
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 6638–6648
December 6-10, 2023 ©2023 Association for Computational Linguistics

PerturbScore: Connecting Discrete and Continuous Perturbations in NLP

Linyang Li∗, Ke Ren∗, Yunfan Shao, Pengyu Wang,
Xipeng Qiu †

School of Computer Science, Fudan University
Shanghai Key Laboratory of Intelligent Information Processing, Fudan University

{kren22,pywang22}@m.fudan.edu.cn
{linyangli19, yfshao19, xpqiu}@fudan.edu.cn

Abstract

With the rapid development of neural network
applications in NLP, model robustness problem
is gaining more attention. Different from
computer vision, the discrete nature of
texts makes it more challenging to explore
robustness in NLP. Therefore, in this paper,
we aim to connect discrete perturbations
with continuous perturbations, therefore we
can use such connections as a bridge to
help understand discrete perturbations in
NLP models. Specifically, we first explore
how to connect and measure the correlation
between discrete perturbations and continuous
perturbations. Then we design a regression
task as a PerturbScore to learn the correlation
automatically. Through experimental results,
we find that we can build a connection between
discrete and continuous perturbations and
use the proposed PerturbScore to learn such
correlation, surpassing previous methods used
in discrete perturbation measuring. Further, the
proposed PerturbScore can be well generalized
to different datasets, perturbation methods,
indicating that we can use it as a powerful tool
to study model robustness in NLP. 1

1 Introduction

Natural language processing (NLP) applications
based on neural networks are developing rapidly,
exemplified by applications based on pre-trained
models (Devlin et al., 2018) such as ChatGPT 2

(Brown et al., 2020), machine translation systems
(Bahdanau et al., 2014), question-answering
systems (Rajpurkar et al., 2016). While they
are growing at an incredible speed, it is of great
concern how we can trust these neural networks.
Therefore, exploring model robustness in NLP is
essential for future NLP developments. Model

∗Equal Contribution.
†Corresponding author.

1We will release our code and generated datasets at
https://github.com/renke999/PerturbScore

2https://openai.com/blog/chatgpt/

robustness problems mostly focus on exploring
the model behavior when the inputs are perturbed.
However, unlike the computer vision field, the
discrete nature of natural language makes it more
challenging to define, construct and measure the
perturbations added to the texts.

Previous works usually separate two lines
of work concerning discrete perturbations and
continuous perturbations: In the computer vision
(CV) field, continuous perturbations are widely
explored (Goodfellow et al., 2014) since studying
perturbations can help improve model robustness
(Madry et al., 2019) and generalization abilities
(Hendrycks and Dietterich, 2019; Hendrycks
et al., 2021). As for perturbations in NLP, the
difference and challenge in discrete perturbations
constrain the development of model robustness
in NLP. Jin et al. (2019); Zang et al. (2020);
Li et al. (2020) craft adversarial examples with
synonyms as word-level perturbations, which is
hard to measure whether the perturbations are
imperceptible. Also, crafting these perturbations
would face a combinatorial explosion problem. As
studying discrete perturbations is more challenging
than continuous perturbations, it is intuitive to
wonder: can we find the correlations between
discrete and continuous perturbations in NLP and
study continuous perturbations instead?

In this paper, we aim to explore connections
between discrete and continuous perturbations in
NLP models hoping that such connections can
help studies of model robustness in NLP. We
first give definitions and measuring standards of
perturbations in discrete and continuous space and
align the form and notations for studying their
correlations. Then we make several assumptions
to provide the possibility of connecting discrete
and continuous perturbations. Specifically, we
assume that discrete perturbations and continuous
perturbations have similar effects on neural models
when being added to the input to perturb the
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model. Therefore, we are able to search for a
continuous perturbation that can be considered as a
substitution for the discrete perturbation. We then
introduce a method to quantify the correlations
between discrete and continuous perturbations and
design a regression task to automatically learn
the correlation. Specifically, we use the gradient-
projection descent method to search for a minimum
continuous perturbation that has similar effects on
the model behavior with the discrete perturbation.
After quantifying the correlations between discrete
and continuous perturbations, we use an additional
neural network named PerturbScorer to learn such
a correlation. That is, given the original input and
a discrete perturbation, we use a neural network to
predict its continuous perturbation range.

We construct experiments on IMDB and AG’s
News datasets, which are widely used datasets
in NLP robustness studies. We first explore the
correlations between discrete and continuous
perturbations when they are used to perturb
fine-tuned models such as BERT; then we test
the performances of the learned network and
empirically verify that the correlations between
perturbations can be learned through a neural
network, providing evidence for researchers
to study continuous perturbations in NLP as a
substitute for discrete perturbations.

Further, we design extensive analytical
experiments and through the experimental results,
we make several non-trivial conclusions: (1)
we can build a connection between discrete and
continuous perturbations; (2) such a connection can
be generalized and help improve model robustness
and generalization abilities; (3) continuous-space
adversarial training is effective because it narrows
the gap between discrete and continuous space.

To summarize, in this paper, we explore the
correlations between discrete and continuous
perturbation, a fundamental challenge in robustness
studies in NLP. We provide detailed notations
and make assumptions to explore the correlations
between perturbations and propose a method to
connect these perturbations; further, we design a
PerturbScorer to learn such correlation; through
experimental results, we show that we can
connect discrete perturbations with continuous
perturbations. We are hoping that the concept of
studying discrete perturbations in NLP through
building the connections between continuous
perturbations can provide hints for future studies.

2 Related Work

2.1 Model Robustness and Perturbations
Robustness problems are widely explored
in the deep learning field: Goodfellow et al.
(2014); Carlini and Wagner (2016) discussed the
possibility of crafting gradient-based perturbations
as adversarial examples to mislead neural models.
Madry et al. (2019) introduces the projected
gradient descent method to construct perturbations.
Hendrycks and Dietterich (2019); Hendrycks et al.
(2021) discussed more general perturbations such
as Gaussian noise, blurs, etc. in the distribution
shift scenarios. When the perturbations are
continuous, studies focus on exploring connections
between model robustness and model accuracy
(Zhang et al., 2019a; Yang et al., 2020) and plenty
of analytical works dive deep into the model
robustness studies (Pinot et al., 2019). These
robustness studies assume that the perturbations
are continuous, therefore, they are not suitable for
discrete perturbations and NLP robustness studies.

2.2 Perturbations in NLP
In the NLP field, the robustness problem becomes
more challenging due to the discrete nature of
texts. Ebrahimi et al. (2017) explores crafting
character-level and word-level perturbations
as adversarial examples to attack NLP models.
Follow-up works such as Jin et al. (2019); Zang
et al. (2020); Li et al. (2020) aim to find better
methods to craft semantic-preserving adversaries.
As for more general perturbations, Jia and Liang
(2017) explores how adding random sentences
can mislead question-answering systems; Yi et al.
(2021) explores how adversarial training improves
out-of-distribution model generalization problems.
Unlike the continuous perturbations explored in
the computer vision field, the NLP field rarely
discusses how the model behaves in robustness
against adversaries and generalization abilities.
Zhu et al. (2019) introduces embedding-space
gradient-based adversarial training and discovers
that continuous space adversaries can help improve
NLP model generalization abilities without
further explanation. Li et al. (2021) founds that
gradient-based adversarial training can be used
in defense against word-substitution attacks. In
general, robustness studies in NLP rarely focus
on finding the correlation between discrete and
continuous perturbations which separate works in
vision and language fields.
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3 Connecting Perturbations

3.1 Defining Perturbations
We first define perturbations in deep neural
networks for NLP applications:

Given an input text S = [w0, w1, · · · , wn, · · · ],
the corresponding embedding of S is
X = [x⃗0, x⃗1, · · · , x⃗n, · · · ]. The prediction
of the input S is denoted as f(X). Here, we use
the embedding output X as the model input since
we aim to connect the discrete perturbations with
continuous perturbations in the embedding space.
When the input text is maliciously attacked or
perturbed by random noise, the input text becomes
S

′
. We useP(S) to denote the perturbation process

therefore the perturbed text S
′

= S + P(S).
The perturbation function P(S) can be various
methods including adversarial attacks and random
perturbations. Representative adversarial attack
methods are word-substitution adversarial attacks
such as HotFlip (Ebrahimi et al., 2017), Textfooler
(Jin et al., 2019) and BERT-Attack (Li et al., 2020).
Unlike random perturbations such as random
deleting or replacing words/characters, adversarial
attack methods aim to find the minimum amount
of character- or word-level substitutions that can
mislead target models.

Unlike in the computer vision field where
continuous perturbations can be directly added
to the input, the continuous perturbations can
only be added to the embedding output X
in the language field. For embedding output
X ∈ Rl∗d with sequence length l and hidden
size d, we have perturbed output X

′
= X + δ.

The continuous perturbation δ ∈ Rl∗d can
be random noise (Hendrycks and Dietterich,
2019) such as Gaussian noise, blurs, pixelate, or
adversarial perturbations. A representative method
to generate adversarial perturbation δ is the Fast
Gradient Sign Method (FGSM) (Goodfellow
et al., 2014). Given a target model fθ(·), the
perturbation of sample S is generated based on
the gradients: δ = α · sgn(∇Xfθ(X, y)). Here, α
is a hyper-parameter controlling the perturbation
range.

3.2 Measuring Perturbations
After defining perturbations, it is important to
measure how perturbations affect neural models.

Measuring the severity of the perturbation is
a challenge in discrete text perturbations. The
similarity between the perturbed and original texts

cannot be easily measured. We use A(P(S)) to
measure the perturbation intensity of perturbation
P(S) added to the original text S, which could
be edit-distance, semantic shift, grammar change,
etc. For instance, when we use edit-distance
as A(P(S)), we assume that the fewer tokens
the original text is replaced, the less the text is
perturbed. Besides edit-distance, Jin et al. (2019)
introduces USE (Cer et al., 2018) to measure the
perturbation intensity. We assume that the less
semantic information is changed, the less the text is
perturbed. In general, finding an accurate measure
strategy A(·) is challenging since the standard
can be diversified and subjective when measuring
discrete perturbations.

On the other hand, continuous perturbations can
be measured by constraining the ℓp-norm ||δ||p of
the perturbations δ. The most common constraint
is the ℓ2-norm. Compared with measuring discrete
perturbation, it is easy and straightforward to
measure the continuous perturbation range.

3.3 Connecting Perturbations

As illustrated, it is challenging to measure discrete
perturbations, which makes it more difficult
to explore how perturbations affect the model
behavior. Meanwhile, another challenge is
that constructing discrete perturbations is also
challenging, for instance, replacing discrete tokens
in a multi-token text with multiple candidates
for each token is a combinatorial explosion
problem. Therefore, since measuring and studying
continuous perturbations is more convenient,
instead of searching for methods to evaluate the
shift caused by discrete perturbations, we aim to
build a connection between discrete perturbations
and continuous perturbations and explore how the
continuous perturbation affects model behaviors
instead. We hope that by connecting discrete
perturbations to continuous perturbations, we can
introduce new perspectives to NLP field model
robustness problems.

To build the connection between discrete
perturbations and continuous perturbations, we
make several assumptions:

Assumption 1. Continuous perturbations δ
added to X have similar effects on target model
fθ compared to discrete perturbations added to S.
That is, both types of perturbations can cause a
model prediction shift, and stronger perturbations
would cause more damage to the model.
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Texts S from AG’s News Perturbations Perturbation Measure Outputs Shift
P(S) A(P(S), S) fθ(S) → fθ(S + P(S))

Apple Recalls Batch of PowerBook Batteries:
Apple, in cooperation with the US
Consumer Product Safety Commission
said it would voluntarily recall about
28,000 rechargeable batteries used
in its 15-inch PowerBook G4 notebooks.

●Textfooler:
Apple -> Mitt
Batch -> Afar
cooperation -> cooperatives
Product -> Commodities
recall -> reminds

edit-distance:5
USE: 0.889
BERTScore: 0.951

fθ(·): BERT
Sci/Tech (100%) -> Business (81%)

Apple Recalls Batch of PowerBook Batteries:
Apple, in cooperation with the US
Consumer Product Safety Commission
said it would voluntarily recall about
28,000 rechargeable batteries used
in its 15-inch PowerBook G4 notebooks.

■Random Perturbation :
Apple -> Overcast
cooperation -> striker
Consumer -> Concessions
said -> rewarded
voluntarily -> trenton

edit-distance:5
USE: 0.880
BERTScore: 0.947

fθ(·): BERT
Sci/Tech (100%) -> Sci/Tech (90%)

Table 1: Selected samples with same edit-distance perturbations showing discrete perturbation constructions and
measurements of discrete perturbations. The model output shifts are different from edit-distance or BERTScore.

Assumption 2. Target model fθ follows
Lipschitz constraint: when ||δ||2 < ϵ,
||fθ(X + δ) − fθ(X)||2 < K · ϵ. Here, we
assume that in NLP models, such as a fine-tuned
BERT, small perturbations in the embedding
space do not cause severe damage to model
outputs. Otherwise, the behavior change caused
by input perturbations is hard to predict, and
finding correlations between perturbations is more
challenging.

Assumption 3. For a discrete perturbation P(S),
there exist a continuous perturbation δ that satisfies:
ϵ− ε < ||δ||2 < ϵ, here, ε is a small interval. And
such δ satisfies:

∣∣∣∣
||fθ(S + P(S)) − fθ(S)||2
||fθ(S + P(S)||2 · ||fθ(S)||2

− ||fθ(X + δ) − fθ(X)||2
||fθ(X + δ)||2 · ||fθ(X)||2

∣∣∣∣ < ϕ

, here, ϕ is a hyper-parameter, and for
simplification, fθ(·) takes both discrete tokens S
and embedding output X of the discrete tokens S
as input, skipping the embedding process.

We assume that the continuous perturbation has
a similar effect on model fθ(·), therefore, when
the absolute value of the gap between model shift
caused by discrete and continuous perturbations
is small, we consider they are equal in perturbing
neural models. Therefore, we can use continuous
perturbations as an approximation of discrete
perturbations by building connections between
them.

3.4 Quantify Connections

After assuming that we can build connections
between discrete and continuous perturbations,
we aim to quantify such connections. For a
discrete perturbation P(S), we find the minimum
continuous perturbation δ under Assumption 3.
Specifically, we aim to find the proper norm-bound

ϵ that under such a norm-bound, there exists a
perturbation δ satisfies Assumption 3 mentioned
above. Therefore, when S and P(S) is fixed, the
goal is to find a norm-bound ϵ:

argmin
ϵ

max
||δ||2<ϵ

(
||fθ(X + δ)− fθ(X)||2
||fθ(X + δ)||2 · ||fθ(X)||2

) (1)

Therefore, we would obtain a data tuple
[S,P(S), ϵ], which is the correlation of discrete
and continuous perturbations. We are hoping that
we can empirically verify that the data tuple can
be connected, and verify the assumptions made
above.

Algorithm 1 Obtaining norm-bound ϵ

Require: Inputs X,S,P(S), label y, search step
Ta, norm range interval ε

1: Γ← ||fθ(S+P(S))−fθ(S)||2
||fθ(S+P(S)||2·||fθ(S)||2

2: for ϵ = 0, ε, 2ε, ... do
3: δ0 ← 0

4: for t = 0, 1, ...Ta do
5: gδ ←▽δL(fθ(X + δt), y)

6: // Get Gradients
7: δt ←

∏
||δ||2<ϵ(δt + α · gδ

||gδ||2
)

8: // Get Perturbation
9: if

∣∣ ||fθ(X+δt)−fθ(X)||2
||fθ(X+δt)||2·||fθ(X)||2−Γ

∣∣ < ϕ then
10: return tuple [S,P(S), ϵ]
11: else
12: discard tuple

In practice, to obtain ϵ, we use a standard
projected-gradient-descent (PGD) (Madry et al.,
2019) method. As seen in Algorithm 1, we
use multi-step gradient-descent to generate
perturbations within the range ϵ, which is the
perturbation generation used in gradient-based
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adversarial training. Specifically, the notation x
used in line 7 is to constrain the perturbations
within the norm bound ϵ. In line 9, we pick the
ϵ that satisfies the assumption that there exists
a continuous perturbation that has a similar
effect on neural models compared with discrete
perturbations. Therefore, once the perturbation δ
obtains ideal effects on the neural model (bigger
than the effects caused by discrete perturbations),
we consider the ϵ found is the proper one. A
special case is that if the continuous perturbation
effect ||fθ(X+δ)−fθ(X)||2

||fθ(X+δ)||2·||fθ(X)||2 is way bigger than Γ,
we simply drop the sample.

3.5 PerturbScorer

After constructing the quantification of correlations
between discrete and continuous perturbations, we
design a PerturbScorer to score the correlations.

The perturbation δ is a continuous variant,
therefore, we formulate a regression task to learn
the range of ϵ given S and P(S). We train the task
as the PerturbScorerM([S,P(S)], ϵ) to measure
the correlation between discrete and continuous
perturbations in the target model fθ(·).

Considering that the perturbation P(S) should
be a small perturbation, we use a simple strategy
that concatenates original texts and perturbations in
P(S) as the input of the regression task to learn the
correlation. We simply concat the perturbations
behind the original token, (e.g.: . . . , it would
recall [reminds] . . . ). Such patterns help the model
understand the perturbation of the original texts.
Then we use the crafted inputs to predict the norm
bounds of the correlated continuous perturbations.

4 Experiments

4.1 Dataset Construction

To explore the correlations between discrete and
continuous perturbations, we use several datasets
widely used in exploring model robustness in NLP.
We use the IMDB dataset (Maas et al., 2011) and
the AG’s News dataset (Zhang et al., 2015) which
are text classification tasks with an average text
length of 220 and 47 accordingly.

We use two widely used perturbation methods
P(S), Textfooler (Jin et al., 2019) and random-
perturb. In the Textfooler method, we follow the
standard generation process and save perturbations
in multiple queries regardless of the attack result,
which is different from its original usage that keeps
finding perturbations until the attack is successful.
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Figure 1: Average Model Shift of Discrete and
Continuous Perturbations. (a) is the curve of
||fθ(S+P(S))−fθ(S)||2
||fθ(S+P(S)||2·||fθ(S)||2 and edit-distance, containing
curves of neural model fθ including FreeLB-trained
model and BERT fine-tuned model and perturbation
method P(S) including Textfooler and Random
perturbation tested on the IMDB dataset; (c) is the
curve of ||fθ(X+δt)−fθ(X)||2

||fθ(X+δt)||2·||fθ(X)||2 and norm-ball range,
containing curves of FreeLB-trained model and BERT-
fine-tuned model tested on the IMDB dataset; (b) and (d)
are the corresponding results of the AG’s News dataset.

For each input text S, we have multiple P(S) with
different edit-distance differences.

In the random perturb method, we randomly
replace a token using a random word from a general
vocabulary, which is the vocabulary used to obtain
synonyms in the Textfooler method (Mrkšić et al.,
2016; Jin et al., 2019). Similar to the Textfooler
perturbation method, we also collect multiple
perturbations per text including different numbers,
places of substitutes, and different substitutes.

In generating continuous perturbations, we use
the PGD method to find the minimum continuous
perturbation that has a similar model prediction
shift compared to the discrete perturbation.
Specifically, we set the adversarial step Ta = 15
and the adversarial learning rate α = 1e − 1, the
norm-ball search interval ε of ϵ is set to 0.01 and
the discard parameter ϕ is set to 0.005.

In Figure 1, we draw curves exploring the
connection between model output shifts and
different levels of perturbations. As shown, we can
observe that the average model output shifts caused
by discrete and continuous perturbations show
consistency with edit distance and norm-ball range.
We observe that when the perturbations grow
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Range of ϵ [0,1e-1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 1) TOTAL Discarded

Dataset P(S) fθ(·)

IMDB
■Rand. Perturb ▲BERT 5563 2562 613 164 68 33 17 9020 1209

▲FreeLB 4630 2265 1075 528 224 104 86 8912 1044

●Textfooler ▲BERT 1850 2788 2256 937 327 155 65 8378 1273
▲FreeLB 2004 1634 1990 1579 826 386 256 8675 1459

AG’s News
■Rand. Perturb ▲BERT 3889 3940 1011 200 47 24 15 9126 2126

▲FreeLB 1386 1426 2199 1932 1204 655 634 9421 794

●Textfooler ▲BERT 1499 2792 2365 983 368 169 77 8253 2800
▲FreeLB 928 772 1420 1639 1425 916 1340 8440 1012

Table 2: Statistics of the pair number of constructed correlations between discrete and continuous perturbations.

larger, both discrete and continuous perturbations
will cause more damage to neural models. Plus, the
models trained by the FreeLB method show better
resistance against both discrete and continuous
perturbations. These results verify Assumption 1
and show that discrete and continuous perturbation
can be correlated.

In Table 2, we count the tuple number of
different ϵ ranges in the constructed data tuple of
multiple datasets to show the connection between
discrete and continuous perturbations. We observe
that we only discard a small proportion of collected
data tuples, proving that we can successfully
find norm ball ϵ that satisfies Assumption 3 that
such a continuous perturbation δ is equivalent
to the discrete perturbations P(S) in interfering
neural models fθ(·). We also observe that as the
discrete perturbation P(S) is uniformly distributed
in the edit-distance range from 1 to 30 in the
IMDb Dataset and 1 to 15 in the AG’s News
Dataset, the continuous perturbations mostly fall
in the range that ϵ < 2e-1, indicating that most
discrete perturbations with different edit-distances
(indicating different numbers of substitutions) only
compares to a minimum continuous perturbation.
Therefore, learning the correlation between
these discrete and continuous perturbations
can help understand the discrete perturbations.
Further, compared with the random perturbation,
the Textfooler method generates more discrete
perturbations that have more damage to model
predictions and the corresponding continuous
perturbations require larger norm balls, indicating
that stronger discrete perturbations equal to larger
continuous perturbations, providing the possibility
to connect discrete perturbations with continuous
perturbations.

For the collected data, we select 80% data tuples
as the training set and 20 % as the test set in training
and testing the PerturbScorer.

4.2 Evaluating Quantification of Correlation

After constructing the discrete perturbations and
finding the corresponding ϵ of these discrete
perturbations, we are able to explore whether
the discrete and continuous perturbations can be
connected and show similar effects on neural
networks. To evaluate the quantification process
of correlations illustrated in Sec. 3.4, we use
Kendall and Pearson correlation coefficient index
to measure whether the discrete perturbations and
the continuous perturbations can be connected.

The goal is to measure the correlation coefficient
index such as Kendall and Pearson index between
A(P(S)) and the selected norm-bound ϵ. If
the correlation between A(P(S)) and ϵ is large,
we can verify Assumption 3 that assumes there
exists a continuous perturbation that equals to
the discrete perturbation in interfering neural
models. We use several simple A(·) including
edit-distances, BERTScore (Zhang et al., 2019b)
and USE (Cer et al., 2018). Here, BERTScore and
USE measure the similarity between two sentences,
which is reversed compared with edit-distance and
perturbation scorer, therefore, we use the opposite
number of the BERTScore and USE score as A(·)
to measure the correlation coefficient index.

Further, we can directly measure the correlation
coefficient index between the predicted and the
found ϵ, exploring whether the PerturbScorer can
learn the connection between perturbations, which
supports the assumptions we made above in Sec.
3.3 and provides a powerful tool to quantify the
discrete perturbations for robustness studies in
NLP.

4.3 PerturbScorer Training

The training process of the PerturbScorer follows
the standard fine-tuning process used in fine-tuning
regression tasks such as the STS-B (Cer et al.,
2017) dataset using huggingface Transformers
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Method Edit-Distance BERTScore USE PerturbScorer
Metric Kendall Spearmann Kendall Spearmann Kendall Spearmann Kendall Spearmann

Dataset P(S) fθ(·)

IMDB
■Rand. Perturb ▲BERT 0.4891 0.635 0.5952 0.7745 0.577 0.755 0.7092 0.8648

▲FreeLB 0.4921 0.6278 0.599 0.7746 0.5753 0.7489 0.6962 0.8401

●Textfooler ▲BERT 0.5153 0.6683 0.5497 0.7302 0.4932 0.6697 0.7975 0.9342
▲FreeLB 0.5198 0.677 0.5532 0.7404 0.4932 0.6735 0.8173 0.9453

AG’s News
■Rand. Perturb ▲BERT 0.4377 0.5785 0.4652 0.6352 0.4372 0.6031 0.7647 0.9141

▲FreeLB 0.5128 0.669 0.5063 0.6845 0.4726 0.6491 0.8117 0.9445

●Textfooler ▲BERT 0.5055 0.6585 0.5279 0.7166 0.5013 0.6851 0.821 0.9477
▲FreeLB 0.4479 0.5923 0.4662 0.6419 0.4489 0.6194 0.8295 0.9533

Table 3: PerturbScorer evaluation results and correlation comparison with evaluators including BERTScore, USE,
and Edit-Distance.

(Wolf et al., 2019). We set the learning rate to
5e-5 with batch size set to 64 and 128 for IMDB
and AG’s News datasets and use 4xNvidia 3090
GPUs to run the PerturbScorer training process.

4.4 Correlation Quantification Results

In Table 3, we list the correlation coefficient index
of different measuring methods of perturbations
and the PerturbScorer learned correlation of the
perturbations:

We can observe that when we use scorersA(·) to
measure the discrete perturbation, the correlation
quantification results between the A(·) and the
obtained continuous perturbation bound is not
significant. In different setups including different
datasets and perturbation methods, the Kendall
correlation is smaller than 0.6 and the Spearman
correlation is smaller than 0.8, indicating that
the discrete perturbation measuring methods do
not have close correlations with the continuous
perturbations that have a similar effect to neural
models, further proving that these measuring
methods cannot properly measure the damage to
neural models.

On the other hand, we can observe that when
we use the PerturbScorer M(·) to predict the
corresponding continuous perturbations, the
correlation scores are significant enough to prove
that the PerturbScorer can learn the connection
between the discrete perturbations and the
continuous perturbations. Such results show
that we can use our proposed PerturbScorer as a
powerful tool to build a connection between the
discrete and continuous perturbations.

4.5 Analysis

As we first make assumptions about the
correlations between discrete and continuous
perturbations, we construct the data tuples and

design a PerturbScorer to explore whether the
correlation can be learned and generalized by
neural networks. By exploring the correlations,
we can obtain non-trivial observations that can be
helpful in model robustness in NLP:

4.5.1 Lipschitz Constraint Tightness
As we observe in Figure 1, the model shift is
in direct proportion to the perturbation range,
indicating that the target model fθ follows a
Lipschitz constraint on a general scale. Further, as
seen in Table 3, compared with the model trained
by the FreeLB method, it is more challenging
to study the correlation of the normal fine-tuned
BERT as fθ(·), indicating that gradient-based
adversarial training helps build a tighter connection
between discrete and continuous perturbations,
providing a perspective to explain why gradient-
based adversarial training helps in improving
robustness performances and generalization
performances in NLP tasks with discrete inputs
(Zhu et al., 2019; Li et al., 2021).

4.5.2 PerturbScorer Generalization
In Table 3, we show that the correlation between
discrete perturbation P(S) and continuous
perturbations range ϵ of model fθ(·) can be learned
by a PerturbScorer M(·), further, we aim to
explore whether building such a correlation can be
applied to various scenarios in robustness studies
in NLP. That is, we explore the generalization
ability of PerturbScorer M(·). We explore
whether the learned PerturbScorer M(·) based
on target model fθ(·) can be generalized to
cross-dataset, cross-perturbation method P(S),
cross-model fθ(·), therefore, the application of
the PerturbScorer and the concept of learning
the correlation between discrete and continuous
perturbations can be used in various scenarios. We
list thorough results in the Appendix.
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PerturbScorer Testing Setup PerturbScorer Training Setup Edit-Distance PerturbScorer

Dataset P(S) fθ(·) Dataset P(S) fθ(·) Kendall Spearmann Kendall Spearmann

IMDB ■Rand. Perturb ▲BERT
AG’s News ■Rand. Perturb ▲BERT

0.4891 0.635
0.4757 0.6441

IMDB ●Textfooler ▲BERT 0.5767 0.7532
IMDB ■Rand. Perturb ▲FreeLB 0.6192 0.7943

IMDB
&

AG’s News
■Rand. Perturb ▲BERT

IMDB
&

AG’s News
■Rand. Perturb ▲BERT 0.4053 0.5035 0.7558 0.9047

IMDB
■Rand. Perturb

&
●Textfooler

▲BERT IMDB
■Rand. Perturb

&
●Textfooler

▲BERT 0.4406 0.5838 0.7802 0.9108

Table 4: PerturbScorer generalization tests on cross dataset, perturbation type and model. We also test a combined
PerturbScorer trained with multi-perturbations, multi-datasets and multi-model generated data tuples.

We can explore how PerturbScorer M(·)
performs on different datasets or faces different
types of perturbations:

Cross-Perturbation PerturbScorer In cross-
perturbation tests, we observe that when we train
the PerturbScorer with random perturbations as
P(S), the PerturbScorer can learn perturbations
generated by textfooler, while textfooler-generated
perturbations cannot be well generalized. Such
results show that we can collect multiple types
of perturbations to train a PerturbScorer that
can be generalized to recognize various discrete
perturbations as a powerful tool to quantify how
the discrete perturbations affect neural models.

Cross-Dataset PerturbScorer In cross-dataset
tests, we observe that when we test the AG’s News
data tuples using the PerturbScorer trained with
the IMDB dataset, the correlation is weakened
but still stronger than correlations with edit
distance, indicating that the PerturbScorer we
train can be generalized to different datasets,
showing that the connection between discrete and
continuous perturbations is strong in general NLP
systems, which provides possibilities of using such
correlations in various NLP robustness scenarios.

Cross-Model PerturbScorer In general, the
correlation between discrete and continuous
perturbations is dependent on the neural model
fθ(·) since the perturbation range ϵ is calculated
based on a certain model fθ(·). However,
when we test the generalization ability between
different neural models fθ(·), we observe that the
correlation is still close. Therefore, it is possible to
build a more general PerturbScorer as a general
metric to score the discrete perturbations.

Combined Scorer We further build a combined
PerturbScorer that is trained by a mixture of data

tuples including different datasets, perturbations
methods and neural models to explore a more
generalized scenario.

As seen in Table 4, when we train a model
using mixed data collected, we can build a general
PerturbScorer that can successfully predict the
correlations between discrete perturbations and
the corresponding continuous perturbation ranges.
Such a result shows that it is possible to build a
general PerturbScorer that can be used in solving
different datasets and perturbation types, showing
that we can use continuous perturbations as a
proxy for discrete perturbations when studying
NLP robustness problems.

5 Conclusion and Future Directions

In this paper, we focus on a fundamental problem
in robustness studies in NLP, which is the discrete
nature of texts. The discrete nature isolates NLP
robustness studies from well-studied machine
learning fields, therefore, we introduce the concept
of building connections between discrete and
continuous perturbations as a new perspective to
explore NLP robustness. We build a PerturbScorer
to learn the correlation between discrete and
continuous perturbations and find that such a
PerturbScorer can learn the connection between
perturbations, allowing us to use continuous
perturbation ranges as a proxy constraint of
discrete perturbations, which avoids the challenge
that discrete perturbations are hard to measure.
Further, we find that our proposed PerturbScorer
can be generalized to different datasets and
perturbation methods, indicating that such a
process can be further applied in the future in NLP
robustness studies. For future directions, we aim to
explore more effective methods to build a stronger
PerturbScorer and to explore more broad scenarios
to utilize the proposed PerturbScorer.
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Limitations

In this work, we explore the discrete perturbation
in robustness studies in NLP. We aim to find
correlations between discrete perturbations
and continuous perturbations since continuous
perturbations are easily measured and well-studies
in the computer vision field. Our work makes
assumptions that discrete perturbations show
similar effect to neural networks compared
with continuous perturbations, therefore, one
limitation of such assumptions is that similar effect
does strictly make two types of perturbations
equal in nature. We find one perspective to
connect the discrete perturbations and continuous
perturbations, which is not the only solution.
Future works can explore more strict constraints
and find stronger connections between discrete and
continuous perturbations.

Also, better PerturbScorer designing and
the applications based on correlations between
discrete and perturbations and PerturbScorers
can be further explored. We focus on defining
and building the connection between discrete and
continuous perturbations, and we do not explore
further applications based on these connections
and our proposed PerturbScorer. For instance,
as the PerturbScorer can be used in scoring
the discrete perturbations, it can be used in
recognizing differences between sentences or
measuring distribution shifts. Also, previous
works explore robustness and generalization
trade-offs and explainable robustness theories on
continuous space, mostly in the computer vision
field, our works reveal the potential to explore
these problems in NLP, which can be explored in
future works.

Further, as large language models (LLMs) are
drawing much attention in the NLP community,
how strong LLMs behave in connecting discrete
and continuous space perturbations remains
unexplored, especially when GPT-4 (OpenAI,
2023) is known to support images and texts. As
these models are not open-source to the public, we
leave exploring the perturbation in LLMs in future
works.
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Nikola Mrkšić, Diarmuid O Séaghdha, Blaise Thomson,
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PerturbScorer Testing Setup PerturbScorer Training Setup Edit-Distance PerturbScorer

Dataset P(S) fθ(·) Dataset P(S) fθ(·) Kendall Spearmann Kendall Spearmann

Cross-Dataset

IMDB
■Rand. Perturb ▲BERT

AG’s News
■Rand. Perturb ▲BERT 0.4891 0.635 0.4757 0.6441

▲FreeLB ▲FreeLB 0.4921 0.6278 0.5449 0.715

●Textfooler ▲BERT
●Textfooler ▲BERT 0.5153 0.6683 0.4607 0.6384

▲FreeLB ▲FreeLB 0.5198 0.677 0.4873 0.666

Cross-Perturbation

IMDB
■Rand. Perturb ▲BERT

IMDB
●Textfooler ▲BERT 0.4891 0.635 0.5767 0.7532

▲FreeLB ▲FreeLB 0.4921 0.6278 0.5608 0.7334

●Textfooler ▲BERT
■Rand. Perturb ▲BERT 0.5153 0.6683 0.4779 0.6543

▲FreeLB ▲FreeLB 0.5198 0.677 0.4785 0.6545

Cross-Model

IMDB
■Rand. Perturb ▲BERT

IMDB
■Rand. Perturb ▲FreeLB 0.4891 0.635 0.6192 0.7943

▲FreeLB ▲BERT 0.4921 0.6278 0.5963 0.7616

●Textfooler ▲BERT
●Textfooler ▲FreeLB 0.5153 0.6683 0.5901 0.7753

▲FreeLB ▲BERT 0.5198 0.677 0.5939 0.7819

Combined-Dataset PerturbScorer

IMDB
&

AG’s News

■Rand. Perturb ▲BERT IMDB
&

AG’s News

■Rand. Perturb ▲BERT 0.4053 0.5035 0.7558 0.9047
▲FreeLB ▲FreeLB 0.2981 0.4059 0.8013 0.9325

●Textfooler ▲BERT
●Textfooler ▲BERT 0.4713 0.6267 0.8114 0.9429

▲FreeLB ▲FreeLB 0.3548 0.4917 0.8325 0.9549

Combined-Perturbation PerturbScorer

IMDB ■Rand. Perturb
&

●Textfooler

▲BERT IMDB ■Rand. Perturb
&

●Textfooler

▲BERT 0.4406 0.5838 0.7802 0.9198
▲FreeLB ▲FreeLB 0.4539 0.5942 0.7795 0.914

AG’s News ▲BERT AG’s News ▲BERT 0.4179 0.5579 0.803 0.9378
▲FreeLB ▲FreeLB 0.4614 0.6098 0.8194 0.9483

Combined-Model PerturbScorer

IMDB ▲BERT
▲BERT

&
▲FreeLB

IMDB ▲BERT
▲BERT

&
▲FreeLB

0.4258 0.5601 0.5945 0.7634
●Textfooler ●Textfooler 0.4997 0.6561 0.7973 0.9377

AG’s News ■Rand. Perturb AG’s News ■Rand. Perturb 0.3694 0.5034 0.615 0.8
●Textfooler ●Textfooler 0.4024 0.5424 0.8061 0.9414

Table 5: Through results of PerturbScorer generalization tests.

Appendix

Through Results of Generalization Experiments
of the PerturbScorer In Table 5, we list the
thorough results which is the expansion of the
results shown in Table 4. As shown, we can
observe that the experimental results are consistent
with the analysis based on the partial results in
Table 4. We can build a PerturbScorer that can be
used in cross-perturbation, datasets, and models
as a general PerturbScorer to build the connection
between discrete and continuous perturbations.
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