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Abstract

Recent advancements in natural language pro-
cessing have demonstrated the efficacy of pre-
trained language models for various down-
stream tasks through prompt-based fine-tuning.
In contrast to standard fine-tuning, which relies
solely on labeled examples, prompt-based fine-
tuning combines a few labeled examples (few
shot) with guidance through prompts tailored
for the specific language and task. For low-
resource languages, where labeled examples
are limited, prompt-based fine-tuning appears
to be a promising alternative. In this paper,
we compare prompt-based and standard fine-
tuning for the popular task of text classification
in Urdu and Roman Urdu languages. We con-
duct experiments using five datasets, covering
different domains, and pre-trained multilingual
transformers. The results reveal that signifi-
cant improvement of up to 13% in accuracy
is achieved by prompt-based fine-tuning over
standard fine-tuning approaches. This suggests
the potential of prompt-based fine-tuning as a
valuable approach for low-resource languages
with limited labeled data.

1 Introduction

Recent advancements in natural language process-
ing (NLP) have highlighted the efficacy of pre-
trained language models (PLMs) in various down-
stream tasks, including text classification. PLMs,
such as (Conneau et al., 2020; Devlin et al., 2019)
and (Sanh et al., 2019), have revolutionized NLP
by pre-training on extensive textual data to acquire
language understanding and common knowledge.
However, optimizing the performance of mod-
els for various languages, especially low-resource
languages like Urdu and Roman Urdu, presents
challenges that need to be addressed. Standard
fine-tuning usually requires large amounts of task-
specific labeled examples to adapt the parameters
of PLMs for robust performance. More recently,
prompt-based fine-tuning (Gao et al., 2021) has

emerged as a promising alternative for improving
classification accuracy in low-resource language
contexts (An, 2023; Lee et al., 2022; Jin et al.,
2022; Schucher et al., 2022; Wang et al., 2022).
Prompt-based fine-tuning combines a small set of
annotated examples (few shot) with carefully de-
signed language-specific prompts tailored to the
task. These prompts explicitly guide the models,
providing crucial context and information for pre-
cise predictions.

This paper presents an empirical evaluation
of prompt-based fine-tuning with traditional stan-
dard fine-tuning for text classification in Urdu
and Roman Urdu. The objective is to determine
whether prompt-based fine-tuning surpasses the
performance of standard fine-tuning of multilin-
gual PLMs in few shot setting. To do this, we
conduct experiments on five diverse datasets span-
ning different domains and encompassing various
classification tasks. These datasets are carefully
selected to represent the challenges and nuances
of Urdu and Roman Urdu text classification. Ad-
ditionally, we utilize three pre-trained multilingual
transformers (1) BERT-Multilingual (Devlin et al.,
2019), (2) DistilBERT (Sanh et al., 2019), and (3)
XLM-RoBERTa (Conneau et al., 2020). These
transformers have been widely used and proven
effective in various NLP tasks across multiple lan-
guages. By incorporating numerous transformers,
we aim to evaluate the robustness and generaliz-
ability of prompt-based fine-tuning across different
architectures and language models.

Our findings reveal a significant improvement
of up to 13% in classification accuracy achieved
by prompt-based fine-tuning over traditional ap-
proaches. This improvement highlights the effec-
tiveness of prompt-based methods in capturing the
complex linguistic characteristics and nuances in-
herent in Urdu texts and demonstrates its potential
as a promising alternative for low-resource lan-
guages where limited labeled data is available. To
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the best of our knowledge, there are no published
works on prompt engineering or prompt-based fine-
tuning for Urdu text classification. Our work com-
paring prompt and standard fine-tuning in Urdu can
seed further research in this direction.

2 Literature Review

In the past few years, social media platforms have
experienced an enormous surge in users. With the
rise in digital media usage, there is an increasing
demand for automated text classification in Urdu.

Recently, various transfer learning and data
augmentation approaches have been investigated
for text classification, such as those described
by (Banerjee et al., 2019; Azam et al., 2022;
González-Carvajal and Garrido-Merchán, 2020;
Alam et al., 2023). These methods use pre-trained
language models and fine-tune them on smaller
datasets to enhance their performance on specific
tasks. However, a recent technique in natural lan-
guage processing called prompt engineering has
recently gained attention from researchers (Liu
et al., 2023; Gao et al., 2021). Designing prompts
to guide language models improves model predic-
tions by effectively utilizing contextual information.
This technique achieves better results with minimal
data, including short learning or zero-shot learning.
Various types of prompts are used for text classifi-
cation, namely Human Designed Prompts (Brown
et al., 2020), Schema Prompts (Zhong et al., 2022),
and Null Prompts (Logan IV et al., 2022).

While prompt engineering research has primar-
ily focused on the English language, there has been
recent work exploring its effectiveness in other lan-
guages. For example, (Song et al., 2022) conducted
research to determine if prompt engineering could
improve text classification in Chinese. Their results
showed that the use of prompts yielded positive re-
sults. Similarly, (Seo et al., 2022) applied prompt
engineering techniques to Korean and found that
it improved performance for various text classifi-
cation tasks, including topic and semantic classi-
fication, even with few-shot learning. However,
no known work has been done to study prompt
learning for the Urdu language.

3 Experimental Design

In this section, we describe the datasets and the
experimental setup employed to compare the per-
formance of prompt-based and standard fine-tuning
approaches for text classification in Urdu. Fine-

tuning models on limited amounts of labeled data
can introduce instability in execution and result in
substantial performance variations depending on
the choice of data splits (Zhang et al., 2021; Dodge
et al., 2020). To generate robust results, we adopt a
careful and comprehensive approach, as outlined
below.

We aim to fine-tune a pre-trained language
model L (standard and prompt-based) on task D
with label space Y for Urdu and Roman Urdu
text classification. Our goal is to develop effec-
tive learning strategies that generalize well to an
unseen test set (xtestin , ytest) ∼ Dtest. In the few-
shot setting, we have limited training examples per
class. Let K denote the number of training exam-
ples per class, and |Y | denote the total number of
classes in the task. Thus, the few-shot training set
Dtrain consists of Ktot = K× |Y | examples, where

Dtrain = {(x(i)train, y
(i)
train)}

Ktot

i=1 . We utilize a develop-
ment set Ddev to select the optimal model and tune
hyper-parameters. The size of Ddev set is equal to
the few-shot training set, i.e., |Ddev| = |Dtrain|.

Now, given the language model L, our process
begins by converting the input xin into a token se-
quence x̃, which is then mapped to a sequence of
hidden vectors hk ∈ Rd by the language model L.
For example, in a binary sentiment classification
task, we can construct a prompt using the input
x = Yeh jaga bohat pyari hai. The prompt formu-
lation would be

xprompt = [CLS] x Yeh [MASK] hai. [SEP]

In the literature, various templates are utilized for
prompt-based classification tasks (Gao et al., 2021).
However, we find that "Yeh [MASK] hai." tem-
plate is performing better for Urdu and Roman
Urdu. We do not mention the results for other tem-
plates due to lack of space in the paper.

The language model L is then responsible for
determining whether it is more suitable to fill in
the [MASK] position with "khubsurat" (beautiful)
or "fazool" (useless) as depicted in Figure 1. This
prompt-based methodology enables the model to
autonomously complete prompts and make senti-
ment/classification predictions, enabling more effi-
cient and accurate classification.

For standard fine-tuning, we use the token se-
quence

xfine−tune = [CLS]Yeh jaga bohat pyari hai.[SEP]

To construct the training and development sets
for each dataset, we select K labeled examples
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Figure 1: An illustration of (a) standard fine-tuning and (b) prompt-based fine-tuning for text classification in Urdu
and Roman Urdu. The underlined text represents the task-specific template, designed explicitly for Urdu and Roman
Urdu, while the bold words highlight the label words. The (Urdu/Roman Urdu text : and their English translation) is

given as follows: (
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from Dtrain for each class, resulting in a total of
Y ×K labeled examples, where Y represents the
total number of classes (labels) in the dataset. In
our experiments, we consider K = 4, 8, 16 and 32.
We also refer to this number as splits. The re-
maining examples from Dtrain are reserved for the
test set (with no labels). To ensure fair evalua-
tion, we perform multiple rounds of testing. We
select samples randomly from the unlabeled test
set not used in each round’s training Dtrain and de-
velopment Ddev sets. This process is repeated five
times, allowing for a comprehensive evaluation of
the models’ performance across different test sets.

We evaluate classification performance using ac-
curacy and macro F1-score. We report the mean
and standard deviation of each measure over the
five runs and for different splits. This approach
allows us to draw robust conclusions regarding the
effectiveness of prompt-based and standard fine-
tuning approaches for text classification.

Prompt-based fine-tuning involves using
language-specific prompts tailored to Urdu and
Roman Urdu to provide additional context to
the models during training. This helps capture
the intricacies of the languages and improve text
classification performance. No prompts are used in
standard fine-tuning, and the models rely solely on
labeled examples. Comparing these approaches
allows us to assess the impact of prompts in
leveraging language-specific knowledge.

We used the Hugging Face1 library for stan-
dard fine-tuning of models, while for prompt-based
fine-tuning, we employed the OpenPrompt2 li-
brary. OpenPrompt is an open-source framework
designed explicitly for prompt learning, providing
a comprehensive set of tools and resources for this
approach. Our fine-tuning process (standard and
prompt-based) utilizes a learning rate of 2e − 5.
The optimization method is AdamW (an Adam
optimizer variant), and the loss function is Cross-
Entropy Loss. The number of epochs for each train-
ing is 10. Our study utilizes three pre-trained multi-
lingual transformers, namely (1) xlm-roberta-base,
(2) bert-base-multilingual-cased, and (3) distilbert-
base-multilingual-cased, which are publicly avail-
able on HuggingFace library.

3.1 Datasets

Our study utilizes five distinct datasets that span
different domains, including emotion and offen-
sive language detection. Specifically, the Urdu
Nastalique Emotions Dataset (UNED) (Bashir
et al., 2023) consists of 1119 instances for emo-
tion detection, featuring labels such as Neutral,
Happy, Sad, Anger, Fear, and Love. The URDU
OFFENSIVE DATASET (UOD) (Akhter et al.,
2020) and Roman Urdu Dataset (RUD) (Akhter
et al., 2020) play pivotal roles in offensive lan-
guage detection, with instance counts of 2106 and
147116, respectively. These datasets employ Of-

1https://huggingface.co/
2https://thunlp.github.io/OpenPrompt/
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fensive and Non-Offensive labels. The Roman
Urdu Emotion Detection Dataset (RUED) (Arshad
et al., 2019), consisting of 2961 instances, facili-
tates emotion detection with labels including Anger,
Sad, Happy, and Neutral. The Roman Urdu Hate-
Speech and Offensive Language Detection (RUH-
SOLD) (Rizwan et al., 2020) dataset comprising
10012 instances revolves around hate speech and
offensive language detection, utilizing labels such
as Hate Speech / Offensive Language and Non-
Offensive. RUHSOLD dataset originally used six
labels Abusive/Offensive, Sexism, Religious Hate,
Profane, and Normal. However, to make the tasks
easier, we converted this multiclass problem to a
binary class problem. The datasets selected for our
experiments, however, represent both binary and
multiclass text classification problems.

4 Results and Discussion

Table 1 shows the mean classification accuracy for
prompt-based and standard fine-tuned pre-trained
language models on different datasets. Mean accu-
racy is reported for splits of 4, 8, 16, and 32. In the
UNED dataset, XLM-RoBERTa demonstrated the
highest accuracy (after prompt-based fine-tuning)
of 44.8% on 16 splits, outperforming all other mod-
els. Similarly, for RUD dataset, fine-tuned XLM-
RoBERTa remained the top performer with an ac-
curacy of 84.8%. For the RUHSOLD dataset, fine-
tuned XLM-RoBERTa consistently dominated in
performance across all splits, achieving the highest
accuracy of 63.8% on 32 splits.

On the RUED dataset, prompt-based fine-tuned
XLM-RoBERTa outperformed other models with
the highest accuracy of 35.6% for splits 32. How-
ever, for splits 8 and 16, prompt fine-tuned Distil-
BERT and BERT-Multilingual models performed
better, respectively. In the case of the UOD dataset,
the results were more varied. Prompt-based fine-
tuned XLM-RoBERTa outperformed other models
for splits 4 and 16. However, for splits 8 and 32,
prompt fine-tuned BERT-Multilingual yielded bet-
ter results compared to the other models.

In our experiments, we consistently observed
that prompt fine-tuned models outperformed stan-
dard fine-tuned models achieving up to 13% abso-
lute improvement and 5.44% average improvement
in accuracy across all tasks. Additionally, it is
noteworthy that as the data splits increased, the
models’ accuracy also increased, as evident from
Figures 2, 3, 4, 5, and 6. These figures show the

variation of accuracy with split size for UOD, RUD,
RUED, RUHSOLD, and UNED datasets, respec-
tively, under prompt-based and standard fine-tuning
of the respective best-performing models. In gen-
eral, accuracy improves with an increase in split
size. However, for prompt-based fine-tuned mod-
els, the increase in accuracy was more significant
compared to standard fine-tuned models. It is also
worth noting that standard fine-tuning almost al-
ways lags behind prompt-based fine-tuning for all
models and datasets for up to 32 splits, confirming
that for the limited number of labeled examples,
prompt-based fine-tuning is preferable.
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Figure 2: Accuracy comparison for Standard vs.
Prompt-based Fine-tuning for UOD, where K-Split de-
notes the number of instances per class.
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Figure 3: Accuracy comparison for Standard vs.
Prompt-based Fine-tuning for RUD dataset, where K-
Split denotes the number of instances per class.
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Figure 4: Accuracy comparison for Standard vs.
Prompt-based Fine-tuning for RUED dataset, where
K-Split denotes the number of instances per class.
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UNED UOD RUD RUHSOLD RUED

4 8 16 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

Standard
fine-tuning

BERT-M 21.4 26.8 32.0 60.2 65.8 71.2 79.8 63.2 66.4 67.2 72.2 53.0 55.0 57.6 60.0 27.2 28.4 28.0 31.8
DistilBERT 18.8 20.8 23.4 58.6 57.4 68.4 80.0 55.0 64.2 63.2 71.0 49.2 55.6 56.6 60.4 27.4 29.8 31.6 25.4
XLM-R 19.0 27.4 32.0 54.4 49.0 74.6 81.2 55.0 59.8 66.6 75.2 54.2 56.2 57.8 60.2 19.4 23.0 26.8 26.6

Prompt based
fine-tuning

BERT-M 23.2 27.4 36.2 60.4 68.2 77.4 89.2 63.8 70.6 70.6 77.6 54.2 53.8 58.4 61.8 26.8 29.0 32.2 30.4
DistilBERT 24.4 25.6 32.8 57.6 64.2 72.6 81.4 65.2 70.8 68.4 75.6 52.8 54.8 58.4 60.8 27.6 30.0 31.8 33.4
XLM-R 27.4 31.8 44.8 65.8 67.2 79.6 87.8 67.8 76.8 80.2 84.8 57.2 59.0 64.0 63.8 29.0 28.4 31.0 35.6

Table 1: Mean accuracy comparison of standard and prompt-based fine-tuning for Urdu and Roman Urdu datasets
using K = 4, 8, 16 and 32, where K represents the number of samples per class. The standard deviation of these
experiments is given in Appendix A.
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Figure 5: Accuracy comparison for Standard= vs.
Prompt-based Fine-tuning for RUHSOLD dataset,
where K-Split denotes the number of instances per
class.
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Figure 6: Accuracy comparison for Standard vs.
Prompt-based Fine-tuning for UNED dataset, where
K-Split denotes the number of instances per class.

We present additional experimental results in the
Appendices. Appendix A gives the standard devi-
ations corresponding to the mean accuracy values
reported in Table 1. Appendix B presents the mean
F1-score of all the experiments on different models
and datasets. Appendix C studies the impact of
fine-tuning by comparing the performance of zero-
shot (no fine-tuning) and 4-shot prompt-based and
standard fine-tuned models.

5 Conclusion

In this paper, we compare prompt-based fine-tuning
with standard fine-tuning for Urdu and Roman
Urdu text classification when restricted to dozens
of training examples only. We perform experi-

ments using several multilingual pre-trained lan-
guage models on different classification datasets.
Regardless of the training set size or the specific
classification task, prompt-based fine-tuning con-
sistently outperforms standard fine-tuning, high-
lighting its robustness and generalizability. The
clear prediction superiority of prompt-based ap-
proaches, coupled with its generally lower com-
putational cost, makes it an attractive alternative
to traditional fine-tuning methods for low-resource
languages. The insights gained from this study can
inspire future research and encourage the adoption
of prompt-based techniques in other low-resource
languages.

Limitations

It is essential to note that the presented experiments
and results are relevant to Urdu and Roman Urdu.
Consequently, the generalizability of the findings
to other languages remains to be determined. The
effectiveness and performance of the approach in
diverse linguistic contexts may vary significantly.
Thus, care should be exercised when inferring the
results to languages beyond Urdu and Roman Urdu.
Another significant factor to consider is the reliance
of prompt-based techniques on domain expertise.
The success of prompt-based fine-tuning heavily
hinges upon formulating appropriate prompts that
adequately capture the desired semantic informa-
tion. Effective prompts require a deep understand-
ing of the language, context, and the specific task.
However, this process can introduce subjectivity
and potential bias, as prompt design involves mak-
ing subjective decisions and assumptions. These
subjective elements may influence the performance
of the approach and limit its objectivity in specific
scenarios.

The current findings provide valuable insights
into the utility of prompt-based fine-tuning for low-
resource languages and text classification. Future
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studies should investigate the performance of this
approach across a broader range of languages and
tasks, considering different linguistic characteris-
tics and data availability. It is also essential to
acknowledge that the evaluation of the proposed
approach was focused solely on text classification.
The applicability and performance of prompt-based
fine-tuning in other NLP tasks, such as named en-
tity recognition, sentiment analysis, or machine
translation, still need to be explored. Therefore,
caution should be exercised when attempting to
generalize the findings to other NLP domains, as
the effectiveness of prompt-based fine-tuning may
vary depending on the task and its linguistic prop-
erties.

The limitations outlined in this study highlight
the need for research and improvement in prompt-
based fine-tuning. While the approach shows
promise for low-resource languages and text clas-
sification, its generalizability, subjectivity in a
prompt design, limited task scope, and broader data
scarcity challenges necessitate further investiga-
tion and refinement. Addressing these limitations
will enhance the applicability and effectiveness of
prompt-based fine-tuning in diverse language set-
tings and NLP tasks.

Ethics Statement

We have carefully considered our study’s ethical
implications and taken the measures into account.
Data privacy and confidentiality were strictly main-
tained throughout the research process. We con-
sciously tried to mitigate biases and subjectivity
in prompt design and analysis. Our approach is
designed to assist human decision-making rather
than replace it, emphasizing the importance of hu-
man involvement. We have given due consideration
to the ethical aspects of prompt-based fine-tuning,
including fairness and privacy issues. Our work
contributes to advancing NLP knowledge and bene-
fits various stakeholders. Overall, this study aligns
with established ethical standards and promotes
the responsible application of prompt-based fine-
tuning in low-resource languages and text classifi-
cation.
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A Standard Deviation of Accuracy

Table 2 shows the standard deviation of accuracy
over 5 runs for different approaches, models, and
datasets. The standard deviation corresponds to the
mean accuracy reported in Table 1.

B F1-score Comparison

Table 3 gives the mean F1-score for prompt-based
and standard fine-tuning using different models and
on different datasets. It is observed that F1-score
results follow the same trend as that for accuracy
results given in Table 1. Thus, despite significant
class imbalance in some datasets the performance
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macro F1-score is fairly consistent.
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UNED UOD RUD RUHSOLD RUED

4 8 16 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

Standard
fine-tuning

BERT-M 6.06 3.96 7.0 4.20 2.28 2.38 3.56 3.42 0.89 3.11 2.38 3.46 4.63 5.02 2.82 4.60 4.66 5.04 2.78
DistilBERT 3.27 3.96 4.27 1.94 4.72 6.42 2.0 4.84 2.48 3.34 2.23 2.04 1.81 1.14 1.51 6.58 5.67 5.17 3.28
XLM-R 4.24 3.78 7.0 8.35 0.0 7.02 3.76 6.40 8.19 4.03 3.34 1.48 4.91 4.20 10.9 2.50 5.87 3.76 5.59

Prompt based
fine-tuning

BERT-M 2.48 2.30 2.48 4.92 3.34 10.4 1.78 5.40 1.34 2.07 1.51 4.02 2.16 2.30 3.70 5.06 4.18 7.72 6.65
DistilBERT 2.70 4.03 3.11 4.15 5.80 4.50 5.72 2.77 1.64 4.15 1.14 4.43 2.16 5.12 2.68 4.33 2.34 5.35 3.43
XLM-R 2.19 3.03 7.01 9.47 6.05 5.72 2.77 5.35 2.77 4.20 2.94 3.76 3.08 4.52 3.70 4.24 9.39 2.0 6.76

Table 2: Standard deviation of classification accuracy across different datasets and pre-trained language models for
Urdu and Roman Urdu datasets using K = 4, 8, 16 and 32.

UNED UOD RUD RUHSOLD RUED

4 8 16 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

Standard
fine-tuning

BERT-M 16.8 25.2 27.8 57.4 64.8 71.2 79.8 62.0 65.6 67.0 72.0 46.6 52.0 56.4 59.6 23.0 25.4 27.0 29.2
DistilBERT 10.8 15.2 17.4 50.6 50.4 66.8 79.8 45.6 63 59.4 70.6 42.2 46.6 54.0 56.2 22 21.4 25.2 22.6
XLM-R 10.0 23.8 27.8 43.4 33 73.2 80.8 45.2 52.6 62.8 75.0 46.0 40.8 56.8 56.4 12.4 15.2 22.4 23.4

Prompt based
fine-tuning

BERT-M 20.4 23.4 32.8 59.2 67.6 76.0 89.2 63.4 69.8 70.0 77.4 52.6 51.4 54.4 61.8 22.8 25.0 28.0 26.8
DistilBERT 20.4 22.8 29.4 55.2 63.4 72.4 81.4 64.2 70.6 67.8 75.6 51.8 53.2 57.6 60.6 24.6 27.2 27.8 30.0
XLM-R 25.6 28.8 45.0 63.6 66.0 79.6 87.8 66.4 76.8 79.8 84.8 55.8 57.0 61.8 63.4 26.8 24.4 30.0 30.4

Table 3: Mean F1-score comparison of standard and prompt-based fine-tuning for Urdu and Roman Urdu datasets
using K = 4, 8, 16 and 32, where K represents the number of samples per class.

UNED UOD RUD RUHSOLD RUED

Zero-Shot 4-Shot Zero-Shot 4-Shot Zero-Shot 4-Shot Zero-Shot 4-Shot Zero-Shot 4-Shot

Standard
BERT-M 9.0 21.4 50.0 60.2 50.0 63.2 54.0 53.0 21.0 27.2
DistilBERT 18.0 18.8 51.0 58.6 51.0 55.0 54.0 49.2 16.0 27.4
XLM-R 14.0 19.0 49.0 54.4 50.0 55.0 54.0 54.2 22.0 19.4

Prompt based
BERT-M 18.0 23.2 51.0 60.4 52.0 63.8 46.0 54.2 42.0 26.8
DistilBERT 19.0 24.4 51.0 57.6 52.0 65.2 48.0 52.8 45.0 27.6
XLM-R 16.0 27.4 51.0 65.8 50.0 67.8 48.0 57.2 46.0 29.0

Table 4: Accuracy results for zero-shot and 4-Shot for various models on different datasets.

UNED UOD RUD RUHSOLD RUED

Zero-Shot 4-Shot Zero-Shot 4-Shot Zero-Shot 4-Shot Zero-Shot 4-Shot Zero-Shot 4-Shot

Standard
BERT-M 5.0 16.8 34.0 57.4 33.0 62.0 35.0 46.6 17.0 23.0
DistilBERT 5.0 10.8 34.0 50.6 40.0 45.6 40.0 42.2 9.0 22.0
XLM-R 4.0 10.0 33.0 43.4 33.0 45.2 35.0 46.0 12.0 12.4

Prompt based
BERT-M 6.0 20.4 34.0 59.2 46.0 63.4 44.0 52.6 19.0 22.8
DistilBERT 10.0 20.4 34.0 55.2 39.0 64.2 40.0 51.8 18.0 24.6
XLM-R 10.0 25.6 35.0 63.6 33.0 66.4 38.0 55.8 16.0 26.8

Table 5: F1-score comparison for zero-shot and 4-Shot for various models on different datasets.

C Accuracy and F1-Score Comparison
for Zero-Shot and 4-Shot

Tables 4 and 5 present accuracy and F1-score, re-
spectively, for zero-shot and fine-tuned with four
examples on all five datasets. Results are shown
for standard and prompt-based techniques using 3
pre-trained language models. It is clear from the
results that zero-shot prompt-based predictions lag

behind those for 4-shot prompt-based fine-tuned
predictions on all the datasets. In other words, a per-
formance boost is obtained by employing prompt-
based fine-tuning even with 4 training examples.
This underscores our argument that prompt-based
fine-tuning holds significant potential in resource-
constrained scenarios and is particularly relevant
in the case of the Urdu language.
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