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Abstract

We introduce inverse reinforcement learning
(IRL) as an effective paradigm for training ab-
stractive summarization models, imitating hu-
man summarization behaviors. Our IRL model
estimates the reward function using a suite of
important sub-rewards for summarization and
concurrently optimizes the policy network. Ex-
perimental results across datasets in different
domains (CNN/DailyMail and WikiHow) and
various model sizes (BART-base and BART-
large) demonstrate the superiority of our pro-
posed IRL model for summarization over MLE
and RL baselines. The resulting summaries ex-
hibit greater similarity to human-crafted gold
references, outperforming MLE and RL base-
lines on metrics such as ROUGE, coverage,
novelty, compression ratio, factuality, and hu-
man evaluations.

1 Introduction

Most fine-tuned abstractive summarization systems
(Rush et al., 2015; Dou et al., 2021) are trained
using maximum likelihood estimation (MLE) and
the negative log-likelihood (NLL) loss. Previous
research has demonstrated that MLE training pos-
sesses certain disadvantages: (1) object mismatch
(Ding and Soricut, 2017), where the NLL loss con-
centrates on word-level matches, neglecting token
rearrangement and paraphrases; (2) exposure bias
(Ranzato et al., 2016), the discrepancy between
training and inference regarding reference tokens.

To address these issues, reinforcement learning
(RL), which optimizes policy networks by directly
maximizing the discrete reward, has emerged as
an alternative training paradigm for summarization
(Paulus et al., 2018; Yadav et al., 2021). Typically,
RL-trained summarization models require a pre-
defined reward function and a common practice
(Paulus et al., 2018) is to use ROUGE (Lin, 2004).
ROUGE-base reward does not, however, consider
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other quality aspects like fluency, coherence, or
paraphrasing. Li et al. (2019) and Pasunuru and
Bansal (2018) later integrated other types of re-
wards such as BERTScore (Zhang et al., 2019)
or multiple rewards into the RL training process.
However, as reward components increase, their
weights must be set manually, relying heavily on
the author’s experience and making generalization
into new domains difficult.

In contrast to RL, we argue that inverse rein-
forcement learning (IRL) may be more suitable
for text summarization. IRL focuses on estimat-
ing an agent’s reward function based on their ob-
served behavior, rather than predefining it (Arora
and Doshi, 2021). Consequently, IRL can be ad-
vantageous in situations where the reward function
is not explicitly known (Ghosh et al., 2021) or chal-
lenging to define through interactions (Bahdanau
et al., 2019). Our experimental results suggest that
by using IRL to automatically learn weights over
combined summarization subrewards and imitate
human generations/expert demonstration, we can
jointly optimize the reward function and policy
network, yielding superior summaries as measured
by both automatic and human evaluations.

More specifically, inspired by Shi et al. (2018);
Ghosh et al. (2021), we integrate IRL into text
summarization, which estimates the reward func-
tion for summarization and optimizes the model
accordingly. By employing IRL, we gain the abil-
ity to dynamically learn the weights of various
sub-reward components crucial to the summariza-
tion task based on the training data. Once the sub-
rewards are defined, the training process with IRL
consists of two alternating phases: the reward up-
date phase, which focuses on learning the reward
function, and the policy update phase, which aims
to optimize the model to maximize the reward. Fig-
ure 1 presents an overview of our approach.

Compared to the models trained with MLE or
RL, our empirical results on multiple summariza-
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Figure 1: Our proposed framework of inverse reinforcement learning with multiple reward components for
summarization. Our model is trained with two alternative phases: (1) Policy Update: using the reward model (left)
to update the summarization model (right). (2) Reward Update: using expert demonstration (middle) and trained
policy (right) to adjust the reward model (left).

tion datasets and different model sizes suggest that
the IRL-trained agent produces summaries that are
significantly more similar to the human-written ref-
erence summaries across multiple evaluation met-
rics, including ROUGE, coverage, novelty, and
compression ratio. In addition, although we did not
explicitly incorporate faithfulness as a sub-reward
during training, our empirical results indicate that
our models exhibit a higher level of abstraction,
with a notably lower decline rate in hallucination.
This particular characteristic closely aligns with the
behavior observed in human-generated summaries.

Our contributions can be summarized as follows:

• We introduce inverse reinforcement learning
into text summarization and define a suite of
rewards that are important for summarization
optimization, which, to the best of our knowl-
edge, is the first attempt at this task.

• We demonstrate that IRL method is effective
at learning the weights for combining different
sub-rewards for summarization, allowing us to
train policies based on the training datasets in-
stead of manually determining these weights.

• By simultaneously estimating the reward func-
tion and optimizing the summarization agent
with expert demonstrations, we show that the
model trained with IRL produces summaries
that closely follow human behaviors, in terms
of better ROUGE, coverage, novelty, compres-
sion ratio and factuality when compared to the
baselines trained with MLE and RL.

2 Related Work

Summarization Extensive research has been
conducted on fine-tuned deep learning approaches

for both abstractive summarization (Rush et al.,
2015; See et al., 2017; Dou et al., 2021) and extrac-
tive summarization (Nallapati et al., 2017; Zhong
et al., 2020). In spite of the differences in genera-
tion paradigms, these models trained with the NLL
loss have similar limitations, including exposure
bias and objective mismatch (Paulus et al., 2018).
To address these challenges, reinforcement learning
has emerged as a popular alternative for training
abstractive (Paulus et al., 2018; Yadav et al., 2021;
Dou et al., 2021) and extractive summarization sys-
tems (Zhong et al., 2020; Bian et al., 2022; Zhang
et al., 2022). RL-based approaches are designed to
optimize a discrete reward, often chosen heuristi-
cally, such as ROUGE. For instance, Yadav et al.
(2021) propose a reward function specifically tai-
lored for consumer health question (CHQ) datasets,
while Fabbri et al. (2022) construct a reward func-
tion based on textual entailment and coverage of
summaries in semantic spaces. However, manually
designing reward functions can limit their general-
izability beyond specific domains. PA notable work
similar to ours is the model introduced by Böhm
et al. (2019), which focuses on learning reward
functions rather than manually selecting them for
policy optimization. In contrast to our approach,
they train neural networks to learn directly from
human ratings instead of expert demonstrations,
which may result in lower interpretability.

Hallucination The increasing flexibility of text
generation models has given rise to a concern-
ing phenomenon known as hallucination (Narayan
et al., 2021; Dong et al., 2022; Cao et al., 2022),
where models generate text unsupported by source
documents (Maynez et al., 2020). Moreover, it has
been observed that conventional evaluation met-
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rics, such as ROUGE, do not effectively capture
factuality (Maynez et al., 2020). To tackle issues
related to faithfulness and factuality in generated
summaries, numerous methods have been proposed
to enhance the preservation of entity-level informa-
tion. For example, Narayan et al. (2021) employ
entity chains as an intermediate planning stage,
while Dong et al. (2022) incorporate entity-level
external knowledge into summarization. Instead of
designing additional components to explicitly ad-
dress hallucination, we adopt an approach similar
to Wang and Sennrich (2020) and leverage IRL that
naturally mitigates hallucinations by addressing the
exposure bias. This perspective offers a novel direc-
tion to enhancing the factuality of summarization
systems, complementing existing strategies that fo-
cus on entity-level information preservation.

Inverse Reinforcement Learning The backbone
of our approach is inverse reinforcement learning,
which has been widely used in a diverse range of ar-
eas, including computer vision (Zheng et al., 2021)
and NLP (Shi et al., 2018; Wang et al., 2018; Ghosh
et al., 2021; Ghosh and Srivastava, 2021; Hao et al.,
2022). In NLP, Wang et al. (2018) explore ex-
pert demonstrations to train neural networks with
learned reward functions for visual story genera-
tion. Hao et al. (2022) employ the trained teacher-
forcing model as the reward function, generating
step-wise rewards for text generation. However,
these approaches implicitly provide the reward
function for policy optimization. Of the closely
related works, both Ghosh et al. (2021) and Ghosh
and Srivastava (2021) incorporate IRL into their
proposed methods. These studies focus on table-
to-text generation and program generation from
natural language instructions, respectively, while
our research centers on the summarization task.
Given the task differences, we propose distinct sub-
reward components tailored specifically for text
summarization. Furthermore, we provide a com-
prehensive analysis highlighting the advantages of
IRL in summarization, particularly concerning n-
grams, entities, and hallucinations.

3 Method

This section presents an overview and formulation
of summarization, along with a discussion of re-
inforcement learning (RL) and our approach to
training summarization models using inverse rein-
forcement learning (IRL).

Problem Formulation The task of abstractive
summarization can be viewed as a conditional lan-
guage generation task. Given a source document
x = {x1, x2, . . . , xn} with n tokens, the summa-
rization task involves learning a conditional prob-
abilistic model pθ(y|x) that produces a summary
y = (y1, ..., y|y|), where yi is chosen from a pre-
defined vocabulary V and θ denotes the parameters
of the summarization model. pθ(y|x) can be fur-
ther decomposed into the product of conditional
probabilities for each token based on the previously
generated context:

pθ(y|x) =
|y|∏

t=1

pθ(yt | y<t,x). (1)

Generally, pθ in Eqn. (1) is trained using
the maximum likelihood estimation (MLE) objec-
tive with teacher forcing (Williams and Zipser,
1989), which aims to maximize the likelihood
of the human-written reference summary y∗ =
(y∗1, ..., y

∗
|y|):

LMLE = −
|y∗|∑

t=1

log p(yt|y∗1, . . . , y∗t−1) (2)

where |y∗| denotes the length of the target se-
quence.

Reinforcement Learning Due to exposure bias
(Ranzato et al., 2016) in MLE with teacher forc-
ing, RL has emerged as an alternative for training
neural summarization models (Paulus et al., 2018).
It offers the advantage of directly optimizing dis-
crete metrics such as ROUGE (Lin, 2004), which
considers a certain degree of flexibility for token
rearrangement and paraphrasing.

In RL training, models typically require predefin-
ing the reward R. The reward function R(y) is
established by comparing the output sequence y
with the ground truth sequence y∗ using evaluation
metrics such as the average of ROUGE -1, -2, -L,
and F1 scores with respect to the gold references
(Narayan et al., 2018; Dong et al., 2018). The ob-
jective of RL is to learn a policy that maximizes
the predefined discrete metric:

LRL = R(ys)

m′∑

t=1

log p(yst |ys1, . . . , yst−1) (3)

where ys is obtained by sampling from the prob-
ability distribution in the current policy p at each
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decoding time step, with m′ representing the length
of ys.

To stabilize training and reduce variance in text
generation, the commonly used self-critical policy
gradient training algorithm (Rennie et al., 2017) is
employed. In this algorithm, two separate output
sequences, ys and yb, are generated during each
training iteration. These sequences represent the
sampled output and the baseline output, respec-
tively. The baseline output is obtained by maxi-
mizing the output probability distribution at each
time step, which essentially involves performing a
greedy search. With this baseline formulation, the
reward R can be calculated as R = R(ys)−R(yb).

3.1 Training with Inverse Reinforcement
Learning

We apply the Maximum Entropy IRL algorithm
(Ghosh et al., 2021) to train our summarization
agent. The objective is to establish an effective re-
ward function derived from expert demonstrations,
which, in our context, take the form of human-
authored reference summaries. We identify crucial
reward components for text summarization, includ-
ing salience, novelty/paraphrasing, compression ra-
tio, and content coverage. It’s worth noting that we
do not claim optimality for the defined sub-rewards,
and exploration to better match human preferences
is left for future work. Instead, we demonstrate
improvements in the summarization agent across
various critical measures by defining a set of sub-
rewards and training the IRL agent to optimize a
linear combination of these sub-rewards.

Training an agent with IRL involves two phases
that are performed alternatively: (1) the reward
update phase that focuses on learning the reward
function and (2) the policy update phase that fo-
cuses on finding the optimal agent. During the
reward update phase, we utilize the fixed, learned
policy to generate a summary. We then update
the weights of different sub-reward components
by considering the reference summary in the train-
ing pair. In the policy update phase, we fix the
reward function and employ it to update the policy
gradients, refining the agent’s performance.

The base of our IRL method consists of sub-
reward components C = {C1, C2, . . . , Ck}, as
elaborated in Section 4.2. The IRL reward function
is a weighted sum of these components:

Rϕ(y) = ϕTC (4)

where ϕ = {ϕ1, ϕ2, . . . , ϕk} is the weight vector

for the reward components. For IRL, we assume
that the summary is sampled from a distribution
pϕ(y), which is defined as:

pϕ(y) =
1

Z
exp(Rϕ(y)). (5)

R is defined in Eqn. (4), and Z =
∫
y exp(Rϕ(y))

is the partition function. The training objective,
denoted by J (ϕ), is to update the weights of sub-
rewards in order to maximize the log-likelihood of
the probability defined in Eqn. (5), computed as:

J (ϕ) = 1

N

N∑

n=1

log pϕ(y
n). (6)

For a reward component Cj , the gradient can be
calculated as follows (Ziebart et al., 2008):

∇ϕj
J (ϕ) =Ey∼pdata∇ϕj

Rϕ(y)

− Ey∼pϕ(y)∇ϕj
Rϕ(y).

(7)

To estimate Eqn. (7), which involves expecta-
tions over all possible summaries, we employ im-
portance sampling. Specifically, we estimate it by
sampling N summaries from the expert demonstra-
tions distribution pdata, and M summaries from
the policy distribution pθ(y):

∇ϕj
J (ϕ)) = 1

N

N∑

n=1

∇ϕj
Rϕ(y

n)

− 1∑
m βm

M∑

m=1

βm∇ϕj
Rϕ(y

m)

(8)
where

βm ∝
expRϕ(y

m)

pθ(ym)
.

yn and ym are drawn from pdata and the pθ(y) re-
spectively. The full training procedure is illustrated
in Algorithm 1. More mathematical details can be
found in Shi et al. (2018) and Ghosh et al. (2021).

Note that we employed mixed training (see Ap-
pendix A for hyperparameter details) for both RL
and IRL training to expedite convergence while
maintaining a consistent setting for comparison.
While setting the reward function is always a chal-
lenge in RL, IRL can simply learn a paradigm
from expert demonstration, which in turn reduces
the inductive bias brought by humans. Our re-
sults and analyses in section 4 demonstrate the
improvements from multiple perspectives, includ-
ing salience, coverage, and faithfulness.
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Algorithm 1 IRL Training for Summarization

Input:
Pretrained policy (summarization) model pθ(y).
Initital reward model Rϕ(y).
Labelled samples {xi,yi}ni=1.
Policy learning rate α, reward learning rate β.
Training epoch H , reward update frequency F .
Output:
Optimal policy model and reward model.

1: for h← 1 to H do
2: if h%F = 0 then
3: for ϕj ∈ {ϕ1, ϕ2, . . . , ϕk} do
4: Get ∇ϕj

J (ϕ)) according to Eqn.
(8) and update the reward model:

5: ϕj = ϕj + β∇ϕj
J (ϕ))

6: end for
7: fix reward model Rϕ(y).
8: end if
9: for mini-batch B from {xi,yi}ni=1 do

10: Use reward model Rϕ(y) and get LRL

according to Eqn. (3) to update thepolicy
model:

11: θ = θ − α∇θLRL

12: end for
13: end for

4 Experiments and Results

We conducted extensive experiments to examine
the effectiveness of the proposed IRL-based sum-
marization approach against traditional summariza-
tion methods. This section will provide details
about the datasets, baselines, reward components,
experiment settings and results.

4.1 Datasets and Baselines

BART-base and BART-large (Lewis et al., 2020)
were used as the backbone model for the experi-
ments with the Hugging Face MLE implementa-
tion.1 RL (Equal) means using equal weight for
every sub-reward components defined in section
4.2 as the final training reward. We carried out
experiments on both CNN/DailyMail (See et al.,
2017) and WikiHow (Koupaee and Wang, 2018)
datasets. Further training and evaluation details are
presented in Appendix A.

1https://github.com/huggingface/transformers/
tree/v4.9.2/examples/pytorch/summarization

Dataset Method R-1↑ R-2 ↑ R-L ↑ BS ↑
BART-base

MLE 42.02 19.46 39.04 60.24
CNN/DM RL 44.47 21.05 41.89 61.62

RL (Equal) 43.42 20.39 40.71 61.08
IRL 44.61 20.14 42.21 62.19

MLE 40.30 16.76 39.16 69.24
WikiHow RL 42.43 16.79 41.04 69.21

RL (Equal) 41.36 16.39 39.92 69.74
IRL 42.76 16.92 41.29 69.57

BART-large

MLE 44.19 21.27 41.24 61.61
CNN/DM RL 44.81 21.07 41.93 60.86

RL (Equal) 41.47 20.39 38.83 60.67
IRL 46.12 21.98 43.15 63.05

MLE 42.47 19.02 41.25 70.33
WikiHow RL 42.91 19.18 41.67 70.35

RL (Equal) 41.86 18.69 40.61 69.78
IRL 43.59 17.52 42.12 69.64

Table 1: Comparison of summarization models trained
with different learning methods on CNN/DM and Wiki-
How test sets. We report R (ROUGE)-1,-2,-L, and BS
(BERTScore) for measuring the salience of the model.

4.2 Sub-Reward Components
This part provides a detailed definition of sub-
reward components used in the IRL in Eqn. (4).
The sub-reward components encourage the agent to
generate summaries that closely align with human-
written reference summaries in terms of salience,
novelty, coverage, and compression ratio.

• ROUGE (Lin, 2004): Encourages generations
to match the references in terms of salience,
with a focus on ROUGE-L as the sub-reward.

• Novelty (Chen et al., 2020): Ensures a similar
level of novelty in the generation to reference,
measured by novel n-grams in the summary.

• Coverage (Grusky et al., 2018): Ensures
that the generated summaries cover a similar
amount of content as the reference, calculated
using the word overlap rate between the sum-
mary and the original article.

• Compression Ratio (Grusky et al., 2018):
Maintains a balanced word count ratio be-
tween the generated/reference summary and
the original article.

4.3 Main Results
The results demonstrate consistent superiority of
the IRL models over both RL and MLE models
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Dataset Method R-L Nov Cov Comp

REF 100 78.02 83.99 13.48

MLE 39.01 14.07 99.24 15.22
CNN/DM RL 41.87 25.97 98.83 16.41

IRL 42.19 58.78 96.72 13.81

REF 100 95.63 73.54 18.07

MLE 39.16 81.13 89.30 12.70
WikiHow RL 41.03 83.08 91.79 15.88

IRL 41.29 91.32 89.19 14.80

Table 2: Test results on different reward components
on BART-base. REF refers to the results of the human-
written reference summaries. Matching the REF closely
is better as bolded. IRL reward components include
R-L, Nov (Novelty), Cov (Coverage), and Comp (Com-
pression).

across datasets and model sizes in the majority of
measures. Particularly, the performance improve-
ment of the BART-large model is notably signifi-
cant for the CNN/DM dataset. On the other hand, it
is observed that the BART-large model on the Wik-
iHow dataset adopted a distinct strategy, leading to
a notable improvement in ROUGE-1 at the expense
of a decline in ROUGE-2 and BERTScore 2. Nev-
ertheless, our IRL model consistently outperforms
models trained with MLE and RL across most met-
rics by effectively balancing and utilizing different
sub-reward components across various datasets and
models.

4.4 Component-wise Results

The objective of MaxEnt IRL is to learn a reward
function that aligns with human behaviors and train
the policy to generate summaries similar to expert
demonstrations. To assess the effectiveness of IRL
in optimizing each dimension of summarization, as
identified in prior work as characteristic of effective
summarization, we conducted experiments to eval-
uate the fine-grained performance of BART-base
using various training strategies.

We present the results for each sub-reward com-
ponent in Table 2, which demonstrate that our IRL
model closely aligns with the references in each
component, indicating the successful fulfillment of
the IRL training objective. Additionally, the cover-
age results in Table 2 suggest that models trained
with MLE and RL tend to prefer directly copy-
ing words from the source article. In contrast, our

2https://github.com/huggingface/datasets/tree/
1.15.1/metrics/bertscore

IRL model generates more abstractive summaries
while maintaining a similar coverage to the refer-
ence. The only exception is the RL model, which
achieves better compression results on the Wiki-
How dataset. As we train both RL and IRL models
concurrently with the MLE model, we consider the
MLE result as a reference point for both models.
RL models consistently achieve higher compres-
sion results than MLE models, as they primarily
optimize for the final ROUGE score. However,
our IRL model allows us to adjust the MLE re-
sult towards the reference (CNN/DM: 15.22-13.23,
13.81; WikiHow: 12.70-15.88, 18.07).

4.5 Human Evaluation

In addition, we conducted a human evaluation com-
paring BART-base trained with IRL versus RL on
the CNN/DM dataset. The human judges 3 were
presented with reference summaries and genera-
tions from different summarization systems in a
random and anonymized order. The judges were
asked to evaluate which system’s summary was
more similar to the reference overall. They were
instructed to read the source article only when they
were unable to decide or needed additional infor-
mation. 4

IRL vs. RL Judge 1 Judge 2 Judge 3 Avg.

IRL preferred 56% 53% 58% 55.67%

Table 3: Human evaluation results on 100 randomly
sampled examples, accompanied by generations from
BART-base trained with IRL or RL, presented in a ran-
dom and anonymized order. Each example was inde-
pendently annotated by three annotators, resulting in an
average pairwise inter-annotator agreement of 57.33%.

Table 3 presents the human evaluation results.
With a confidence level of 95% and one-sided
A/B tests, IRL exhibits significantly higher sim-
ilarity to human-generated reference summaries
(p = 0.0246). Furthermore, the preference for IRL
(55.67%) surpasses that of RL (47.67%) by a no-
table margin of 16.78%. Additionally, pairwise
inter-annotator agreement was measured, yielding
agreement percentages of 55%, 60%, and 57% for
the respective evaluations. These findings provide
strong support for the IRL method, highlighting its

3All judges are native English speakers with a minimum of
a bachelor’s degree and were compensated at a rate of $19.5/h.

4We made the decision to make reading the source article
optional for the judges in order to prevent creating a significant
cognitive burden and to encourage them to take shortcuts.
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Method 1-gram 2-gram 3-gram 4-gram FactCC ↑
CNN/DM

REF 20.61 57.87 75.91 83.94 41.43

MLE 1.66 8.30 14.25 18.78 82.70
RL 2.61 15.25 26.06 34.30 75.13
IRL 5.67 37.33 58.61 70.81 57.21

WikiHow
REF 47.21 85.16 94.90 90.72 88.66

MLE 31.15 65.80 80.97 72.69 92.93
RL 25.86 63.69 82.91 85.17 91.55
IRL 29.00 73.26 91.18 90.40 92.21

Table 4: Test results in terms of n-gram novelty and
FactCC scores. Test results that are more similar to the
references are bolded.
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Figure 2: The FactCC/Novelty curves on the CNN/DM
and WikiHow dataset. We use the REF result as an
anchor to judge three models for the trade-off between
abstractiveness and faithfulness.

capacity to enhance the quality of summarization
outputs.

5 Analysis

This section provides in-depth analyses of the pro-
posed framework from different perspectives, in-
cluding faithfulness, coverage, entity-level analysis
and weight analysis.

5.1 Results on Hallucination Reduction

Following Wang and Sennrich (2020)’s findings
correlating exposure bias with hallucination in
NMT, we investigated if IRL can alleviate this
problem in summarization. We utilized the popu-
lar FactCC (Kryściński et al., 2019) for measuring
faithfulness and hallucination (Dong et al., 2022;

0 25 50 75 100 125 150 175 200

0.002

0.004

0.006

CN
ND

M

REF
MLE
RL
IRL

0 25 50 75 100 125 150 175 200
location

0.002

0.004

0.006

0.008

0.010

W
ik

iH
ow

KL-divergence CNNDM MLE: 0.1371 RL: 0.0500 IRL: 0.0078
WikiHow MLE: 0.0126 RL: 0.0165 IRL: 0.0097

Figure 3: The copy fragments’ position/location distri-
bution of original articles for different models.

Cao et al., 2022; Wan and Bansal, 2022).
Without considering the abstractive level of the

generations, it seems that models trained with MLE
have the highest faithfulness scores according to Ta-
ble 4. However, we also notice that reference sum-
maries have lower FactCC scores. The decrease
in FactCC might be rooted in reference summaries
being more abstract, indicated by the novel n-gram
measures (left column). Still, IRL models tend to
generate summaries more closely aligned with the
reference in terms of novelty and FactCC.

To further measure the abstractiveness vs. faith-
fulness trade-off, we plot the trade-off curve similar
to Ladhak et al. (2022) by using the REF as the an-
chor. As Figure 2 shows, the curve for our IRL
model is significantly above both the MLE and RL
model, which demonstrates that our IRL model
tends to be "abstractive" with the slowest decline
of faithfulness.

5.2 Coverage Analysis

One limitation of the Coverage metric from Grusky
et al. (2018) is its disregard for the position of
copied text in the original source. We believe that
the position of these copied fragments is also cru-
cial because a different copy position may increase
the Coverage score but widen the gap between the
generated summary and the reference summary.

The position/location distribution can be seen in
Figure 3. We limited the maximum location to 200,
as the remaining locations make up a small percent-
age. It is clear that the IRL model is more closely
aligned with the REF, particularly on the CNN/DM
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Figure 4: The weight tendency curves during the training with IRL. The x-axis is the training epoch and the y-axis
is the weight of corresponding reward. Initially, every reward is equally weighted.

dataset. To further gauge the similarity of the distri-
butions, we computed the KL-divergence between
the models and REF and present the results in Fig-
ure 3. A lower score indicates a more similar dis-
tribution to REF. On both CNN/DM and WikiHow
datasets, the IRL model had the lowest KL score,
indicating that it learned a policy that closely mim-
ics the expert policy used to generate REF, which
aligns with its intended purpose.

5.3 Entity-level Analysis
Summarization aims to condense the main ideas
of an article into a brief summary. We conducted
additional analyses to evaluate the ability of the
models to preserve important information at the
entity level, as presented in Table 5. By compar-
ing the entities extracted from the generated sum-
maries, reference summaries, and original articles,
we obtained insightful results. Notably, the IRL
model achieved the highest F1 score, indicating
its proficiency in retaining important information.
Additionally, the IRL model produced shorter sum-
maries with a higher concentration of information
on the CNN/DM dataset, making it an effective
approach for summarization.

5.4 Weight Analysis
To gain insights into how the IRL model effec-
tively manages diverse sub-reward components, we
plot the weight curves associated with these com-
ponents during the IRL training phase, depicted
in Figure 4. The figure reveals compelling ob-
servations, illustrating that the weight curves for
CNN/DM and WikiHow exhibit similar trends that
align with the primary objective of summarization,
while also showcasing distinct patterns that corre-
spond to the unique characteristics of each dataset.

Method Precision Recall F1 Length

CNN/DM

MLE 36.97 41.18 41.51 78.68
RL 37.74 45.79 42.99 86.19
IRL 39.68 42.74 43.21 73.94

WikiHow

MLE 7.61 6.63 61.95 46.90
RL 8.25 7.35 59.86 57.36
IRL 8.47 6.93 62.25 53.19

Table 5: Entity match based on spacy.5 Precision uses
the entity number in the model’s output as the denomi-
nator, while Recall uses the entity number in reference
as the denominator. Length represents the average sum-
marization length of the corresponding model.

On both datasets, the ROUGE and Novelty com-
ponents maintain a consistently positive weight
throughout the IRL training process. In contrast,
the Coverage component gradually diminishes in
importance over time. Notably, the IRL models
have acquired distinct compression strategies spe-
cific to each dataset. In comparison to the MLE
results, the IRL models generate shorter summaries
for the CNN/DM dataset, while producing longer
summaries for WikiHow. Importantly, these re-
vised summaries closely match the reference sum-
maries, indicating improved performance.

6 Conclusion

We introduce inverse reinforcement learning into
text summarization and demonstrate the efficiency
of this method. Using IRL, we can train a policy
to better match human behaviors by learning from
expert demonstrations. Our experimental results in-
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dicate that IRL can improve the summary quality in
a variety of measures, including ROUGE, novelty,
Coverage, compression ratios, and factuality. Thus,
our empirical results suggest that IRL can better
fit into the goal of summarization, in addition to
providing more interpretable training.

7 Limitations

We only considered four sub-rewards to fit into the
summarization task for interpretable results. How-
ever, IRL allows for the use of more sub-rewards
during training, and as such, there is potential for
further exploration in this area. Secondly, we use
self-critical policy gradient training as the back-
bone RL algorithm, but other advanced algorithms
such as PPO (Schulman et al., 2017) could be incor-
porated into IRL and summarization in the future.
IRL does not restrict the choice of the backbone
RL algorithm during the reward update phase.
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A Appendix

A.1 Mixed Training
For abstractive summarization, ROUGE metric is
widely used to evaluate the performance of the
summarization model. For reinforcement learning,
if we simply use ROUGE as the reward with only
the RL loss, it may cause too many repetitions in
the final output. Following Paulus et al. (2018),
we use the MLE loss together with the RL loss for
training, as:

LMix = (1− γ)LRL + γLMLE

where γ is a hyper-parameter. In other words,
the LRL used in the paper is actually LMix.We
set γ=0.0016 for the CNN/DailyMial dataset as
in (Paulus et al., 2018). Similarly, we also set
γ=0.0016 for the WikiHow dataset.

A.2 Training and Evaluation Details
We used the BART-base6 model as our backbone
model. It has around 140M parameters. We per-
formed the MLE, RL, and IRL training on four
GeForce RTX 2080Ti GPUs with 11 GB of mem-
ory each. For the MLE training, we followed the
scripts provided by the transformers7 package. For
the RL training, as using the full dataset requires
too much time, following (Pasunuru and Bansal,
2018), we used the first 10K examples in the dataset
to train the model. The training epoch was set to 20,
and the policy learning rate α was set to 1e-6 for
both RL and IRL. Additionally, for IRL training,
we set N = M = 100 in Eqn. (8) to update the
reward. The update frequency used in Algorithm
1 was set to 1. For all of the training methods, we
chose the best model based on the ROUGE-L score
on the validation set.

For evaluation, we used the Hugging Face
dataset package8 to get both ROUGE and
BERTScore.

6https://huggingface.co/facebook/bart-base
7https://github.com/huggingface/transformers/

tree/v4.9.2/examples/pytorch/summarization
8https://github.com/huggingface/datasets/tree/

1.15.1/datasets
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