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Abstract

While recent progress in video-text retrieval has
been advanced by the exploration of better rep-
resentation learning, in this paper, we present a
novel multi-grained sparse learning framework,
S3MA, to learn an aligned sparse space shared
between the video and the text for video-text
retrieval. The shared sparse space is initial-
ized with a finite number of sparse concepts,
each of which refers to a number of words.
With the text data at hand, we learn and up-
date the shared sparse space in a supervised
manner using the proposed similarity and align-
ment losses. Moreover, to enable multi-grained
alignment, we incorporate frame representa-
tions for better modeling the video modality
and calculating fine-grained and coarse-grained
similarities. Benefiting from the learned shared
sparse space and multi-grained similarities, ex-
tensive experiments on several video-text re-
trieval benchmarks demonstrate the superiority
of S3MA over existing methods. Our code is
available at link.

1 Introduction

As a fundamental task in visual-language under-
standing (Wang et al., 2020b; Xu et al., 2021b; Park
et al., 2022a; Miyawaki et al., 2022; Fang et al.,
2023a,b; Kim et al., 2023; Jian and Wang, 2023),
video-text retrieval (VTR) (Luo et al., 2022; Gao
et al., 2021b; Ma et al., 2022a; Liu et al., 2022a;
Zhao et al., 2022; Gorti et al., 2022; Fang et al.,
2022) has attracted interest from academia and in-
dustry. Although recent years have witnessed the
rapid development of VTR with the support from
powerful pretraining models (Luo et al., 2022; Gao
et al., 2021b; Ma et al., 2022a; Liu et al., 2022a),
improved retrieval methods (Bertasius et al., 2021;
Dong et al., 2019; Jin et al., 2021), and video-
language datasets construction (Xu et al., 2016),
it remains challenging to precisely match video
and language due to the raw data being in hetero-
geneous spaces with significant differences.
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Figure 1: Our proposed supervised shared sparse multi-
grained alignment framework for video-text retrieval
maps sentence, video, and frame representations to a
shared sparse space to obtain sparse sentence, video,
and frame representations. Then, it calculates coarse-
and fine-grained similarities to fully explore the power
of the sparse space, which is learned in a supervised
fashion. “Original Dense Space” represents the space
containing the representations generated from modality-
dependent encoders. “Shared Sparse Space” represents
the space containing the sparse concepts shared across
two modalities. “Rep” refers to representation.

Current VTR research (Luo et al., 2022; Ma
et al., 2022a; Liu et al., 2022b) mainly aims to
learn a joint feature space across modalities and
then compares representations in this space. How-
ever, with the huge discrepancy between different
modalities and the design of modality-independent
encoders, it is challenging to directly compare and
calculate the similarities between representations
of different modalities generated from different
encoders (Liang et al., 2022). To alleviate the
mismatch caused by heterogeneous encoders and
data formats, Liu et al. (2022a); Cao et al. (2022)
proposed to align different modalities in a com-
mon space without supervision from text or video.
However, because of the unsupervised design, the
shared spaces are either randomly initialized or up-
dated in an unsupervised fashion, which blocks the
power of that aligned space. We argue that learning
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a shared aligned space with supervision is a promis-
ing way to improve video-text retrieval. Borrowing
from text retrieval (Karpukhin et al., 2020; Zhao
et al., 2021; Gao et al., 2021a), we represent the
aligned space and the space containing represen-
tations generated by modality-dependent encoders
as sparse and dense spaces, respectively, as the
aligned space typically carries specific semantics.

In this work, we propose a Supervised Shared
Sparse Multi-grained Alignment framework for
VTR, namely S3MA, in which the aligned sparse
space is updated under the supervision of the video-
text data at hand. Specifically, we initialize a finite
number of sparse concepts by clustering a large
number of basic concepts (words) to form the fine-
grained aligned sparse space. In return, each sparse
concept is composed of several words, which im-
proves the interpretability of our model. Then, we
match the sparse text and video representations
effectively by projecting the video representation
generated by the video encoder to this fine-grained
sparse space. The sparse sentence (text) represen-
tations can be obtained by looking up the sparse
concepts. To obtain sparse video representations,
we first calculate the cosine similarity between
the video representations and the sparse concepts.
Next, by summing up all the sparse concepts with
the weight of the cosine similarity between video
representation and sparse concepts, we obtain the
sparse video representations. Furthermore, to better
match these two sparse representations, we design
two loss functions to update sparse concepts, push-
ing the sparse representations of text and video as
close as possible in the shared sparse space. This
shared sparse space design not only improves the
performance on VTR, but also allows us to interpret
what the models have learned. The sparse aligned
space, as shown in Figure 5, enables the model to
accurately capture the key concepts, resulting in
improved alignment within the sparse space.

Recently, Ma et al. (2022a) demonstrated
that incorporating fine-grained video representa-
tions (such as frame or segment representations)
with high-level video features can further improve
retrieval performance. Inspired by their work, we
further project frame representations into our de-
signed aligned sparse space. Compared to high-
level video representations, frame representations
can be mapped to more detailed concepts, which
enriches the overall video representations. In this
way, we have fine-grained (frame) and coarse-

grained (video and sentence) representations from
the sparse space and the dense space, enabling us to
calculate multi-space multi-grained similarity for
exploring the potential of supervised sparse space.

Finally, to evaluate the effectiveness of our pro-
posed S3MA, we conducted experiments on three
video-text benchmarks (Chen and Dolan, 2011;
Fabian Caba Heilbron and Niebles, 2015; Xu et al.,
2016). Benefiting from multi-grained and multi-
space similarity, our proposed S3MA outperforms
previous methods on all the benchmarks without
requiring any additional data during training.

In summary, our contributions are as follows1:

• We propose the shared sparse space to al-
leviate the problem of mismatched repre-
sentations from different modalities, which
arises from the raw data being in heteroge-
neous spaces and the heterogeneous design of
modality-dependent encoders.

• Our proposed S3MA achieves SOTA perfor-
mance on several metrics across three VTR
benchmarks.

• Detailed analysis reveals the importance of
shared sparse space and multi-grained simi-
larity. Besides, we demonstrate that the de-
sign of shared sparse space and multi-grained
similarity significantly impacts retrieval per-
formance.

2 Related Works

Video-Text Retrieval (VTR), which involves cross-
modal alignment and abstract understanding of
temporal images (videos), has been a popular
and fundamental task of language-grounding prob-
lems (Wang et al., 2020a,c, 2021; Yu et al., 2023).
Most existing conventional video-text retrieval
frameworks (Yu et al., 2017; Dong et al., 2019; Zhu
and Yang, 2020; Miech et al., 2020; Gabeur et al.,
2020; Dzabraev et al., 2021; Croitoru et al., 2021)
focus on learning powerful representations for
video and text and extracting separated represen-
tations. Inspired by the success of self-supervised
pretraining methods (Devlin et al., 2019; Rad-
ford et al., 2019; Brown et al., 2020) and vision-
language pretraining (Li et al., 2020b; Gan et al.,
2020; Singh et al., 2022) on large-scale unlabeled
cross-modal data, recent works (Lei et al., 2021;
Cheng et al., 2021; Gao et al., 2021b; Ma et al.,

1The code is released at link.
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Figure 2: The illustration of representation generation in our proposed Supervised Shared Sparse Multi-grained
Alignment framework, namely S3MA. Specifically, for multi-space alignment, we employ a shared sparse space
which is consisted of a number of sparse concepts. The shared sparse space is updated in a supervised manner during
the training procedure, leading to the construction of a fine-grained sparse space. “⊗” refers to the calculation in
Eqs. (1), (2), and (3).

2022a; Park et al., 2022a; Wang et al., 2022b,c;
Zhao et al., 2022; Gorti et al., 2022) have attempted
to pretrain or fine-tune video-text retrieval models
in an end-to-end manner. Frozen in time (Bain
et al., 2021) uses end-to-end training on both image-
text and video-text pairs data by uniformly sam-
pling video frames. CLIP4Clip (Luo et al., 2022)
finetunes models and investigates three similar-
ity calculation approaches for video-sentence con-
trastive learning on CLIP (Radford et al., 2021).
Later, to enable unsupervised sparse learning in
VTR, DiscretCodebook (Liu et al., 2022a) aligns
modalities in a shared space filled with concepts,
which are randomly initialized and unsupervisedly
updated, while VCM (Cao et al., 2022) constructs
a sparse space with unsupervisedly clustered visual
concepts. At the same time, OA-Trans (Wang et al.,
2022a) and TABLE (Chen et al., 2023) both em-
ploy a small number of semantic tags as the input
to the text encoder to improve alignment between
modalities.

However, due to the unsupervised design, con-
cepts in DiscretCodebook and VCM are either ran-
domly initialized or updated unsupervisedly, which
limits the potential of aligned sparse space. On
the other hand, OA-Trans and TABLE only em-
ploy a limited number of concepts to serve as
the input of the text encoder to encourage align-
ment. Meanwhile, these methods only perform
the coarse-grained video-text similarity, lacking
the fine-grained contrast between different modali-
ties. In comparison, our proposed S3MA learn the
aligned sparse space containing a large number of
words in a supervised manner, under the supervi-
sion of text, and calculate frame-sentence similarity

for multi-space multi-grained alignment.

3 Methods

In this section, we introduce our proposed frame-
work for video-text retrieval, which aligns language
and video in a shared sparse space. Typically, in
video-text retrieval, we have a set of examples
{(vi, ti)}i∈[N ], where N is the number of exam-
ples that are of video and language.

3.1 General Video-Text Retrieval Paradigm

In this part, we present a general video-text retrieval
framework widely used by previous methods (Luo
et al., 2022; Liu et al., 2022a). With this paradigm,
we can obtain three representations for different
modalities from the dense space, i.e., frame repre-
sentation rf , video representation rv, and sentence
representation rs by modality-dependent encoders.

Frame and video representations: Given a video
v, several video frames are first sampled as the
inputs of the frame encoder to obtain the frame
features rf ∈ Rntframe×d, where nframe is the
number of frames and d is the dimension of fea-
tures. As the frame representations rf are extracted
through sampling, to explore the temporal correla-
tion among different frames, we employ a temporal
encoder to aggregate frame representations. With
the temporal encoder and the frame representations
rf , we obtain the video representations rv ∈ R1×d.

Sentence representation: Given a sentence t, we
use a text encoder to obtain the text representation
rs ∈ R1×d.
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3.2 Fine-Grained Aligned Sparse Space

The key to the video-text retrieval task is to pre-
cisely align representations from different modal-
ities. However, due to the heterogeneous encoder
architectures and data formats of different modal-
ities, it is difficult to align directly (Liang et al.,
2022). Therefore, instead of directly enforcing the
representations to be aligned, we propose aligning
them in an aligned sparse constructed by nc sparse
concepts C ∈ Rnc×d. Each sparse concept c repre-
sents several basic concepts (words). Moreover, to
supervise the updates of sparse concepts, we utilize
the human-annotated knowledge at hand, i.e., text
annotations in the paired video-text data.

Initialization. First, we map all the words into em-
beddings by the embedding layer femb of the text
encoder. But as the number of words is relatively
large (for example, in Clip (Radford et al., 2021),
the number of sub-words is approximately 30k), we
cluster embeddings into nc clusters using KNN (Gi-
anfelici, 2008) to form the sparse concepts C and
represent all the words by their cluster’s centers c.
Consequently, each sparse concept c represents a
bunch of words that are similar on the embedding
space, enabling fine-grained alignment. The map-
ping from words to sparse concepts is denoted by
hw2c ∈ [nwords] → {0, 1}nc×1. Now, nc sparse
concepts have been initialized.

Obtaining the sparse sentence representation.
For text, as the caption is at hand, we can directly
tokenize the sentences into words and look up the
corresponding sparse concepts in C. The sparse
sentence representation rsc ∈ R1×d is obtained by
averaging all the representations of concepts that
are fetched with the surface form of the sentence,
as follows,

rsc = simt⊤C/|t| , (1)

where |t| is the number of words in t and simt =∑
w∈t hw2c(w) is a vector with the length of nc.

Obtaining the sparse video representation. We
first calculate the cosine similarity simv ∈ R1×nc

between the video representations and sparse con-
cepts C as simv

j = cos(rv, cj), ∀j ∈ [nc], where
simv

j is the j-th element of simv and cos(·, ·) is
the cosine similarity. Next, sparse video representa-
tions are obtained by weighted summing the sparse
concepts as,

rvc = simvC/∥simv∥1 . (2)
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Figure 3: The illustration of similarity calculation. To
enable multi-space multi-grained alignment, we calcu-
late fine-grained (frame-sentence) and coarse-grained
(video-sentence) similarity. Our preliminary experi-
ments showed that the text encoder has a good ability to
capture semantics, so we only use sentence representa-
tions for the text modality.

Obtaining the sparse frame representation. Sim-
ilarly, the cosine similarity simf ∈Rnframe×nc be-
tween the frame representations and sparse con-
cepts is calculated as simf

i,j = cos(rfi , cj),∀i ∈
[nframe],∀j ∈ [nc], where simf

i,j is the (i, j)-th

element of simf and rfi is the i-th row of rf . Next,
sparse frame representations are obtained as,

rfc =
∑

i∈[nframe]

simf
i C/∥simf

i ∥1 . (3)

Finally, we have the sparse frame, video, and
sentence representations rfc ∈ Rnframe×d, rvc ∈
R1×d, rsc ∈ R1×d with the frame and video sparse
space similarity simf ∈ Rnframe×nc and simv ∈
Rnc along with the sentence sparse space similarity
(supervision) simt.

3.3 Multi-Space Multi-Grained Similarity
In this part, we will demonstrate our method for
calculating the similarities between data from two
different modalities, as shown in Figure 3, includ-
ing the similarities in the dense space and in shared
sparse space, inspired by Ma et al. (2022a). We can
now compute multi-space (sparse and dense spaces)
multi-grained (fine-grained and coarse-grained)
similarity for precise alignment.

3.3.1 Dense Space Similarity
Video-Sentence similarity Srv−rs . To obtain a
fine-grained similarity, we use a learnable matrix
Arv−rs ∈ Rd×d to focus on the discriminative fea-
tures of video and sentence representations as,

Srv−rs = rvArv−rsr
s⊤ .
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Frame-Sentence similarity Srf−rs . To obtain

a fine-grained similarity, we first calculate an
instance-aware weight using the softmax function
applied to the dot product of rsrf⊤, and then use
a learnable matrix Arf−rs ∈ Rnframe×nframe to
focus on discriminative frames. In this way, the
similarity is calculated as,

Srf−rs = softmax(rsrf⊤)Arf−rsr
frs⊤ .

3.3.2 Sparse Space Similarity
Video-Sentence shared sparse space similarity
Srvc−rsc . Similarly, to obtain a fine-grained similar-
ity on the shared sparse space, we use a learnable
matrix Arvc−rsc ∈ Rd×d to focus on the discrimina-
tive features of sparse video and sentence represen-
tations. Now, the similarity is calculated as,

Srvc−rsc = rvcArvc−rscr
s⊤
c .

Frame-Sentence shared sparse space simi-
larity S

rfc−rsc
. With instance-aware weights

softmax(rscr
f⊤
c ) and a learnable matrix A

rfc−rsc
∈

Rnframe×nframe , we get the similarity between the
sparse frame and sentence representations as,

S
rfc−rsc

= softmax(rscr
f⊤
c )A

rfc−rsc
rfc r

s⊤
c .

3.3.3 Overall Similarity
The overall video-text similarity is defined as,

S =
Srf−rs + Srv−rs + S

rfc−rsc
+ Srvc−rsc

4
.

3.4 Objective
The objective consists of three different losses.
The first component is contrastive loss. Follow-
ing Clip4Clip (Luo et al., 2022), we employ the
symmetric InfoNCE loss over the similarity matrix
to optimize the retrieval model as,

ℓsim =ℓv2t + ℓt2v

=− 1

N

∑

i∈[N ]

log
exp(Si,i)∑

j∈[N ] exp(Si,j)

− 1

N

∑

i∈[N ]

log
exp(Si,i)∑

j∈[N ] exp(Sj,i)
,

where Si,j is similarity between i-th video and j-th
text and N is the number of paired data.

The second loss we minimize is the alignment
loss, which matches the sparse frame and video

representations (rfc and rvc ) with the sparse sentence
representations rsc in the ℓ2 distance, as,

ℓalign =
1

N

∑

i∈[N ]

(∥rvc − rsc∥2

+

∥∥∥∥∥
1rfc

nframe
− rsc

∥∥∥∥∥
2

)
,

where 1 is the vector only containing 1.
In addition, to match the frame and video repre-

sentations with the corresponding sparse concepts,
we minimize the sparse similarity loss as,

ℓsparse =
1

N

∑

i∈[N ]

(∥∥simv − simt
∥∥
2

+

∥∥∥∥
1simf

nframe
− simt

∥∥∥∥
2

)
,

The overall objective is the linear combination
of the above three losses as,

ℓ = ℓsim + αℓalign + βℓsparse ,

where α and β are hyperparameters controlling the
trade-off between three losses. We set α = 0.02
and β = 0.01 for all the experiments.

4 Experiments

4.1 Datasets and Baselines
To show the empirical efficiency of our S3MA,
we train it on MSR-VTT (Xu et al., 2016),
MSVD (Chen and Dolan, 2011), and Activi-
tyNet (Fabian Caba Heilbron and Niebles, 2015).
We compare with VLM (Xu et al., 2021a),
HERO (Li et al., 2020a), VideoCLIP (Xu et al.,
2021b), EvO (Shvetsova et al., 2022), OA-
Trans (Wang et al., 2022a), RaP (Wu et al., 2022),
LiteVL (Chen et al., 2022), NCL (Park et al.,
2022b), TABLE (Chen et al., 2023), VOP (Huang
et al., 2023), Clip4Clip (Luo et al., 2022), X-
CLIP (Ma et al., 2022a), DiscreteCodebook (Liu
et al., 2022a), TS2-Net (Liu et al., 2022b),
VCM (Cao et al., 2022), HiSE (Wang et al.,
2022b), Align&Tell (Wang et al., 2022c), Center-
CLIP (Zhao et al., 2022), and X-Pool (Gorti et al.,
2022). Implementation details and evaluation pro-
tocols are deferred to the Appendix.

4.2 Quantitative Results

MSR-VTT. As shown in Table 1, S3MA achieves
the best R@1 on the text-to-video retrieval results
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Methods Venue
Text-to-Video Retrieval Video-to-Text Retrieval

R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓
VLM ACL’21 28.1 55.5 67.4 4.0 - - - - - -
HERO EMNLP’21 16.8 43.3 57.7 - - - - - - -
VideoCLIP EMNLP’21 30.9 55.4 66.8 - - - - - - -
EvO CVPR’22 23.7 52.1 63.7 4.0 - - - - - -
OA-Trans CVPR’22 35.8 63.4 76.5 3.0 - - - - - -
RaP EMNLP’22 40.9 67.2 76.9 2.0 - - - - -
BLIP-based
LiteVL-S EMNLP’22 46.7 71.8 81.7 2.0 - - - - - -

ViT-B/32-based
Align&Tell TMM 45.2 73.0 82.9 2.0 - 43.4 70.9 81.8 2.0 -
X-Pool CVPR’22 46.9 72.8 82.2 2.0 14.3 - - - - -
CenterCLIP SIGIR’22 44.2 71.6 82.1 2.0 15.1 42.8 71.7 82.2 2.0 10.9
TS2-Net ECCV’22 47.0 74.5 83.8 2.0 13.0 45.3 74.1 83.7 2.0 9.2
X-CLIP ACM MM’22 46.1 74.3 83.1 2.0 13.2 46.8 73.3 84.0 2.0 9.1
NCL EMNLP’22 43.9 71.2 81.5 2.0 15.5 44.9 71.8 80.7 2.0 12.8
TABLE AAAI’23 47.1 74.3 82.9 2.0 13.4 47.2 74.2 84.2 2.0 11.0
VOP CVPR’23 44.6 69.9 80.3 2.0 16.3 44.5 70.7 80.6 2.0 11.5

CLIP4Clip NC 44.5 71.4 81.6 2.0 15.3 - - - - -
DiscreteCodebook ACL’22 43.4 72.3 81.2 - 14.8 42.5 71.2 81.1 - 12.0
VCM AAAI’22 43.8 71.0 - 2.0 14.3 45.1 72.3 82.3 2.0 10.7
S3MA 49.1 73.9 82.8 2.0 13.5 46.9 73.8 82.1 2.0 9.3
S3MA† 51.7 75.9 85.4 1.0 11.1 51.6 76.8 85.0 1.0 8.4
ViT-B/16-based
Align&Tell TMM 47.4 74.3 84.1 2.0 - 45.3 73.5 83.7 2.0 -
CenterCLIP SIGIR’22 48.4 73.8 82.0 2.0 13.8 47.7 75.0 83.3 2.0 10.2
HiSE ACM MM’22 45.0 72.7 81.3 2.0 - 46.6 73.3 82.3 2.0 -
TS2-Net ECCV’22 49.4 75.6 85.3 2.0 13.5 46.6 75.9 84.9 2.0 8.9

CLIP4Clip NC 45.8* 74.3* 84.1* 2.0* - 43.2* 71.3* 82.0* 2.0* -
S3MA 49.8 75.1 83.9 2.0 12.2 47.3 76.0 84.3 2.0 8.9
S3MA† 53.1 78.2 86.2 1.0 10.5 52.7 79.2 86.3 1.0 8.2

Table 1: Video-Text retrieval results on MSR-VTT. * represents data copied from Align&Tell. The best results are
marked in bold. The second best results are underlined. “NC” refers to Neurocomputing. † refers to the results with
the inverted softmax.

Methods Venue
Text-to-Video Retrieval

R@1↑ R@5↑ R@10↑ MnR↓
MSVD

X-CLIP ACM MM’22 47.1 77.8 - 9.5
HiSE ACM MM’22 45.9 76.2 84.6 -
X-Pool CVPR’22 47.2 77.4 86.0 9.3

CLIP4Clip NC 45.2 75.5 84.3 10.3
S3MA 47.3 78.8 85.7 9.3

ActivityNet

Align&Tell TMM 42.6 73.8 - -
X-CLIP ACM MM’22 44.3 74.1 - 7.9
TS2-Net ECCV’22 41.0 73.6 84.5 8.4

CLIP4Clip NC 40.5 72.4 - 7.5
VCM AAAI’22 40.8 72.8 - 7.3
S3MA 45.0 75.5 85.7 6.3

Table 2: Text-Video retrieval results on MSVD and
ActivityNet. The best results are marked in bold. The
second best results are underlined.

using ViT-B/32 and ViT-B/16, outperforming the
second-best method by 2.1 and 0.4, respectively.

The performance of S3MA on the video-to-text re-
trieval task is also comparable with previous meth-
ods, achieving the best and second-best results on
R@1 and R@5 using ViT-B/32. Moreover, we no-
tice that only 1 previous method using ViT-B/16
outperforms S3MA with ViT-B/32 on the text-to-
video retrieval, demonstrating the effectiveness of
S3MA. Compared to DiscreteCodebook (Liu et al.,
2022a), which aligns modalities in an unsupervised
manner, S3MA outperforms DiscreteCodebook
on every metric. Meanwhile, S3MA also outper-
forms VCM (Cao et al., 2022), which constructs
an aligned space with unsupervisedly clustered vi-
sual concepts, demonstrating the importance of
supervising alignment in the sparse space. This
suggests that aligning modalities with fine-grained
supervision is a promising approach to improving
video-to-text retrieval performance.

MSVD and ActivityNet. The results on MSVD
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Text-to-Video Retrieval Video-to-Text Retrieval
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

S3MA (ViT-B/32) w. SE 47.3 73.5 82.0 2.0 13.3 45.6 73.4 82.4 2.0 9.1
S3MA (ViT-B/32) w. Emb 49.1 73.9 82.8 2.0 13.5 46.9 73.8 82.1 2.0 9.3

Table 3: Comparing the power of different sparse spaces on MSR-VTT. “Emb” and “SE” refers to the embedding
space and semantic embedding space.

Text-to-Video Retrieval Video-to-Text Retrieval
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

S3MA (ViT-B/32) w/o clustering 48.7 74.4 83.0 2.0 13.4 46.7 73.3 82.6 2.0 9.2
S3MA (ViT-B/32) 49.1 73.9 82.8 2.0 13.5 46.9 73.8 82.1 2.0 9.3

Table 4: Ablation study on the effect of clustering when constructing the shared sparse space.

Size
Text-to-Video Retrieval Video-to-Text Retrieval
R@1 R@5 MnR R@1 R@5 MnR

512 48.7 73.0 12.9 46.4 72.8 9.0
1024 49.1 73.9 13.5 46.9 73.8 9.3
2048 48.3 73.9 13.5 47.0 72.7 9.1
4096 47.6 73.6 13.6 46.8 73.4 9.3

DC (1024) 43.4 72.3 14.8 42.5 71.2 12.0
VCM 43.8 71.0 14.3 45.1 72.3 10.7

Table 5: Retrieval performance with different sizes
of sparse space on the MSR-VTT dataset using
S3MA with ViT/B-32. “DC” represents DiscreteCode-
book (Liu et al., 2022a), which also aligns modalities in
a sparse space whose size is 1024 with the base model
of ViT/B-32. The best results are marked in bold. The
second best results are underlined.

and ActicityNet are shown in Table 2. S3MA
achieves the best R@1 on text-to-video retrieval
on two datasets compared to the previous meth-
ods. Besides, with the shared sparse space and
multi-grained alignment, S3MA also has the low-
est MnR.

4.3 Ablation Studies

In this part, we present a series of ablation experi-
ments on MSR-VTT to demonstrate the effective-
ness of different components of S3MA. The evalu-
ation of two proposed losses, similarity calculation,
and the importance of word-level features are de-
ferred to the Appendix.

4.3.1 Efficiency of Sparse Space
The choice of different initialization of sparse
spaces. To choose the best initialization method
for the sparse space, we conduct experiments using
two different initializations, i.e., the embedding and
semantic embedding spaces, as shown in Table 3.
The embedding space is the one we use in S3MA,

while the semantic embedding space, is initialized
by outputs of the last layer in the text encoder, with
input consisting of a word and two [SEP] tokens.
By replacing the embedding initialization with the
semantic embedding, the retrieval performance of
S3MA decreases, proving the superiority of em-
bedding space over the semantic embedding space.
Size of sparse space. Another important factor to
consider is the size of the sparse space. When we
have unlimited data to train models, a large sparse
space is ideal. However, when the data is limited,
a large sparse space can lead to sparse gradients,
resulting in most of the concepts not being able to
be updated, while a small sparse space will restrict
the retrieval ability as it becomes more challenging
to distinguish between numerous data points. The
results of these experiments can be found in Table 5.
We see that halving and doubling the size of the
sparse space slightly decreases performance.
Impact of clustering. As S3MA clusters all the
embeddings to initialize concept clusters, it is un-
certain whether clustering will hinder the power
of the shared sparse space. Clustering can be use-
ful to extract high-level abstract concepts and re-
duce noise. However, it may also lead to a loss of
information, which is important for fine-grained
alignment. Specifically, we compare the perfor-
mance of S3MA to that of a modified version,
S3MA w/o clustering concepts, which directly
uses over 30k basic concepts to form the shared
sparse space. Quantitative results can be found in
Table 4. The results show that without clustering,
R@5, R@10, and MnR on text-to-video retrieval
and R@10 and MnR on video-to-text retrieval are
improved. On one hand, similar basic concepts can
be better separated, which leads to more precise
alignment. On the other hand, that may lead to
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Dense Space Sparse Space Text-to-Video Retrieval Video-to-Text Retrieval
S-V S-F S-V S-F R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR ↓
! 42.8 72.0 82.3 2.0 15.0 41.9 71.1 81.5 2.0 11.1
! ! 43.3 70.5 81.4 2.0 15.6 42.5 71.0 80.9 2.0 11.9

! 44.4 71.8 81.8 2.0 14.5 44.1 71.8 81.7 2.0 10.4
! ! 44.8 72.1 81.7 2.0 15.9 41.7 70.2 79.6 2.0 10.8

! ! 42.9 72.3 81.6 2.0 15.2 42.0 70.9 81.1 2.0 11.0
! ! 43.8 72.1 82.3 2.0 14.7 41.5 70.6 80.3 2.0 9.8

! ! 44.0 71.3 80.9 2.0 14.8 43.6 69.5 80.1 2.0 10.4
! ! ! 47.4 73.3 82.4 2.0 12.9 46.4 73.0 82.2 2.0 8.9
! ! ! 47.4 73.6 82.5 2.0 13.2 47.3 72.3 81.7 2.0 8.9
! ! ! ! 49.1 73.9 82.8 2.0 13.5 46.9 73.8 82.1 2.0 9.3

Table 6: Retrieval performance with different similarities on MSR-VTT using S3MA with the base model of ViT-
B/32. “S-V” and “S-F” represent Sentence-Video (coarse-grained) and Sentence-Frame (fine-grained) similarities.

Base Model TE
Text-to-Video Video-to-Text

R@1 R@5 MnR R@1 R@5 MnR

ViT-B/32
47.0 73.9 14.5 45.7 72.3 9.6

! 49.1 73.9 13.5 46.9 73.8 9.3

ViT-B/16
47.3 74.9 12.8 46.1 75.1 9.5

! 49.8 75.1 12.2 47.3 76.0 8.9

Table 7: Retrieval performance with or without the tem-
poral encoder (“TE”) and with different base models.

sparse gradients, resulting in some concepts not
being fully updated while others are over-updated.
This might cause some concepts to be under or
over-represented, which might negatively impact
the performance (Radovanovic et al., 2010). There-
fore, it’s important to find the balance in clustering
to achieve the best performance.

4.3.2 Efficiency of Multi-Grained Similarities
In order to fully evaluate the impact of multi-
grained similarities, we compare different variants
of S3MA and the results are shown in Table 6.
From these results, we can draw three conclusions,

• Multi-grained similarities are crucial for re-
trieval. Using both coarse- and fine-grained
alignments in the dense space improved R@1
from 42.8 and 41.9 to 44.0 and 43.6 on text-
to-video and video-to-text retrieval compared
with only using coarse-grained alignment in
the dense space, respectively. The same obser-
vation can be observed in the sparse space.

• Sparse space plays a crucial role in improving
the alignment of modalities. We observe that
incorporating coarse-grained in the dense and
sparse spaces improves R@1 for text-to-video

retrieval from 42.8 to 43.3 compared to only
performing coarse-grained similarity in the
dense space, respectively.

• Using multi-space and multi-grained similar-
ities simultaneously achieves the best perfor-
mance. R@1 on text-to-video and video-to-
text retrieval is significantly improved from
42.8 and 41.9 to 49.1 and 46.9, respectively.

4.3.3 Temporal Encoder and Larger Model
We also investigate the effect of the temporal en-
coder (TE, a small sequence transformer) and dif-
ferent base models. The results are shown in Ta-
ble 7. S3MA with TE outperforms S3MA without
TE, because it is able to better model the temporal
relation among different frames in a video. Be-
sides, using a larger base model, such as ViT-B/16,
further improves the performance of S3MA, as a
larger base model typically has better representa-
tion learning abilities benefiting this retrieval task
as well. Similar conclusions can be found in previ-
ous works (Luo et al., 2022; Ma et al., 2022a).

4.4 Qualitative Results

To qualitatively validate the effectiveness of S3MA
and the alignment in the sparse space, we present
examples of video-to-text and text-to-video re-
trieval on MSR-VTT in Figures 4, 6 and 7, and the
alignment in sparse space in Figure 5, respectively.
The retrieval results show the satisfactory per-
formance of S3MA, benefiting from multi-space
multi-grained similarity. Notably, S3MA demon-
strates precise identification of the color (green),
objects (bicycle), and humans (a man), indicating
its proficiency in capturing intricate details. In Fig-
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Top1: man talks in front of a green bicycle✅

Top2: a man talks about cars

Top3: people talking about a fight

Top4: two people are preparing for sports

Top5: guys holding cups and talking

Query: a man discusses spongebob

✅ Top1

Top2

Top3

Query:

Figure 4: Video-Text retrieval examples.

Query: a(519) movie(947) director(694) talking(248) to(1017)
the(519) media(154) men(28) in(1017) press(915) conference(133)
regarding(827) his(384) movie(947) and(522) hero(213) also(41)

57882724814052221328411017519Ind
0.420.440.500.530.570.630.700.800.910.93Sim

Video Sparse Similarity – Top10 Indices and Similarities

14028124522827248411017213519Ind
0.680.680.710.750.760.820.820.830.850.90Sim

Frame Sparse Similarity – Top10 Indices and Similarities

Figure 5: An example of alignment on the sparse space.
The index of the concepts is shown in the brackets.

ure 5, we notice that, the video and frame features
are perfectly aligned with the corresponding sparse
concepts as exhibiting high similarities.

5 Conclusion

In this paper, to better align video and text modal-
ities, we proposed a multi-space, multi-grained
video-text retrieval framework, S3MA. Specifi-
cally, S3MA aligned different modalities in a fine-
grained shared sparse space, which is initialized
with a finite number of concept clusters consist-
ing of a number of basic concepts (words) and
updated in a supervised fashion with the guide
of text. Besides, S3MA employed frame (fine-
grained) and video (coarse-grained) features to en-
courage models to perform multi-grained similarity
alignment. Finally, we conducted extensive experi-
ments on three representative video-text retrieval
benchmarks, showing the superiority of S3MA.

Limitations

In the future, it would be promising to seek more
fine-grained alignment, such as instance (object)-
level or word-level alignment, for aligning differ-
ent modalities. Moreover, our experiment focused
solely on the application of sparse retrieval in video-
text retrieval. It would be great to see whether
sparse retrieval can help other cross-modal retrieval
tasks, e.g., audio-text, image-text, audio-video, and
audio-image retrieval. Additionally, incorporating
more detailed information such as the relationship
between different objects and frames would be ben-
eficial for the video-text retrieval problem.

Regarding the sparse space, we notice that some
sparse concepts are retrieved a lot during the train-
ing procedure which might lead to the emergence
of hubness (Radovanovic et al., 2010). Investigat-
ing improved clustering methods to mitigate hub-
ness would be an interesting direction for future
research. That might be due to the KNN clustering
strategy and in the future and introducing better
clustering strategies might be able to reduce the
hubness issue, such as weighted KNN, semantic-
based KNN, or part-of-speech tagging-based KNN.
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A Experiments

A.1 Datasets Details
MSR-VTT (Xu et al., 2016) contains 10,000
videos with length varying from 10 to 32 seconds,
each paired with about 20 human-labeled captions.
Following the evaluation protocol from previous
works Yu et al. (2018); Miech et al. (2019), we use
the training-9k / test 1k-A splits for training and
testing respectively.

MSVD (Chen and Dolan, 2011) contains 1,970
videos with a split of 1200, 100, and 670 as the
train, validation, and test set, respectively. The
duration of videos varies from 1 to 62 seconds.
Each video is paired with 40 English captions.

ActivityNet (Fabian Caba Heilbron and Niebles,
2015) is consisted of 20,000 Youtube videos with
100,000 densely annotated descriptions. For a fair
comparison, following the previous setting (Luo
et al., 2022; Gabeur et al., 2020), we concatenate
all captions together as a paragraph to perform
a video-paragraph retrieval task by concatenating
all the descriptions of a video. Performances are
reported on the “val1” split of the ActivityNet.

A.2 Implementation Details and Evaluation
Protocols

Following Luo et al. (2022); Ma et al. (2022a),
we use a standard vision transformer (Dosovitskiy
et al., 2021) with 12 layers which are initialized
with the public CLIP (Radford et al., 2021) check-
points. We directly use the text encoder of CLIP as
our text encoder which is also initialized with the
public CLIP checkpoints.

We set the query, key, and value projection di-
mension size as 512 to match CLIP’s output di-
mension and we initialize our logit scaling param-
eter λ with the value from the pre-trained CLIP
model. All models are optimized for 5 epochs
on MSR-VTT and MSVD, and for ActivityNet,
the models are trained for 20 epochs. We use
AdamW (Loshchilov and Hutter, 2019) with a
weight decay of 0.2 and decay the learning rate
using a cosine schedule (Loshchilov and Hutter,
2017), following the method used in CLIP (Rad-
ford et al., 2021). For all experiments, we uni-
formly sample 12 frames from every video, re-
sizing each frame to 224x224 as per previous
works (Luo et al., 2022; Ma et al., 2022a). we set
ncodes = 1024 following DiscreteCodebook (Liu
et al., 2022a). To evaluate the retrieval performance
of our proposed model, we use recall at Rank K

(R@K, higher is better), median rank (MdR, lower
is better), and mean rank (MnR, lower is better) as
retrieval metrics, which are widely used in previ-
ous retrieval works (Radford et al., 2021; Luo et al.,
2022; Ma et al., 2022a).

A.3 Ablation Studies
Evaluating the calculation of similarity between
video and frame representations and cluster con-
cepts in S3MA. In S3MA, we use cosine similar-
ity to calculate simf and simv. Another way of
calculating simf and simv might be using multi-
label classification. To compare the effect of multi-
label classification and cosine similarity, we con-
duct experiments using two multi-layer perceptrons
(MLPs) with two layers and the ReLU activation
to predict the similarity between video and frame
representations and cluster concepts. Two MLPs
are also trainable. Quantitative results are shown
in Table 8. Our quantitative results, shown in Ta-
ble 8, indicate that the use of MLPs decreases R@1
on text-to-video and video-to-text retrieval. This
suggests that cosine similarity is more suitable for
VTR.
Evaluating the importance of supervised align-
ment in S3MA. In S3MA, the aligned sentence
representation rsc is obtained from the text as in
Eq. (1). This process aligns the sentence represen-
tation based on the instruction of the text. By doing
so, the aligned sentence representation rsc can serve
as the supervision (an anchor) for aligning video
and frame features, providing a reference point for
the alignment of different modalities. To investi-
gate the importance of placing an anchor rsc for bet-
ter alignment, we compare it to obtaining aligned
sentence representation through the similarity be-
tween concept clusters C and sentence feature rt.
This alternative approach allows us to evaluate the
effectiveness of using an anchor for alignment and
to understand how it improves the performance of
the model. To investigate the alternative approach
of obtaining aligned sentence representation with-
out an anchor, we calculate the sentence sparse
space similarity simt ∈ R1×nc by calculating the
cosine similarity between sentence representations
and concepts as simt

j = cos(rs, Cj), where simt
j

is the j-th element of simt, Cj is the j-th row of
C, and cos is the cosine similarity. The aligned sen-
tence representation rt without the instruction of
text is obtained by matrix multiplication as follows:

rt = simtC/∥simt∥1, (4)
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Text-to-Video Retrieval Video-to-Text Retrieval
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

S3MA (ViT-B/32) w. multi-label classification 47.0 73.6 82.9 2.0 12.5 45.5 73.8 82.8 2.0 8.7
S3MA (ViT-B/32) w. cosine 49.1 73.9 82.8 2.0 13.5 46.9 73.8 82.1 2.0 9.3

Table 8: Ablation study on the calculation of similarity between video and frame representations and cluster
concepts.

Text-to-Video Retrieval Video-to-Text Retrieval
R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR↓

S3MA (ViT-B/32) w/o anchor 47.8 72.9 82.3 2.0 13.4 46.4 74.9 82.1 2.0 9.1
S3MA (ViT-B/32) w. anchor 49.1 73.9 82.8 2.0 13.5 46.9 73.8 82.1 2.0 9.3

Table 9: Ablation study on the instruction of text, i.e., generating rsc using the similarity or the text. “w. anchor” refers
to obtain rsc by text as Eq. (1). “w/o anchor” refers to obtain rsc by the similarity between sentence representations
and concepts C as Eq. (4)

Text-to-Video Retrieval Video-to-Text Retrieval
ℓalign ℓalignsim R@1↑ R@5↑ R@10↑ MnR↓ MeanR↓ R@1↑ R@5↑ R@10↑ MnR↓ MeanR↓

48.0 72.9 82.4 2.0 13.5 45.4 73.2 82.1 2.0 9.3
! 48.0 73.5 82.7 2.0 13.4 47.1 74.2 82.9 2.0 9.1

! 47.4 73.5 82.7 2.0 13.5 46.8 73.2 82.2 2.0 9.2
! ! 49.1 73.9 82.8 2.0 13.5 46.9 73.8 82.1 2.0 9.3

Table 10: Ablation study of ℓalign and ℓalignsim on MSR-VTT based on S3MA (ViT-B/32).

Text-to-Video Retrieval Video-to-Text Retrieval
α β R@1↑ R@5↑ R@10↑ MnR↓ MeanR↓ R@1↑ R@5↑ R@10↑ MnR↓ MeanR↓

0.02 0.01 49.1 73.9 82.8 2.0 13.5 46.9 73.8 82.1 2.0 9.3

0.02 0.02 48.5 73.8 83.2 2.0 14.0 46.3 73.1 82.1 2.0 9.4
0.02 0.05 47.6 72.7 82.4 2.0 14.0 45.8 74.0 82.2 2.0 9.2
0.02 0.1 47.7 72.3 82.9 2.0 13.4 45.3 73.6 83.3 2.0 9.0

0.01 0.01 47.6 74.0 82.7 2.0 13.8 46.7 73.5 82.2 2.0 9.5
0.05 0.01 48.1 73.6 83.1 2.0 13.2 46.3 72.9 82.7 2.0 9.1
0.1 0.01 47.9 74.2 82.3 2.0 13.3 46.3 73.4 82.5 2.0 9.1

Table 11: Ablation study of α and β on MSR-VTT based on S3MA (ViT-B/32).

Dense Space Sparse Space Text-to-Video Retrieval Video-to-Text Retrieval
S-V S-F W-V W-F S-V S-F W-V W-F R@1↑ R@5↑ R@10↑ MdR↓ MnR↓ R@1↑ R@5↑ R@10↑ MdR↓ MnR ↓
! ! ! ! 49.1 73.9 82.8 2.0 13.5 46.9 73.8 82.1 2.0 9.3
! ! ! ! ! ! ! ! 48.3 73.8 82.7 2.0 13.0 46.6 74.1 82.1 2.0 9.4

X-CLIP 46.1 74.3 83.1 2.0 13.2 46.8 73.3 84.0 2.0 9.1

Table 12: Retrieval performance with different similarities on MSR-VTT using S3MA with the base model of ViT-
B/32. “S-V”, “S-F”, “W-V”, and “W-F” represent Sentence-Video (coarse-grained), Sentence-Frame (fine-grained),
Word-Video (fine-grained), and Word-Frame (fine-grained) similarities.

where simt is the similarity between sentence rep-
resentations and concepts. The results of this com-
parison can be found in Table 9. The experimental
results show that with the “anchor”, S3MA can
better align different modalities as R@1, R@5, and
R@10 on text-to-video retrieval and R@1 on video-

to-text retrieval have greatly improved, indicating
that the supervised (anchor-based) alignment is cru-
cial for better performance of the model.

Effect of losses and hyperparameter sensitiv-
ity. To further demonstrate the effectiveness of the
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Top1: a child in pink watches a white bird in an open box✅

Top2: an animal is throwing a piece of junk

Top3: a puppy is crawling down some stairs

Top4: two parrots in a bird cage one white chick and on green adult

Top5: the house has at least three small pets

Top1: sports vine clips of football✅

Top2: this is a vine sports compilation

Top3: vines of sports are being played

Top4: it is a vine compilation

Top5: a compilation of vine videos is shown

Top1: man talks in front of a green bicycle✅

Top2: a man talks about cars

Top3: people talking about a fight

Top4: two people are preparing for sports

Top5: guys holding cups and talking

Top1: a man is yelling on the phone ✅

Top2: a man in a music video screams shut up a bunch of times

Top3: a man with a very red nose

Top4: a bunch of cartoon faces are chomping their teeth and making 
eating gestures

Top5: different letters are coming out and sounding out the way they 
sound

Figure 6: Top-5 video-to-text retrieval results on MSR-VTT.

while other friends too try and hitting the basket another is eager to 
achieve his fourth successful basket in basketball

✅ Top1

Top2

Top3

a woman interviewing about her part in a protest happening in brazil

✅ Top1

Top2

Top3

a man discusses spongebob

basketball players making a shot in the last seven seconds

✅ Top1

Top2

Top3

✅ Top1

Top2

Top3

Figure 7: Top-3 text-to-video retrieval results on MSR-VTT.

Videos

Sp
ar
se

 C
on

ce
pt
s

Figure 8: The activation of 20 sparse concepts by 100 randomly selected videos.

two proposed losses designed for aligning different
modalities in the shared sparse space, we conduct
experiments to compare the performance of these
losses. The quantitative results of these experi-
ments are shown in Table 10. The results indicate
that adding both losses simultaneously achieves the
best performance on the MSR-VTT dataset. When
using only one loss, the performance on text-to-

video retrieval is comparable to the method with-
out using both losses on text-to-video retrieval, but
outperforms the method without the two losses
on video-to-text retrieval. Specifically, when us-
ing two losses, R@1 on text-to-video retrieval and
video-to-text retrieval is improved by 1.1 and 1.5,
respectively. Additionally, all the other metrics,
such as R@5 and R@10, are also improved, demon-
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strating the power of the two proposed losses in
aligning different modalities in the shared sparse
space. To gain a better understanding of the sensi-
tivity of S3MA with respect to the two hyperpa-
rameters, α and β, we conduct a series of experi-
ments with different settings of α and β as shown in
Table 10. The results of these experiments demon-
strate that, even with varying settings of α and β,
the video-text retrieval performance remains con-
sistent, indicating that the model is robust and not
highly sensitive to these hyperparameters. This
suggests that S3MA is able to achieve good per-
formance across a wide range of settings for these
hyperparameters, making it easy to adjust and op-
timize for specific use cases. Additionally, this
also suggests that S3MA is not overly dependent
on precise values of these hyperparameters, and is
instead able to leverage the more important under-
lying features and patterns in the data.

Are word-level features necessary? To investi-
gate the necessity of word-level features, we intro-
duce word-level dense and sparse representations,
along with word-frame and word-video similari-
ties, into the dense and sparse spaces. The results
are presented in Table 12. Notably, we observe a
decrease in performance when incorporating word-
level contrast in both dense and sparse spaces, in-
dicating possible feature redundancy. Moreover,
our approach, which incorporates word-level con-
trast, can be viewed as an extension of X-CLIP (Ma
et al., 2022b) with the shared sparse space. We no-
tice that contrasting representations in the aligned
sparse space enhances the retrieval performance of
X-CLIP.

A.4 Aligning Examples

To show the effectiveness of S3MA, we illustrate
some examples of video-to-text and text-to-video
retrieval examples in Figures 4, 6 and 7. We notice
that S3MA is able to align some important con-
cepts between video and text for precise retrieval.
For example, in the bottom-left video-to-text result
(Figure 6), the biggest difference between the top 5
retrieved texts is “football”. By precisely capturing
“football” in the video, S3MA is able to give higher
logits to the sentences that contain “football”. Ad-
ditionally, in the last (bottom-right) text to video
result (Figure 7), we notice that, by understanding
“man” and “discuss”, S3MA is able to distinguish
the top 3 retrieved videos and select the one in
which a man appears. This empirically shows that

S3MA performs well in visual and textual con-
tent understanding, benefiting from multi-space
and multi-grained similarity.

Moreover, we visualize the activation of sparse
concepts by videos in Figure 8. We notice that,
some hub sparse concepts are frequently retrieved
while some are not retrieved a lot, which might be
due to the KNN clustering. Moreover, we notice
that the difference between activations from videos
are separable.
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