of nodes in the subgraph.
Second, we obtain the type feature htypei from
the embedding of the concept corresponding to
the entity by the attention approach. Finally, we
concatenate the position feature hposi with the type
feature htypei as the initial feature of the node. In
this way, we integrate the semantic information of
the ontology into the entity.

Step ②: This step aims to optimize the score
function fe(u, rt, v) used for prediction. For
the representations of nodes and relations in the
subgraph, we use a graph neural network (GNN)
to update them. Then, we optimize the score
function fe(u, rt, v) obtained with these represen-
tations. Since the node representations contain type
features, the model can use ontology information
to help complete inductive link prediction.

Step ③: This step aims to construct type constraint
and optimize ontology embedding. We construct
a type constraint regular loss ft by modeling
the relationship between entity embeddings and
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concept embeddings. The constraint requires that
the embedding of the entity h should be close to
the embedding of its corresponding concept c after
mapping to the feature space of the ontology. Based
on this constraint, the model gains the ability to
capture the missing ontology information of the
entity. In addition, we train the link prediction task
on the ontology triples to optimize the embedding
representation of the ontology in order to enhance
the semantic information obtained by the model
from the ontology.

Finally, based on the above steps, the model
learns from the total loss L. Next, we will describe
the technical details of each step in detail.

3.2 Ontology Information Feature Embedding

Subgraph Extraction: We extract the enclosing
subgraph around the target triple (u, rt, v) from
GraIL (Teru et al., 2020). First, we obtain the sets
Nk(u) and Nk(v) of nodes in the corresponding
k-hop neighborhoods from the two target nodes
u and v, respectively. Then, the duplicate nodes
are removed by taking the intersection set Nk(u)∩
Nk(v). Finally, the nodes isolated from any node
or at a distance greater than k are cut off to obtain
the enclosing subgraph.
Node Initialization: We use the position feature
hposi of the node and the type feature htypei as the
initial embedding of the node features to ensure that
the node features do not contain any node attributes.
First, we obtain the position feature hposi of the
node in subgraph by double radius vertex labeling
(Zhang and Chen, 2018) scheme:

hposi = [one-hot(d(i, u))⊕ one-hot(d(i, v))],
(1)

where d(i, u) denotes the shortest distance from
node i to u without passing through v. Second, we
obtain the type feature htypei from the embedding
of the concept corresponding to the entity by the
attention approach:

h
type
i = σ1(

∑

cj∈Ci
αjW1cj + b1) (2)

αj = softmax(cj , c) =
exp(cT

j c)∑
ck∈Ci exp(ckTc)

, (3)

where Ci is the set of concepts corresponding to
node hi, c denotes the type relation between entities
and concepts, αj reflects the importance of the
type information in each concept cj under the type

relation c, and σ1 is the sigmoid function. Finally,
by connecting the position feature hposi and type
feature htypei , we obtain the initial embedding of
the node h0i :

h0i = [htypei ⊕ hposi ]. (4)

We think that using ontology type information
to guide the node initialization helps the model
to learn the semantic information implicit in the
ontology.

3.3 Subgraph Neural Network
We input the enclosing subgraph G(u,rt,v) into the
GNN to update the embedding of the nodes. We
define the update function based on the architecture
of R-GCN (Schlichtkrull et al., 2018):

hkt = ReLU(W k
selfh

k−1
t + akt ), (5)

where akt denotes the neighbor feature aggregation
function. Inspired by CompGCN (Vashishth et al.,
2020) and edge attention, we define akt as:

akt =
R∑

r=1

∑

s∈Nr(t)

αk
rrtstW

k
r ϕ(e

k−1
r , hk−1

s ) (6)

αk
rrtst = σ2(W

k
2 s+ bk2) (7)

s = ReLU(W k
3 [h

k−1
s ⊕ hk−1

t ⊕ ek−1
r ⊕ ek−1

rt ]

+ bk3), (8)

where Nr(t) denotes the direct outgoing neighbors
of node t under relation r, αk

rrtst is the edge
attention weight of edge (s, r, t) at layer k, and
σ2 is the sigmoid function. ϕ(ek−1

r , hk−1
s ) is the

fusion operation on the features of the neighboring
nodes and relations. We set it as the subtraction
ϕ(e,h) = h− e(Vashishth et al., 2020). In order
to keep the same embedding space for nodes and
relations, we also update the relation embedding:

ekr = W k
rele

k−1
r , (9)

In addition, we also use the JK-connection mech-
anism(Xu et al., 2018) on the representation of
nodes and relations, and this approach makes the
performance of the model robust to the number
of layers of the GNN. The representation of the
subgraph G(u,rt,v) is obtained by average pooling
of all node representations:

hLG(u,rt,v)
=

1

|V|
∑

i∈V
hLi , (10)
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Finally, we obtain the score of the target triple
(u, rt, v):

fe(u, rt, v) = W T [hLG(u,rt,v)
⊕ hLu ⊕ hLv ⊕ eLrt ],

(11)

where hLu , hLv , and eLrt denote the embedding of
target nodes u, v and target relation r. We obtain
the negative triples used in loss functions below
by replacing the head or tail entity with uniformly
sampled random entities. The margin-based loss
function in the subgraph is:

Lent =
∑

(u,rt,v)∈Ge

max(0, fe(u′, rt, v′)

− fe(u, rt, v) + γ1). (12)

where (u, rt, v) and (u′, rt, v′) denote positive and
negative samples, respectively, and γ1 is the margin
hyperparameter.

3.4 Type Constraint and Ontology Training
We explicitly model the relationship between entity
embeddings and concept embeddings. Specifically,
this requires that the embedding of the entity h
should be close to the embedding of its corre-
sponding concept c after mapping to the ontology
embedding space. This way builds a type constraint
ft in the form of regularization:

ft(u, v, Cu,v) =
1

|Cu,v|
∑

cw∈Cu,v
∥cw − cu,v∥2 (13)

cu,v = σ3(W4hu,v + b4), (14)

where hu,v is the embedding of the target node u
or v, cu,v is the embedding of the entity embedding
after mapping to the ontology embedding space,
cw is the embedding of the corresponding concept
of node u or v, and σ3 is the tanh function. We
use the same negative sampling method as before.
Thus, the margin-based type constraint regular loss
is:

Ltype =
∑

(u,rt,v)∈Ge

max(0, ft(u, v, Cu,v)

−ft(u, v, Cu,v ′) + γ2).

(15)

where (u, v, Cu,v) and (u, v, Cu,v ′) denote positive
and negative samples. Inspired by(Hao et al.,
2019; Dong et al., 2021), learning meta-relations
between concepts† will enhance the semantic

†Meta-relations include hierarchical relations between
concepts and other general meta-relations

Dataset #E #R #ET #C #M #OT #TL

YAGO21K-610
train 16357 30 30000 610 24 1983 4861
valid 4388 21 3000 166 14 248 1783
test 3938 25 6970 159 13 248 1898

DB45K-165
train 29569 230 66000 165 20 516 29569
valid 10165 189 6600 53 8 65 10166
test 9681 177 15000 51 8 65 9682

Table 1: Statistics of inductive benchmark datasets. We
denote the number of entities, relations, entity triples,
concepts, meta-relations, ontology triples, and type links
using #R, #E, #ET, #C, #M, #OT, and #TL respectively.

information obtained by the model from the
ontology. Therefore, we train the link prediction
task on the ontology triplet (uc,mt, vc), and the
corresponding score function is:

fo(uc,mt, vc) = ∥huc +mt − hvc∥2 , (16)

where huc and hvc denote the embedding of
concepts, and mt denotes the embedding of meta-
relations between concepts. The margin-based loss
function obtained by ontology training is:

Lonto =
∑

(uc,mt,vc)∈Gc

max(0, fo(uc,mt, vc)

−fo(u
′
c,mt, v

′
c) + γ3).

(17)

where (uc,mt, vc) and (u′c,mt, v
′
c) denote positive

and negative samples.

3.5 Joint Training Strategy
We combine all the losses to obtain the total loss L.
The overall training objective is as follows:

L = Lent + αLont + ωLtype. (18)

where α and ω are weighting hyperparameters.
With the joint training strategy, our model can
better utilize the ontology information to enhance
the inductive inference on unknown entities, while
effectively capturing the missing ontology informa-
tion of entities.

4 Experimental Setup

4.1 Datasets
The KG benchmark datasets with ontology informa-
tion, YAGO26K-906 and DB111K-174 (Hao et al.,
2019), are originally developed for transductive
inference prediction. To facilitate the inductive test,
we build two new datasets, YAGO21K-610 and
DB45K-165, based on the two original benchmark
datasets. Both datasets are built from entity triples,
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Method YAGO21K-610 DB45K-165

MRR↑ Hits@1↑ Hits@10↑ MRR↑ Hits@1↑ Hits@10↑
GraIL(Teru et al., 2020) 0.682 0.666 0.684 0.540 0.515 0.548
TACT(Chen et al., 2021) 0.688 0.674 0.689 0.493 0.471 0.485
SNRI(Xu et al., 2022) 0.384 0.332 0.528 0.408 0.316 0.556
ChatGPT 0.271 0.219 0.333 0.504 0.431 0.603
Ours 0.794(15.4) 0.758(12.5) 0.845(22.6) 0.778(44.1) 0.704(36.7) 0.925(53.4)

Table 2: Main results on two inductive benchmark datasets. The numbers in bold and underlined indicate the best
and second-best results, respectively, and the numbers in ( ) indicate the percentage improvement of our method
over the best baseline result.

ontology triples, and type links. In the entity triples,
the entities in the test set do not appear in the train
set and valid set, while the relations in both the test
set and valid set are included in the train set. We
train on the train graph and test on the test graph. In
addition, to achieve ontology training, we randomly
divide the ontology triples into a train set, a valid
set, and a test set in the ratio of 80%/10%/10%. tab.
1 provides the complete statistics for both datasets.

Please refer to Appendix A.1 for the detailed
generation process of the datasets.

4.2 Compared Methods

To evaluate the effectiveness of our proposed
approach, we compare our method with several
state-of-the-art baseline methods. In addition, large
language models (e.g., ChatGPT, GPT-4, etc.)
have recently achieved impressive performance
on several natural language processing tasks.
Therefore, we also compare it with ChatGPT.
GraIL(Teru et al., 2020). The earliest method
for inductive inference based on graph neural
networks. It uses locally enclosing subgraphs and
entity-independent node labels to represent node
embeddings.
TACT(Chen et al., 2021). An inductive inference
method based on relational correlation networks.
The method categorizes all relation pairs into
several topological patterns and uses the topology
of the knowledge graph to learn the semantic
correlation between relations.
SNRI(Xu et al., 2022). An inductive inference
method based on graph neural networks. It utilizes
complete neighborhood relations in terms of both
neighborhood relation features of node features and
neighborhood relation paths of sparse subgraphs
and also models the neighborhood relations using
mutual information maximization.

4.3 Metrics

As in the previous work (Teru et al., 2020; Xu et al.,
2022), for the test triples (h, r, t), we combine head
(or tail) entities and relations with 50 candidate tail
(or head) entities (including the original tail (or
head) entities) obtained by random sampling to get
positive and negative triples and rank all triples
based on their scores. We use three metrics widely
used in link prediction for evaluation. (1) MRR:
The average of the inverse of the ranking of the
correct entities in all tested samples. (2) Hits@1:
The ratio of correct entities ranked first in all test
samples. (3) Hits@10: The ratio of correct entities
ranked within the top ten for all test samples.

4.4 Implementation Details

We extracted 3-hop enclosing subgraphs. In the
training process, we use Adam as the optimizer,
the learning rate is set to 0.01, and the batch size
is set to 16. We use a three-layer GNN, and the
dimensions of all feature embeddings are 32 except
for the dimensions of the type feature embedding
which is 24. The margins in the loss function are
set to 10,10,5, and the weighting hyperparameters
α and ω are set to 1. The maximum number
of training epochs is 30. All experiments are
conducted with Python 3.8.12 and PyTorch 1.11.0,
using a GeForce GTX 2080Ti with 12GB RAM.

5 Results and Analysis

5.1 Main Results

In this section, we make inductive link predictions
for the proposed method and several comparative
methods, and the results are shown in tab. 2. Since
we evaluate on a newly constructed benchmark
dataset, we re-implement GraIL, TACT, and SNRI
under our evaluation metrics. To make a fair
comparison, we keep the hyperparameters the
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Part YAGO21K-610 DB45K-165

MRR↑ Hits@1↑ Hits@10↑ MRR↑ Hits@1↑ Hits@10↑
Head 0.853 0.816 0.934 0.774 0.705 0.915
Tail 0.734 0.700 0.755 0.781 0.703 0.935
No type 0.743 0.714 0.757 0.710 0.613 0.914
Type 0.846 0.803 0.936 0.787 0.716 0.926
Ours 0.794 0.758 0.845 0.778 0.704 0.925

Table 3: Comparison of prediction performance in
different components. Head (or Tail) indicates the
performance when predicting the tail entity (or head
entity) given the head entity (or tail entity) and the
relationship, respectively. Type and No type indicate
the performance when the entity to be predicted has and
does not have type information, respectively.

same as their original papers. Similarly, we
test ChatGPT with the same test data. The
relevant details of the prompts are shown in
Appendix A.2. From the results, we can observe
that our method significantly outperforms the
state-of-the-art baseline methods and ChatGPT.
Specifically, some baseline methods (e.g., GraIL,
TACT) only focus on various structural features
in the knowledge graph, which makes them
unable to handle sparse subgraphs effectively.
And when the subgraph is empty (i.e., only the
target triple exists), its performance even drops
to the same as random guesses. In contrast, our
approach effectively alleviates this problem by
incorporating ontology information and achieves
an overall performance improvement (We provide
more results to support this claim in sec. 5.2).
Although approaches like SNRI attempt to deal
with the sparse subgraph problem by importing
global information, our proposed method still
outperforms them. Moreover, although ChatGPT
outperforms some of the baseline methods (or even
all of them) in some metrics, our method achieves
better results compared to it.

In addition, we also make transductive link
predictions for the proposed method and several
baseline methods for further comparison. For
detailed experimental results, please refer to
Appendix A.3.

5.2 Result Analysis

In this section, we analyze the sources of per-
formance improvement of our approach. First,
we counted all the test triples, and the results
are shown in tab. 3. We can observe that the
prediction performance for entities with ontology
type information outperforms that for entities
lacking ontology information on both datasets.

Figure 3: Prediction performance for target nodes with
different number of neighboring nodes. When entities
lack ontology information, our method degrades to
equal the baseline method. In each set of results, MRR,
Hits@1, and Hits@10 are shown from left to right.

Meanwhile, the prediction performance for tail
entities outperforms that for head entities on
the YAGO21K-610 dataset, while the prediction
performance for both is similar on the DB45K-
165 dataset. In addition, the proportion of head
entities lacking type information is higher than
that in tail entities on the YAGO21K-610 dataset,
while the proportions are close on the DB45K-165
dataset. Therefore, we believe that the integration
of ontology information improves the prediction
performance of our model.

Furthermore, we counted the prediction perfor-
mance for target nodes with different numbers of
neighboring nodes. For the target nodes, the more
neighboring nodes they have, the more paths may
exist between the nodes and thus the more dense
enclosing subgraphs are extracted. Therefore, by
analyzing the performance improvement of the
prediction of target nodes with different numbers
of neighboring nodes by ontology information, we
investigate the effect of ontology information on
subgraphs with different densities, and the results
are shown in fig. 3.From the results, we can see
that integrating ontology information improves the
prediction performance of target nodes with all
different numbers of neighboring nodes, and the
lower the number of neighboring nodes, the greater
the performance improvement. This indicates that
our method can improve the prediction for all
enclosing subgraphs, and effectively alleviate the
problem of poor prediction performance for sparse
subgraphs at the same time.

5.3 Type Prediction

Our previous analysis of the experimental results
demonstrates that ontology information can effec-
tively improve prediction performance. In fact,
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Dataset MRR↑ Hits@1↑ Hits@10↑
YAGO21K-610 0.858 0.791 0.953
DB45K-165 0.556 0.388 0.920

Table 4: Type prediction results on two inductive
benchmark datasets.

ontology information also suffers from missing
information, for example, on the test set of
the YAGO21K-610 dataset, only 1725 entities
have type information and more than half of
them miss ontology information. Since the
semantic links between entities and concepts are
explicitly modeled in our method, we can use our
method to predict type information for the test
triples. Specifically, without providing ontology
information, we predict the concept corresponding
to the target node based on the enclosing subgraph
of the target triple, and the prediction results are
shown in tab. 4. From the results, we can see
that our method can effectively predict the type
information of entities, which helps to alleviate the
problem of missing ontology information.

5.4 Ablation Study

To investigate the contribution of each component
of our approach, we conduct ablation experiments
on two datasets, and the experimental results are
shown in tab. 5. First, like our analysis, the
type information provided by the ontology plays a
very important role in the inductive link prediction.
When this module is removed, the prediction effect
degrades to equal the baseline method, and the
performance is severely compromised. Moreover,
ontology training and type constraint improve the
performance of the model in terms of optimizing
the embedding representation of ontology and ex-
plicitly modeling the semantic connection between
instances and concepts, respectively, and removing
either of these modules leads to a degradation of
performance. And when both modules are removed
at the same time, the performance will be further
degraded.

5.5 Hyper-parameter Analysis

As the core structure that is relied on when
predicting, the size of the enclosing subgraph
implies how much semantic information the target
node can obtain from the structure. We conducted
experiments on two datasets to investigate the
effect of hop (which directly responds to the

Method MRR↑ Hits@1↑ Hits@10↑
w/o type information 0.664 0.649 0.665
w/o ontology training 0.788 0.729 0.842
w/o type constraint 0.770 0.722 0.837
w/o both 0.758 0.708 0.835
Ours 0.794 0.758 0.845
w/o type information 0.545 0.517 0.551
w/o ontology training 0.759 0.682 0.919
w/o type constraint 0.758 0.680 0.915
w/o both 0.717 0.648 0.868
Ours 0.778 0.704 0.925

Table 5: Abalation study of our method. The upper
(resp. lower) part lists the results on YAGO21K-610
(resp. DB45K-165).

Figure 4: Inductive prediction performance of models
with different hop.

size of the enclosing subgraph) on inductive
prediction. From fig. 4, we can obtain the
following observations. With the hop gradually
increasing from 1, the prediction performance of
the model keeps improving. This implies that
too few neighbor nodes cannot provide enough
semantic information for prediction(We provide
more results in Appendix A.4 to support this claim).
And when hop exceeds a certain threshold (i.e., 3),
the performance starts to decrease. This indicates
that the subgraph contains the critical structure
needed for prediction after reaching a certain size
and continuing to increase the size of the subgraph
will continuously increase the number of noise
nodes, which will lead to performance degradation.

5.6 Error Analysis

What are the remaining errors in our research?
For the inductive prediction of various subgraphs
with ontology information, our method has brought
different degrees of performance improvement.
Moreover, our method can capture the missing
ontology information of the target nodes through
the rich semantic information in the subgraphs.
However, for those enclosing subgraphs that lack
ontology information and are extremely sparse,
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our method has difficulty in giving correct type
predictions due to the lack of available structural
information, making the inductive prediction on
such subgraphs not effectively improved. In fact,
link prediction on extremely sparse enclosing
subgraphs is difficult for all inductive prediction
methods.

6 Conclusions

In this work, we propose a knowledge graph
inductive inference method that combines ontology
information. The approach integrates semantic
information of ontology by using type information
for the initialization of node features. We construct
a type-constrained regular loss, which effectively
captures the missing ontology information of
entities. At the same time, ontology training helps
the model to enhance the semantic information
obtained from the ontology. Experimental results
show that our approach achieves state-of-the-art
inductive link prediction.

Limitations

Although we demonstrate the effectiveness of ontol-
ogy training for improving model performance, we
only use the simplest methods to model ontology
graphs. Using some richer and more effective
methods (e.g., using pre-trained embedding repre-
sentations or building detailed hierarchies) to learn
better embedding representations of the ontology
can help make the model further achieve superior
performance. In addition, in all experiments, we
set all margin and weighting hyperparameters as
fixed hyperparameters, which may make our model
not achieve its best performance. A dynamic
optimization of these hyperparameters may be a
better choice. We leave these limitations to our
future work.
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A Appendix

A.1 Dataset Generation

To generate the train set, we randomly select a
triple from the whole entity triples and treat it as
the initial train graph, and keep adding new edges
and nodes to the graph by the edges connected to
the train graph. To ensure that the entities in the test
set do not appear in the train set, we first remove the
train set from the entire graph and then use the same
approach to generate the test set, while requiring
that the relations in the test set must appear in the
train set. Finally, we generate the valid set using
the same way as we generated the train set, and in
addition, to ensure the inductive setting, all entities
in the valid set do not appear in the test set. The
triples in the train set, valid set, and test set do not
intersect each other.

A.2 Prompt details

Our prompt includes a one-shot example, task
instruction, relevant information, questions and
candidate entities. The prompt templates are shown
in tab. 6.

Where one-shot example is used to standardize
the format of the output. <Information> indicates
the neighbor information and type information of
the test triples, <Question> is the link prediction
for the test triples, and <Possible answer> denotes
the candidate entities.

Information:
B is C’s father.
A is the grandfather of C.
Question:
’_’ is B’s father.
Possible answers to ’_’ include:
A; B; C

Answer:
A; C; B

Provide the top 10 answers in descending order based on the likelihood
of correctness from possible answers. Please answer in the format of
the example above:

Information:
<Information>
Question:
<Question>
Possible answers to ’_’ include:
<Possible answer>
Information:
B is the mother of A.
C is the grandmother of A.
Question:
C is the mother of ’_’.
Possible answers to ’_’ include:
A; B; C

Answer:
B; A; C

Provide the top 10 answers in descending order based on the likelihood
of correctness from possible answers. Please answer in the format of
the example above:

Information:
<Information>
Question:
<Question>
Possible answers to ’_’ include:
<Possible answer>

Table 6: Prompt template for predicting the head entity
(upper panel) and tail entity (lower panel) in triples.

A.3 Transductive Prediction

FB15K-237 is the entity KG benchmark dataset
widely used in many recent works, and GraIL has
proposed four versions of variant datasets based
on it. We used some of these variant datasets
to compare our approach with several baseline
methods. Since FB15K-237 contains only entity
triples, we supplemented the type information
for the dataset used based on WikiData, and the
statistics of the supplemented dataset are shown
in tab. 7. In addition, due to the lack of carefully
built ontology triples, our method uses the version
without the ontology training module (w/o OT) for
transductive link prediction. The results are shown
in tab. 8. As can be seen from the results, our
method outperforms the baseline methods even for
transductive link prediction.
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Dataset #Entities #Relations #Triples #Concepts #Type links

v1
train 1093 142 1993 218 1313
valid 287 66 206 165 413
test 301 68 205 153 434

v2
train 1660 172 4145 304 2002
valid 548 92 469 219 755
test 562 107 478 236 737

v3
train 2501 183 7406 396 3151
valid 973 120 866 310 1282
test 981 128 865 330 1312

Table 7: Statistics on the FB15k-237 dataset after adding
type information.

Method v1 v2 v3

MRR↑ Hits@1↑ MRR↑ Hits@1↑ MRR↑ Hits@1↑
GraIL 0.499 0.412 0.615 0.499 0.635 0.529
SNRI 0.490 0.381 0.584 0.461 0.618 0.494
TACT 0.475 0.378 0.565 0.451 0.585 0.457
Ours 0.506 0.415 0.623 0.512 0.636 0.526

Table 8: Results of transductive link prediction on the
FB15k-237 dataset.

A.4 The Impact of Neighboring Nodes

We studied the effect of different enclosing sub-
graph sizes on the prediction during the test, and
the experimental results are shown in fig. 5.
It can be seen that the smaller the enclosing
subgraph extracted for the test triple, the worse
its prediction performance is without changing any
other conditions. The direct result of a smaller
enclosing subgraph is that the target node has
fewer neighboring nodes available. Therefore, we
argue that too few neighbor nodes will impair
the semantic information captured by the model
from the structure and thus lead to a decrease in
prediction performance.

A.5 Ontology Prediction

As a kind of knowledge graph, the ontology graph
also suffers from the problem of incompleteness.
Like other jointly trained methods, our proposed
method can conveniently complete the ontology

Figure 5: Prediction performance using enclosing
subgraphs of different sizes.

Method YAGO21K-610 DB45K-165

MRR↑ Hits@1↑ Hits@10↑ MRR↑ Hits@1↑ Hits@10↑
JOIE 0.243 0.159 0.383 0.279 0.231 0.315
Ours 0.278 0.185 0.454 0.418 0.331 0.592

Table 9: Results of link prediction on the ontology
graph.

graph while achieving the prediction of entities.
We compared our method with the jointly trained
baseline method (Hao et al., 2019) and the results
are shown in tab. 9. It can be seen that even though
we only use the simplest model to train ontology
triples, our method still outperforms the state-of-
the-art baseline method, where JOIE builds the
hierarchy of ontology in detail and uses a more
advanced training model.
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