@inproceedings{peskoff-etal-2023-gpt,
title = "{GPT} Deciphering Fedspeak: Quantifying Dissent Among Hawks and Doves",
author = "Peskoff, Denis and
Visokay, Adam and
Schulhoff, Sander and
Wachspress, Benjamin and
Blinder, Alan and
Stewart, Brandon",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.434",
doi = "10.18653/v1/2023.findings-emnlp.434",
pages = "6529--6539",
abstract = "Markets and policymakers around the world hang on the consequential monetary policy decisions made by the Federal Open Market Committee (FOMC). Publicly available textual documentation of their meetings provides insight into members{'} attitudes about the economy. We use GPT-4 to quantify dissent among members on the topic of inflation. We find that transcripts and minutes reflect the diversity of member views about the macroeconomic outlook in a way that is lost or omitted from the public statements. In fact, diverging opinions that shed light upon the committee{'}s {``}true{''} attitudes are almost entirely omitted from the final statements. Hence, we argue that forecasting FOMC sentiment based solely on statements will not sufficiently reflect dissent among the hawks and doves.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="peskoff-etal-2023-gpt">
<titleInfo>
<title>GPT Deciphering Fedspeak: Quantifying Dissent Among Hawks and Doves</title>
</titleInfo>
<name type="personal">
<namePart type="given">Denis</namePart>
<namePart type="family">Peskoff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Visokay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sander</namePart>
<namePart type="family">Schulhoff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Wachspress</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Blinder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brandon</namePart>
<namePart type="family">Stewart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Markets and policymakers around the world hang on the consequential monetary policy decisions made by the Federal Open Market Committee (FOMC). Publicly available textual documentation of their meetings provides insight into members’ attitudes about the economy. We use GPT-4 to quantify dissent among members on the topic of inflation. We find that transcripts and minutes reflect the diversity of member views about the macroeconomic outlook in a way that is lost or omitted from the public statements. In fact, diverging opinions that shed light upon the committee’s “true” attitudes are almost entirely omitted from the final statements. Hence, we argue that forecasting FOMC sentiment based solely on statements will not sufficiently reflect dissent among the hawks and doves.</abstract>
<identifier type="citekey">peskoff-etal-2023-gpt</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.434</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.434</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>6529</start>
<end>6539</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GPT Deciphering Fedspeak: Quantifying Dissent Among Hawks and Doves
%A Peskoff, Denis
%A Visokay, Adam
%A Schulhoff, Sander
%A Wachspress, Benjamin
%A Blinder, Alan
%A Stewart, Brandon
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F peskoff-etal-2023-gpt
%X Markets and policymakers around the world hang on the consequential monetary policy decisions made by the Federal Open Market Committee (FOMC). Publicly available textual documentation of their meetings provides insight into members’ attitudes about the economy. We use GPT-4 to quantify dissent among members on the topic of inflation. We find that transcripts and minutes reflect the diversity of member views about the macroeconomic outlook in a way that is lost or omitted from the public statements. In fact, diverging opinions that shed light upon the committee’s “true” attitudes are almost entirely omitted from the final statements. Hence, we argue that forecasting FOMC sentiment based solely on statements will not sufficiently reflect dissent among the hawks and doves.
%R 10.18653/v1/2023.findings-emnlp.434
%U https://aclanthology.org/2023.findings-emnlp.434
%U https://doi.org/10.18653/v1/2023.findings-emnlp.434
%P 6529-6539
Markdown (Informal)
[GPT Deciphering Fedspeak: Quantifying Dissent Among Hawks and Doves](https://aclanthology.org/2023.findings-emnlp.434) (Peskoff et al., Findings 2023)
ACL