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Abstract

Generative retrieval, which is a new advanced
paradigm for document retrieval, has recently
attracted research interests, since it encodes
all documents into the model and directly gen-
erates the retrieved documents. However, its
power is still underutilized since it heavily re-
lies on the “preprocessed” document identifiers
(docids), thus limiting its retrieval performance
and ability to retrieve new documents. In this
paper, we propose a novel fully end-to-end re-
trieval paradigm. It can not only end-to-end
learn the best docids for existing and new doc-
uments automatically via a semantic indexing
module, but also perform end-to-end document
retrieval via an encoder-decoder-based genera-
tive model, namely Auto Search Indexer (ASI).
Besides, we design a reparameterization mech-
anism to combine the above two modules into
a joint optimization framework. Extensive ex-
perimental results demonstrate the superiority
of our model over advanced baselines on both
public and industrial datasets and also verify
the ability to deal with new documents.

1 Introduction

Search engines are widely deployed on web appli-
cations to meet users’ daily information require-
ments (Wang et al., 2022). Given a user query,
search engines usually first retrieve candidate doc-
uments from a huge document collection and then
rank them to return a ranking list. Consequently,
the performance and efficiency of document re-
trieval are essential to the final search quality.

Recently, a new end-to-end document retrieval
framework named Generative Retrieval is proposed
to develop a differentiable indexer, which directly
maps a given query to the relevant document identi-
fiers (docids) via a seq2seq model (Tay et al., 2022).
Specifically, some policies are first applied to pre-
process all the existing documents for docids such
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as assigning unique integers for documents (Tay
et al., 2022; Zhou et al., 2022). Given the pre-
processed docids, a Transformer-based model is
employed to encode the document-docid mapping
information into its parameters, and meanwhile is
trained to generate relevant docids directly from a
given query. As such, by adding a preprocessing
phase, it turns the whole index-retrieve process into
a generation task.

Despite the great success of these methods, the
power of generative retrieval is still underutilized
since they rely on the pre-processed docids, thus
leading to the following limitations. (1) New docu-
ments cannot be seamlessly retrieved by an existing
trained indexer. On the one hand, docids are pre-
processed so that new documents cannot obtain
their docid assignments directly from the retrieval
model. On the other hand, even if their docids
are obtained by the same "pre-processing" policy,
these new docids are usually unknown semantics
to the retrieval model. (2) Existing preprocessing
policies are confined to one-to-one mapping be-
tween documents and docids. Accordingly, only
one single document can be retrieved for each re-
trieval calculation. It deviates from the intention of
the retrieving-ranking framework, i.e., a groups of
relevant documents are expected to be efficiently re-
trieved in the retrieving stage (Guo et al., 2022). We
argue to assign similar documents with same docid,
which supports retrieving more documents at the
same computational cost. (3) The preprocessing
phase is independent of the index-retrieve process.
Consequently, the caused semantic gap between the
docids in preprocessing phase and the embedding
space in index-retrieve process limits the perfor-
mance of generative retrieval. However, it is not
trivial to automatically learn the best docids within
a joint framework, since the docids, which is served
as the generation ground-truths, cannot maintain
the gradient flow because they must appear in dis-
crete form by an argmax function. Therefore, the
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docid learning process and the index-retrieve pro-
cess are still independent of each other even if they
are integrated together.

In this paper, we propose a novel fully end-to-
end generative retrieval paradigm, Auto Search In-
dexer (ASI). It combines both the end-to-end learn-
ing of docids for existing and new documents and
the end-to-end document retrieval into a generative
model based joint optimization framework. Specif-
ically, we model document retrieval problem as a
seq2seq task, i.e., with user queries as input, it out-
puts the docids of retrieved documents. Then, we
design a semantic indexing module, which learns to
automatically assign docids to existing / new docu-
ments. Besides, we design two semantic-oriented
losses for it, which makes semantically similar doc-
uments share the same docids and assigns different
docids to dissimilar documents. As such, the new
document will be assigned an existing docid based
on its content, or a new docid but belonging to
the same semantic space as other docids. Further-
more, a reparameterization mechanism is proposed
to enable gradient to flow backward through the
semantic indexing module, thus supporting joint
training for all modules. Extensive experiments
on public and industrial datasets show that the pro-
posed ASI outperforms the state-of-the-art (SOTA)
baselines by a significant margin in document re-
trieval, and demonstrate that our semantic indexing
module automatically learns meaningful docids for
documents.

The contributions are summarized as follows:

• To the best of our knowledge, we are the first
to propose a fully end-to-end pipeline, Auto
Search Indexer (ASI), which supports both
end-to-end docid assigning and end-to-end
document retrieval within a joint framework.

• To this end, we propose a semantic index-
ing module as well as two novel semantic-
oriented losses to automatically assign docu-
ments with docids, and develop a reparame-
terization mechanism to make the individual
modules optimize jointly.

• Extensive experiments demonstrate that our
ASI can learn the best docid for documents,
and meanwhile achieves the best document
retrieval compared to the SOTA methods on
both public dataset and real industrial dataset.

2 Related Work

Studies about document retrieval can be roughly di-
vided into three categories: sparse retrieval, dense
retrieval and generative retrieval, which are briefly
introduced as follows.

2.1 Sparse Retrieval

Early studies are mostly based on inverted index
and retrieve documents with term matching metrics,
e.g., TF-IDF [45]. BM25 (Robertson and Zaragoza,
2009) measures term weights and computes rel-
evance scores based on TF-IDF signal. Recent
studies design to leverage the word embeddings to
help build inverted index (Zheng and Callan, 2015;
Dehghani et al., 2017; Dai and Callan, 2020b,a).
To alleviate the mismatch problem between query
and document words, which is the key weak point
for sparse retrieval, researchers attempt to augment
possible terms before building the inverted index,
e.g., Doc2Query (Nogueira et al., 2019b).

2.2 Dense Retrieval

In another line to relieve the mismatch problem,
solutions based on deep learning first embed the
queries and documents to dense vectors and then
retrieve documents per vector similarity (Lu et al.,
2020; Ma et al., 2022; Ni et al., 2022b; Zhan et al.,
2022; Li et al., 2023a; Wang et al., 2023). These
methods especially benefit from recent advances in
pretrained language models (PLMs). For instance,
SimCSE (Gao et al., 2021) is a simple but effec-
tive contrastive learning framework that employs
BERT (Devlin et al., 2019) or RoBERTa (Liu et al.,
2019). To improve the inference latency, dense re-
trieval methods are usually equipped with approxi-
mate nearest neighbor (ANN) (Subramanya et al.,
2019) or maximum inner product search (MIPS)
algorithms (Shrivastava and Li, 2014) to retrieve
relevant documents within a sub-linear time cost.

2.3 Generative Retrieval

Recently, an alternative architecture is proposed to
end-to-end map user queries to relevant docids with
a Transformer-based autoregressive model. Specif-
ically, Tay et al. (2022) and Wang et al. (2022)
propose to preprocess the documents into atomic
identifiers or hierarchical semantic identifiers with
hierarchical k-means algorithm. Differently, SEAL
(Bevilacqua et al., 2022) devise to leverage all n-
grams in a passage as its identifiers. Chen et al.
(2022) similarly retrieves evidence by returning
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Figure 1: Illustration of the proposed model ASI.

sentence identifiers, namely GERE. Ultron (Zhou
et al., 2022) designs both keyword-based identifiers
and semantic-based identifiers and develops a three-
stage training workflow. SE-DSI (Tang et al., 2023)
proposes to use summarization texts as document
identifiers. MINDER (Li et al., 2023b) assigns doc-
uments multiview identifiers. Concurrently with
our work, Sun et al. (2023) also investigated a dif-
ferent framework, GenRet, which uses a codebook
and discrete auto-encoder with progressive train-
ing to learn the doc-id assignments within retrieval
stage, while it relies on a clustering-based initial-
ization1.

In a word, they suffer from the docid pre-
processing phase, forming a fake end-to-end frame-
work. In this paper, we propose a fully end-to-end
paradigm ASI. It not only supports end-to-end doc-
ument retrieval by a generative model, but also
end-to-end learns the best docids for documents
within a joint optimization framework.

3 Our Proposed Method

3.1 Overview

In this subsection, we present an overview of our
novel Auto Search Indexer. The basic idea is, as
illustrated in Figure 1, to build a fully end-to-end
pipeline to automatically learn the meaningful do-
cids for documents, perform end-to-end document
retrieval, and combine them into a joint framework.

In detail, our ASI adopts encoder-decoder ar-
chitecture to encode the user query q and directly
generate relevant docids id(i), i = 1, 2, · · · . Distin-
guished from existing preprocessing-based meth-
ods, a semantic indexing module is integrated to

1Compared with ASI, GenRet additionally relies on a pro-
gressive training scheme and unique docid assignment, lead-
ing to limited training and inference efficiency for large-scale
corpora.

automatically assign docids to existing / new doc-
uments. To encode semantics into the docids, we
creatively design a discrete contrastive loss and a
sequence-oriented reverse cross-entropy loss for
the semantic indexing module, which helps to as-
sign semantically meaningful docids and break the
limitation of one-to-one mapping between docu-
ments and docids. Moreover, a reparameterization
mechanism is proposed to enable gradient flowing
through the indexing module to support joint opti-
mization, thus saving the decoder from falling into
meaninglessly mimicking the indexing module. In
other words, the decoder thus gains the ability to
surpass the indexing module on document retrieval.

3.2 Basic Architecture

Noticing the outstanding advances of generative
PLMs, ASI adopts a seq-to-seq framework.

Specifically, ASI forms “query-to-docid”
paradigm, i.e., ASI takes the user query as input
and generates several relevant docids, which are
represented as a sequence of id tokens. To this
end, with the help of a transformer-based encoder-
decoder architecture, the query q is encoded by
its encoder, and the generation probability is
estimated by its decoder as follows,

hi = Decoder(Encoder(q),h<i), (1)

P (idi | q, id<i; Θe,d) = Softmax(hiW ), (2)

where idi denotes the i-th token in the currently
given docid id of length m, which is obtained by
the semantic indexing module. Θe,d denotes the
trainable parameters in encoder-decoder architec-
ture. W ∈ Rd×Vid is the linear parameter to clas-
sify the hidden state hi into the docid vocabulary of
size Vid. Here we treat all of the docids as different
tokens from the encoder vocabulary, and therefore
the encoder and decoder do not share the vocabu-
lary space to improve decoding efficiency.

Finally, to maximize the target docid sequence
likelihood, we adopt cross-entropy loss to optimize
the following generation objective function,

Ls(Θe,d)=
∑

(q,d)∈D

m∑

i

logP (id|q,id<i;Θe,d), (3)

where the target docid id is obtained based on doc-
ument d by the semantic indexing module, which
will be described next.
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Figure 2: Illustration of the proposed semantic indexing
module and two semantic-oriented losses.

3.3 Semantic Indexing Module

Previous works focus on the end-to-end retrieval
phase, while neglecting to build an end-to-end
learning framework for docid indexing, i.e., they
have to “preprocess” the documents for docids (Tay
et al., 2022; Wang et al., 2022; Zhou et al., 2022).
Therefore, they can hardly deal with new docu-
ments, which are common and unavoidable in prac-
tical applications. To tackle the above problem, in
this subsection, we propose a semantic indexing
module to automatically assign docids to existing /
new documents, as illustrated in Figure 2.

Specifically, given the input document d ∈ D
and its representation x from encoder2, the seman-
tic indexing module assigns its corresponding i-th
id token based on the following probability distri-
bution,

P (idi|d; Θe,i) = Lineari(x), (4)

idi = argmaxP (idi|d; Θe,i), (5)

where Θe,i denotes the model parameter in encoder
and semantic indexing module. Note that this se-
mantic indexing module could have been more elab-
orately designed, while this paper focuses on the
“fully” end-to-end framework, and hence this mod-
ule is designed from a simple point of view.

3.4 Semantic-Oriented Losses

Existing indexing policies commonly enforce that
each docid uniquely refers to one document, which
reduces the retrieval efficiency. We argue to assign
similar documents with same docid, thus support-
ing to retrieve more documents at the same compu-
tational cost.

To this end, as depicted in Figure 2, we propose
a discrete contrastive loss and a sequence-oriented
reverse cross-entropy loss for semantic indexing

2We represent it by its [CLS] embedding.

module to softly encourage the assignment of dif-
ferent docids to different documents, rather than
utilizing manual rules to force it.

Discrete Contrastive Loss First of all, the
premise to assign similar documents with same
docid is that the encoder should learn semantic-
based representations for documents. Accordingly,
we propose a discrete contrastive loss to help learn
different embeddings for documents of different
semantics, where the “different” is measured by
query-document pairs.

Formally, given a set of training examples D =
{(q, d)} composed of query-document pairs, the
discrete contrastive objective function is as follows,

Lc=
∑

(q,d)∈D
(q,d−)/∈D

max(0, τ(idq,idd)−τ(idq,idd−)+α),
(6)

where the docid idd and pseudo query id idq are cal-
culated by Eq.(5), α is a hyperparameter of margin.
Note that it is hard to measure the distance between
two discrete ids and calculate the corresponding
gradient, thus we use the probability distribution of
ids to calculate distances. Formally,

τ(idq, idd) =
∑m

i
∥P (idqi |q; Θe,i)− P (iddi |d; Θe,i)∥2,

(7)

where the distribution P (·) refers to Eq.(4).

Sequence-Oriented Reverse Cross-Entropy
Loss Intuitively, considering minimizing cross-
entropy loss is usually used to make a variable
closer to a given label, we can conversely maxi-
mize it to make an id token away from the given
label (Pang et al., 2018). Considering that docid
is formed as a sequence of id tokens, it is not nec-
essary to guarantee that every token of the two
sequences is different, but only one of the tokens is
different. Therefore, given a pair of docids, we can
find the maximum value from the cross-entropy of
all id token pairs, which means this pair is most
likely to become different. Then, our sequence-
oriented reverse cross-entropy loss is proposed to
maximize this maximum value.

Formally, given two documents dj , dk ∈ D, let
idj and idk denote their docids, respectively. We
can diversify their docids by minimizing the fol-
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lowing loss function,

Lr(Θe,i) = −
∑

dj ̸=dk
L(j,k)
r (Θe,i) , (8)

where L(j,k)
r (Θe,i) = max

i
CrossEntropy{

(
P (idji | dj ; Θe,i), id

k
i

)
}. (9)

For mini-batch training, the document pairs are
selected from a batch.

3.5 Reparameterization Mechanism
The above semantic indexing module is expected
to learn the best docids jointly with Lseq. How-
ever, the obtained docids are utilized as generation
ground-truths, which cannot maintain the gradi-
ent flow with the help of softmax but must appear
in discrete one-hot form by a gradientless argmax
function. Consequently, the gradient is not able
to propagate back from decoder to the semantic
indexing module, thus the optimization of decoder
and semantic indexing module is still decoupled. It
means that directly regarding the docids of one-hot
format as the training target probably makes de-
coder fall into meaninglessly mimicking rather than
surpassing the indexing module, as ∂Lseq

∂Θi
= 03.

Inspired by DALL-E (Ramesh et al., 2021), we
devise a simple but effective reparameterization
mechanism to support our end-to-end learning
framework via Straight-Through Estimator (STE)
(Hinton, 2012). Specifically, suppose the semantic
indexing module outputs the i-th docid idi for a
document d, we can derive the formula according
to the chain rule as follows,

∂Lseq

∂Θi
=

∂Lseq

∂îdi

· ∂îdi

∂P(idi|d)
· ∂P(idi|d)

∂θ
, (10)

where îdi denote the one-hot vector of idi, and
the mid-term ∂îdi

∂P(idi|d) is non-differential. STE
suggests defining the non-differential term as “1”,
thus we have
∂Lseq

∂Θi
:=

∂Lseq

∂îdi

· 1argmaxP(idi|d) ·
∂P(idi|d)

∂θ
.

(11)

To this end, the outputted one-hot vector is repa-
rameterized in forward propagation as follows,

îdi := îdi − detach(P (idi | d; Θe,i))+

P (idi | d; Θe,i), (12)
3Note that the gradient of the two semantic-oriented losses

also rely on this reparameterization mechanism. Here we
only take the sequence loss as an example to illustrate the
reparameterization mechanism.

Table 1: Statistics of Datasets

Datasets ADS MSMARCO

Train 50M 367K
Expansion - 32M
Valid 10K 5.2K
# Docs 13.1M 3.2M

where detach() makes a tensor detached from the
backpropagation. As such, STE utilizes the gradi-
ent of P (idi | d) to replace the gradient of argmax.
Finally, Eq.(3) is rewritten as follows,

Ls(Θe,d,i)=
∑

(q,d)∈D

m∑

i

logP (id|q, id<i;Θe,d,i),

(13)

where Θe,d,i denotes the trainable parameters in
encoder, decoder and indexing modules.

3.6 Model Training & Inference

For model training, we merge the above objective
functions together as follows,

L = Ls + γcLc + γrLr, (14)

where γc and γr are the scaling coefficients.
In the inference (retrieval) phase, when a user

query is inputted to retrieve documents, we apply
the encoder to encode the query, then adopt beam
search on the decoder to generate relevant docid,
and finally look up the document-docid mapping
to output the retrieved documents.

As for when a new document appears and should
be incorporated into the existing document collec-
tion, we apply the encoder followed by the seman-
tic indexing module to assign a docid to it. It is
worth noting that this docid belongs to the same
semantic space as others. As a result, even if it has
never appeared in the training document collection,
there is no need to retrain the model for this docid.

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets

We evaluate the empirical performance on a pub-
lic dataset and an industrial dataset for document
retrieval. The statistics of the data are reported in
Table 1 and a brief introduction is as follows.
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MS MARCO Document Ranking Task 4

(Nguyen et al., 2016) It is a large-scale dataset
for machine reading comprehension, which con-
tains a total of 3.2 million candidate documents.
We use the official split of the dataset. Besides,
for fair comparison, following Zhou et al. (2022),
we apply DocT5Query (Nogueira et al., 2019a) for
query generation.

ADS It is a real-world large-scale dataset col-
lected from Bing5 sponsored search engine, which
provides organic web results in response to user
queries and then supplements with sponsored ads.
We collect query-ad pairs where the ads are the
concatenation of the title and abstract from the
sponsored ads corresponding to the user query.

4.1.2 Baselines
To validate the effectiveness of our proposed ASI,
we compare it with the following three groups of
strong document retrieval baselines.

Sparse Retrieval BM25 (Robertson and
Zaragoza, 2009) is a difficult-to-beat baseline
which uses TF-IDF feature to measure term
weights. DocT5Query (Nogueira et al., 2019a)
utilizes T5 to generate pseudo query for document
to expand document information and then applies
BM25 for document retrieval.

Dense Retrieval We select four representative
methods for comparison, i.e., RepBERT (Zhan
et al., 2022), Sentence-T5 (Ni et al., 2022b), DPR
(Karpukhin et al., 2020), SimCSE (Gao et al., 2021)
and GTR (Ni et al., 2022a).

Generative Retrieval DSI (Tay et al., 2022) is
the first generative retrieval framework to directly
output docids with the query as input. We com-
pare ASI with two DSI variants, which construct
docids with random unique integers and hierarchi-
cal clusters, namely DSI-Atomic and DSI-Semantic,
respectively. DSI-QG (Zhuang et al., 2022) bridges
the gap between indexing and retrieval for differ-
entiable search index with a query generation tech-
nique. SEAL (Bevilacqua et al., 2022) regards all
n-grams contained in documents as their identi-
fiers. Ultron (Zhou et al., 2022) designs a three-
stage training workflow where the docids are built
by reversed URL or product quantization (Zhan
et al., 2021) on document embeddings. We denote

4https://microsoft.github.io/msmarco/Datasets
5https://www.bing.com

these two variants as Ultron-URL and Ultron-PQ,
respectively. NCI invents a tailored prefix-aware
weight-adaptive decoder architecture, better suited
to its hierarchical clustering-based docids and beam
search-based generator. GenRet (Sun et al., 2023)
uses a codebook and discrete auto-encoder with
progressive training to learn the doc-id assignments
within retrieval stage.

4.1.3 Metrics
We evaluate model performance with the follow-
ing common metrics for document retrieval. Re-
call@K (R@1/5/10) treats the cases as true posi-
tives that the decoder generates the same docids
as the assignments of the semantic indexing mod-
ule. Moreover, for dataset ADS, Quality Score
between the query and the retrieved documents is
measured by an online quality estimation tool in
Bing. Considering that ASI allows each docid to
point to multiple documents, we report the micro- /
macro-averaged Quality Score, denoted as Mi-QS
and Ma-QS respectively. Besides, we also report
the average number of retrieved documents for each
query when generating Top10 docids, denoted as
D/Q.

4.1.4 Detailed Implementation
In terms of model architecture, we build ASI with a
6-layer encoder and 6-layer decoder, where the en-
coder is initialized with a pretrained 6-layer BERT6

and the decoder is optimized from scratch since its
vocabulary is changed to id tokens. For encoder-
only or decoder-only baselines, i.e., RepBERT,
Sentence-T5, DPR, we set the layer number 12
for fair comparison. For encoder-decoder models,
we set encoder/decoder layer number 6, i.e., 12
layers in total. For other settings, we set the max
length of input sequence 64 for ours and follow
the settings for baselines in Zhou et al. (2022). We
set the margin α=3, loss coefficients γc=γr=0.2,
the length of docid m=4 and the range of each id
token is [0, 256). For model training, we set batch
size 4096 and learning rate 1e-4 with AdamW opti-
mizer. For inference, we apply vanilla beam search
without constraints7 and the beam size as 10.

6gaunernst/bert-L6-H768-uncased
7Note that there is no need to adopt methods such as con-

straint beam search to enforce that the generated docid must
have corresponding documents. On the one hand, as stud-
ied in Section 4.4, new documents might occupy new docids.
Consequently, the “invalid” docids have certain guiding sig-
nificance for us to expand the coverage of documents. On the
other hand, we have also counted the proportion of generated
invalid docids, which is only about 0.58%.
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Table 2: Performance on dataset MS MARCO. The best
two results are shown in bold and the third best are
underlined. “†” denotes that the performance is referred
from Zhou et al. (2022), Sun et al. (2023) or Tang et al.
(2023) and “‡” denotes we reproduce by their official
implementations.

Model Params R@1 R@5 R@10 MRR@10

BM25† - 0.1894 0.4282 0.5507 0.2924
DocT5Query† - 0.2327 0.4938 0.6361 0.3481

RepBERT† 220M 0.2525 0.5841 0.6918 0.3848
Sentence-T5† 220M 0.2727 0.5891 0.7215 0.4069
DPR† 220M 0.2908 0.6275 0.7313 0.4341
SimCSE‡ 110M 0.2867 0.6470 0.7322 0.4390
GTR-Base † 110M 0.4620 - 0.7930 0.5760

DSI-Semantic† 250M 0.2574 0.4358 0.5384 0.3392
DSI-Atomic† 495M 0.3247 0.6301 0.6992 0.4429
DSI-QG † 200M 0.2574 0.4358 0.5384 0.3392
NCI‡ 376M 0.2574 0.4358 0.5384 0.3392
SEAL‡ 139M 0.2884 0.5683 0.6829 0.4066
DynamicRetriever† 495M 0.2904 0.6422 0.7315 0.4253
Ultron-URL† 248M 0.2957 0.5643 0.6782 0.4002
Ultron-PQ† 257M 0.3155 0.6398 0.7314 0.4535
Ultron-Atomic† 495M 0.3281 0.6490 0.7413 0.4686
GenRet † 215M 0.4790 - 0.7980 0.5810

ASI 125M 0.6121 0.7831 0.8207 0.6857
ASI (Expectation) 125M 0.5497 0.7072 0.7414 0.6175

4.2 Retrieval Performance on MS MARCO

We evaluate the model performance for document
retrieval on dataset MS MARCO in this subsection,
which is reported in Table 2. The major findings
from the results are summarized as follows:

(1) ASI significantly outperforms all the compet-
itive baselines by a significant margin across four
different metrics on the dataset MS MARCO. Espe-
cially on the R@1 metric, our ASI almost achieves
twice the performance compared with the strongest
baseline, i.e., Ultron-Atomic, which validates the
superiority of our fully end-to-end pipeline. We
attribute this surprising gain to both its tailored
design and more suitable docids learned for gener-
ative retrieval.

(2) Furthermore, considering that ASI allows
each docid to point to multiple documents, it is
somehow unfair for baselines to directly compare
on Recall. Therefore, we modify the metrics for fur-
ther comparison: For a retrieved docid that points
to multiple documents, we randomly sample one
single document for it. As such, ASI would also
retrieve the same number of documents as base-
lines. Besides, in order to further eliminate the
occasional performance fluctuation caused by the
random sampling strategy, we choose to report the
expectation of Recall/MRR in Table 2 (refer to ASI
(Expectation)). It can be seen that even if the in-

Table 3: Performance on dataset ADS.

Model R@1 R@5 R@10 Mi-QS
Ma-QS D/Q

Documents in Training & Validation Set (∼13M)

SEAL 0.0444 0.1463 0.1998 0.5291 10

SimCSE 0.0934 0.2853 0.3891 0.3122 10

SimCSEdocid 0.2768 0.4593 0.5008 0.5290
0.5087 443

ASI 0.3952 0.6542 0.7259 0.5053
0.4857 1344

Full Documents Collection (∼689M)

ASI - - - 0.4806
0.4661 142258

fluence of the one-to-many mapping of docid is
excluded, our ASI is still significantly better than
all the strong baselines. This further demonstrates
the superiority of our design.

4.3 Retrieval Performance on ADS

Considering the sparsity of the supervision signal
in datasets, the document that was not interacted
with the given query according to the dataset is
not definitely an “inappropriate” retrieval result.
Therefore, in this subsection, we evaluate ASI on
ADS dataset and focus on the retrieval quality.

Settings. For datasets, we first conduct ex-
periment on the collected dataset, i.e., we train
the model on training set and perform document
retrieval on the about 13M documents from train-
ing & validation set. Furthermore, we also evaluate
this checkpoint based on the full collection of about
689M documents in Bing platform. For baselines,
we select two representative baselines, i.e., Sim-
CSE and SEAL8. Furthermore, we modify Sim-
CSE to support docid retrieval, where we use the
average of document embeddings corresponding to
every docid as the docid embedding, based on the
document-docid mapping relationship learned by
our ASI, namely SimCSEdocid.

For metrics Recall@K, as reported in Table 3,
ASI outperforms the selected baselines by a greatly
large margin. It does not rule out that it is because
the one-to-many docids reduce the retrieval dif-
ficulty, thus we add a comparison between ASI

8Among generative retrieval methods, SEAL relies on
ngram-based docids so that new documents can be easily incor-
porated by simply rebuilding the FM index without retraining
the model. In contrast, the others rely on virtual token-based
docids that are generated during preprocessing phase, which
causes difficulty in generalizing to new documents.
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Table 4: Performance on new documents from ADS.

Metrics Full
Valid Existing New

Content
New

Semantic

# Sample 10000 1661 8146 193

R@1 0.3952 0.4218 0.4088 0.0570
R@5 0.6542 0.6865 0.6629 0.2073
R@10 0.7259 0.7583 0.7333 0.2487
Mi-QS 0.5053 0.5174 0.5041 0.4640
Ma-QS 0.4857 0.5006 0.4872 0.4638
D/Q 1344 1565 1178 925

and SimCSEdocid. As shown in the table, there is
still a remarkable improvement compared ASI with
SimCSEdocid, which validates the superior perfor-
mance of our ASI for docid retrieval.

For Quality Score, SEAL outperforms all the
methods including ours. We analyze that this is
because SEAL is based on n-grams. Limited by
the sparse supervision signal in the dataset, it can-
not obtain the expected Recall@K performance.
But the n-grams guarantee that its retrieved docu-
ments are of high quality. After adding the docid
mappings learned by ASI, SimCSEdocid has greatly
improved the Quality Score and even achieves bet-
ter performance than ours, which validates the ef-
fectiveness of the docid learned by ASI in terms
of quality. However, they still suffer from low
retrieval efficiency. Specifically, SEAL can only
generate 10 documents in one generation process
(set topk=10 for beam search in decoder), and Sim-
CSE also incurs high computational and storage
costs even equipped with ANN Search, while our
ASI could retrieve amount of documents in one
generation process without any extra storage. It is
worth noting that we can retrieve 1344 documents
of competitive quality for each query at the same
computational cost, which is more than 100 times
the efficiency of SEAL.

Additionally, we apply this semantic indexing
module to encode the full collection of documents,
and evaluate the quality score. One can see that
we can obtain more impressive retrieval efficiency
and the price we need to pay is only a little bit of
acceptable quality degradation. It demonstrates the
advantages of our model in terms of both effective-
ness and efficiency in practical usage.

4.4 Analysis for New Documents

As mentioned before, thanks to the semantic index-
ing module with two semantic-oriented losses, ASI
can better deal with the new documents.

Specifically, there are two possible results when
dealing with new texts. One is to assign new doc-
uments with an existing docid, which means they
are new in content rather than semantics. The other
is that the new documents are assigned with a new
docid, which means they are new in semantics.
Hence, we split the validation set into three sub-
sets, including “Existing” denoting the documents
that are contained in training set, “NewContent”
denoting the first category of new documents and
“NewSemantic” denoting the second category.

As shown in Table 4, compared with the per-
formance on the full validation set of ADS, ASI
performs better on group “Existing”. Surprisingly,
ASI also performs better in “NewContent”. For
the “NewSemantic” group, our ASI still achieves
desirable performance. These results validate the
semantic indexing module does not mechanically
copy the docids contained in the training set, but
fully learns the relationship between document se-
mantics and docids. That’s why our model has such
a satisfying ability to handle new documents. Due
to space limitations, we report the performance of
baselines on new documents in Appendix A.

4.5 Comparison of Variants

We compare our ASI on ADS with the following
variants to study the effectiveness of each mod-
ule. Specifically, “ASI-Unique” denotes the variant
using unique id tokens for different id positions
like “0,256,512,768”, which is our proposed model;
“ASI-Share” denotes the variant using shared id
tokens for different id positions like “0,0,0,0”;
“w/o Cont” denotes the variant removing the dis-
crete contrastive loss; “w/o RCE” denotes the vari-
ant removing the sequence-oriented reverse cross-
entropy loss; “w/o Repara” denotes the variant re-
moving the reparameterization mechanism. We
also add a metric Accuracy (Acc) that counts if the
semantic indexing module assigns the same docid
to the query and document. As reported in Table 5,
we can draw the following conclusions.

As reported in Table 5, “ASI-Unique” slightly
outperforms “ASI-Share”, indicating the unique
id tokens for different id positions carry more se-
mantic information. When the discrete contrastive
loss is removed, the model completely fails to be
trained, referring to “w/o Cont”, while “w/o RCE”
performs better in terms of Recall but the Quality
Score drops since more documents are assigned
with a same docid (i.e., the D/ID becomes larger).
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Table 5: Comparisons of different variants on dataset ADS.

Variant R@1 R@5 R@10 Mi-QS Ma-QS D/Q Acc D/ID

ASI-Unique 0.3926 0.6701 0.7452 0.5110 0.4946 1028.3 0.3730 1.1338
ASI-Share 0.3952 0.6542 0.7259 0.5053 0.4857 1343.8 0.3944 1.1539
w/o Cont 0.0000 0.0000 0.0000 0.0000 0.0000 0.0 0.0000 10000
w/o RCE 0.4703 0.7239 0.7826 0.4822 0.4827 1994.7 0.4612 1.1853
w/o Repara 0.3540 0.6375 0.7092 0.4963 0.4875 1212.6 0.4075 1.1492

Table 6: Three docid cases from ADS.

Docid 1: 245,105,149,190 (sapphire rings)

sapphire engagement rings blue nile propose ...
14k gold sapphire fine rings for jewelry ...
lab created sapphire ring sterling silver ...

Docid 2: 245,105,16,190 (sapphire earrings)

oblue sapphire diamond earrings ...
oblue white lab created sapphire earrings sterling silver ...
sale sapphire stud earrings fine earrings ...

Docid 3: 12,187,16,208 (lipstick)

oplum color lipstick target exclusions apply ..
onudestix lip makeup lip products you will love ...
onyx professional makeup lipstick ulta beauty mouse ...

The removal of the reparameterization mechanism
causes a certain decrease of both Recall and Qual-
ity. These results verify the effectiveness of each
module. It is more noteworthy that the R@1 of
“w/o Repara” is lower than Acc while others are
not. It implies that the reparameterization mecha-
nism exactly makes the semantic indexing module
be trained jointly with encoder-decoder, so that
the decoder achieves superior performance than
directly using semantic indexing module.

4.6 Case Study for Docid Assignment

In this subsection, we provide three docid cases
from ADS to uncover ASI’s docid assignments.

As illustrated in Table 6, ASI can assign the
same docid to semantically similar documents, e.g.,
documents of Docid 1 are all about sapphire rings.
Besides, ASI also assigns similar docids for similar
topics. For example, Docid 1 and Docid 2 differ
only in the third position, so the topics are similar,
i.e., sapphire rings and sapphire earrings. These
cases demonstrate that our proposed model can
effectively capture the document semantics and
assign meaningful docids for them. Please refer
to Appendix B for more detailed analysis of docid
assignment, where more case analysis can be found
in Appendix B.3.

5 Conclusion

In this paper, we make the first attempt to propose
a fully end-to-end pipeline, Auto Search Indexer
(ASI), which supports both end-to-end docid in-
dexing and end-to-end document retrieval within
a joint framework. Extensive experiments on the
public and industrial datasets show that our ASI out-
performs the SOTA methods for document retrieval.
Besides, the experiments also demonstrate the su-
periority of ASI for handling new documents and
verify the effectiveness of its docid assignments.

Limitations

Hierarchical Docids The docid assigned by our
ASI does not have a hierarchy due to the equivalent
multiple linear layers in semantic indexing module.
As studied in previous work (Tay et al., 2022; Wang
et al., 2022), hierarchical docids might be more
suitable for beam search-based generators. We
expect this can be implemented by a hierarchical
neural clustering-based indexing module. We left
it for future work as we focus on the “fully” end-
to-end framework in this paper.

Docid Interpretability The docid is represented
as an integer sequence with no semantic informa-
tion that humans can understand. As observed in
the case study (referring to 4.6 and B.3), these inte-
gers might have become a machine language that
only the model itself can understand and use during
training and inference. Therefore, we will study
how these integer sequences can be interpreted for
humans.

Post-Retrieval Filtering Strategy While permit-
ting a single docid to correspond to numerous doc-
uments may improve the efficiency of the Recall
phase, it’s evident that retrieving an excessive num-
ber of documents could enlarge significant pressure
on the subsequent Ranking phase. This implies that
a post-retrieval filtering might be required to lessen
the number of retrieved results.
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Table 7: Performance of SimCSE on new documents
from ADS.

Metrics Full
Valid Existing New

Content
New

Semantic

# Sample 10000 1661 8146 193

R@1 0.0934 0.1013 0.0901 0.0043
R@5 0.2853 0.2888 0.2877 0.0130
R@10 0.3891 0.3925 0.3884 0.0179
QS 0.3122 0.3244 0.3100 0.2987
D/Q 10 10 10 10

Table 8: Performance of SEAL on new documents from
ADS.

Metrics Full
Valid Existing New

Content
New

Semantic

# Sample 10000 1661 8146 193

R@1 0.0444 0.1295 0.0459 0.0271
R@5 0.1463 0.2073 0.1652 0.0464
R@10 0.1998 0.2487 0.2260 0.0656
QS 0.5291 0.5366 0.5290 0.5005
D/Q 10 10 10 10

A Baseline Performance on new
documents

In this section, we report the performance on new
documents of some selected baselines. Specifically,
Table 7 and 8 show the performances of SimCSE
and SEAL, respectively.

As shown in the above tables, the baselines sim-
ilarly perform the best on group “Existing” and
perform the worst in “NewSemantic”. Compared
these results with those in Table 4, ASI outper-
forms the baselines in the four groups of validation
sets on the metric R@K and shows competitive
performance on the metric Quality Score. More im-
portantly, we highlight that ASI can simultaneously
retrieve far more documents than the baselines with
the same computational costs.

B Analysis on Docid Assignment

In this section, we make a thorough analysis on the
docid assignment of ASI on the dataset ADS.

B.1 Assignment Density

In ASI, each docid is allowed to point to several
documents. In this section, we study the assign-
ment density of docids.

As illustrated in Figure 3, most of the docids
point to a single document, while a few of the
docids point to hundreds of documents. In other
words, the density of docid assignments obeys long-
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Figure 3: Assignment density of docids based on ASI.

tail distribution, which is in line with most real-
world data distributions.

B.2 Docid Visualization
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Figure 4: T-SNE visualization of docids based on ASI.

In this section, we visualize the assigned docids
where the docids are regarded as continuous vec-
tor and visualized by t-SNE (Maaten and Hinton,
2008).

As depicted in Figure 4, there is no obvious clus-
tering phenomenon on the learned docids. On the
contrary, the distribution of docids is nearly uni-
form. It indicates that the proposed semantic index-
ing module as well as the two semantic-oriented
losses can evenly learn from different documents.
Besides, it verifies the ability of docids to distin-
guish different document semantics from the side
and also guarantees that each docid has a large
coverage of semantics.

B.3 More Cases
We provide more docid cases from dataset ADS in
Table 9, 10 and 11.

As shown in tables, it can be seen that among
the four docid cases in Table 9, the first three id
tokens are of the same while the fourth id token is

6966



Table 9: Four docid cases about tablecloth from ADS.

Docid 1: 11,200,244,50 (green tablecloth)

green tablecloth bed bath beyond what product can we help you find n clearance ...
wayfair green outdoor tablecloths you ll love in 2023 get it by tue feb 7 ...
buy green solid tablecloths online at overstock our best table linens decor deals ...
green kitchen tablecloths bed bath beyond clearance ...
green modern elegant tablecloths luxury tablecloths bloomingdale’s ...

Docid 2: 11,200,244,53 (gingham tablecloth)

gingham tablecloth serena and lily over 150 new arrivals to explore the fresh start event enjoy ...
wayfair blue gingham table linens you ll love in 2023 get it by thu feb 16 ...
wayfair 100 cotton gingham tablecloths you ll love in 2023 i am in absolute love with ...
food network woven gingham tablecloth create a rustic dining atmosphere ...
wayfair classic farmhouse gingham tablecloths you ll love in 2022 n shop wayfair ...

Docid 3: 11,200,244,137 (table skirt)

table skirts party tablecloths target exclusions apply ...
cloth table skirts wayfair ...
cloth table skirts pleated wayfair get it by thu feb 9 ...
9ft natural raffia table skirt tropical table skirts for hawaiian decoration tableclothsfactory ...
snap drape table skirting covers clips napkins more snap drape also called sdi brands was founded ...

Docid 4: 11,200,244,254 (table linens)

sale tablecloths table linens kohl s n enjoy free shipping and easy returns every day ...
table linens tagged tablecloth page 3 elrene home fashions showing items 57 ...
cyber monday special tablecloth and table linens macy’s ...
tablecloth and table linens macy’s ...
table linens tagged tablecloths elrene home fashions ...

Table 10: Five docid cases about high neck swimsuit from ADS.

Docid 5: 10,194,75,99 (high neck swimsuit)

high neck swimsuit in living art venus a feminine silhouette that offers fuller coverage ...
women’s high neck swimsuits lululemon need it fast use available near you to buy and pick ...
waterside high neck one piece swimsuit medium bum coverage online ...
sailor blue high neck zip up bikini top bikini venus high neck with zipper at the ...
high neck swimsuit in living art venus r n shop high neck swim dress ...

Docid 6: 10,194,81,99 (women’s swim dress)

swim dresses women’s swimsuit dresses target exclusions apply ...
sale womens swimdress kohl s n enjoy free shipping and easy returns every day ...
swim dresses women’s clothing dillard’s ...
womens swim dress lightinthebox com ...
swimdress women’s swimwear macy’s new plus size cape town ...

Docid 7: 10,194,203,99 (swimwear)

designer bonpoint swimwear saks fifth avenue n designer bonpoint swimwear at saks enjoy free shipping ...
best beverly swimwear coupon codes online stop searching start saving why scroll when you can save ...
ocean dream swimwear shop the world’s largest collection of fashion shopstyle n shop 7 top ocean ...
ashanti swimwear promo codes deals discounts for free january 2023 install capital one shopping to apply ...
swimwear and beachwear zimmermann net a porter claim your exclusive discount code when you subscribe to ...

Docid 8: 10,194,225,99 (bikini)

bikini shorts swim shorts for women venus get sexy bikini shorts that keep you on the ...
full coverage swim shorts bikini sweet dreams venus twisted bodice accentuates your curves while adding ...
swim shorts bikini aqua reef venus achieve a more modest beach day look in this pair ...
women’s swimsuits micro bikinis beach cover ups asos getting ready for your holidays wherever you re ...
women’s swimwear bikinis tankinis fatface us the warmest days of the year are on their way ...

Docid 9: 10,194,231,99 (women’s one piece swimsuits)

women’s one piece swimsuits lululemon need it fast use available near you to buy and pick ...
one piece swimsuits for women macy’s one piece swimsuits are a must have for any woman’s ...
black one piece women’s swimsuits swimwear macy’s new women’s linked in colorblocked oceanus ...
one piece women’s swimsuits swimwear macy’s new women’s bias stripe bandeau one piece swimsuit ...
one piece swimsuits for women target exclusions apply n whether you re planning a beach vacation ...
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Table 11: More docid cases starting with “11” id token from ADS.

Docid 10: 11,245,117,203 (bowl)

plastic serving bowls williams sonoma sugg price 59 95 ...
disposable bowls walmart com green walmart com n shop for disposable bowls walmart com ...
plastic bowls round seagreen 2oz 100 count box my cart ...

Docid 11: 11,186,149,34 (table number)

top 10 best wedding table numbers gold of 2023 ...
table number cards zazzle new instant downloads n weddings n invitations cards ...
letters table numbers efavormart decorations prove to be the most important aspect of a party ...

Docid 12: 11,170,45,92 (marble coffee table)

pierre marble coffee table williams sonoma buy in monthly payments with affirm on orders over 50 ...
madison park signature marble coffee table with its luxurious marble top this madison park ...
buy modern contemporary marble coffee tables online at overstock our best living room furniture ...

Docid 13: 11,170,0,92 (glass coffee table)

buy glass square coffee tables online at overstock our best living room furniture ...
st germain glass coffee table serena and lily buy in monthly payments with affirm on orders ...
glass coffee tables raymour flanigan a coffee table is for more than just coffee ...

Docid 14: 11,135,112,203 (disposable plates)

disposable plates efavormart 5 10 off all folding chair covers ...
our 10 best disposable plates in the us january 2023 bestproductsreviews com ...
blue panda disposable plates 48 pack paper plate party supplies ...

Docid 15: 11,135,197,34 (plastic tablecloth)

plastic tablecloth rolls in plastic tablecloths walmart com ...
free deals discounts on clear plastic tablecloth roll w self cutter wide thick disposable table cover ...
plastic table cloths etsy ...

Docid 16: 11,135,112,34 (paper plates)

vdomdhtmlhtml n our 10 best paper plates in the us january 2023 bestproductsreviews com ...
black and white paper plates wayfair get it by tue feb 14 ...
paper plates white walmart com way to celebrate white paper dessert plates 7in 24ct ...

Docid 17: 11,82,244,137 (napkins)

table linens napkins williams sonoma earn 10 back in rewards with the new williams sonoma credit ...
linen napkins when it comes to event décor every detail counts high quality banquet napkins ...
farmhouse cloth napkins wayfair i thought this was a great buy for that many napkins ...

Docid 18: 11,21,140,203 (dinnerware)

world tableware dinnerware foodservice products webstaurantstore for years ...
restaurant dinnerware wholesale plates bowls dishes step up the elegance at your restaurant ...
tabletop dinnerware serveware kohl s n enjoy free shipping and easy returns every day ...
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Table 12: Quantitative similarity comparison.

TF-IDF Vector BERT Embedding

Random 0.0078 ± 0.0270 0.6089 ± 0.0820
ASI 0.2549 ± 0.1148 0.6864 ± 0.0469
p-value 6.50× 10−251 5.22× 10−200

different, indicating that this group of docids are
similar to each other. Specifically, these four docids
are all related to “tablecloths”, but each has its own
emphasis on details, i.e., they focus on “green table-
cloth”, “gingham tablecloth”, “table skirt”, “table
linens”, respectively. Similarly, the five docid cases
in Table 10 are all involved “swimsuits”, while they
focus on the finer-grained topics “high neck swim-
suit”, “women’s swim dress”, “swimwear”, “bikini”
and “women’s one piece swimsuits”. It is worth
noting that the shared id token in Table 10 appears
in the first, second and fourth positions, while the
different id token appears in the third position. This
is because the id tokens in different positions are
equivalently assigned by our semantic indexing
module.

In addition, the two groups of docids in the two
tables are totally different, which is also in line with
the fact that the coarser-grained topics of the two
are different, i.e., “tablecloths” and “swimsuits”.

Moreover, we provide more cases whose docids
start with “11” in Table 11. As illustrated in the
table, the topics of the 9 docids are “bowl”, “ta-
ble number”, “marble coffee tab”, “glass coffee
tab”, “disposable plates”, “plastic tableclot”, “pa-
per plate”, “napkin” and “dinnerwar”, respectively.
Together with the cases in Table 9, these docids
that start with “11” are all related to “tableware”.
It implies that one id token will correspond to a
coarser concept, and a group of id tokens will point
to a finer concept. These cases verify the effective-
ness of our model to learn semantically meaningful
docids for documents.

B.4 Quantitative Analysis

In this section, we conduct a quantitative analysis
for the docid assignment. In ASI, the semantic
indexing mechanism allows docid to point to mul-
tiple documents based on the principle of sharing
docids for similar documents and distinguishing
docids for the dissimilar ones. Therefore, we mea-
sure the averaged cosine similarity of document
pairs based on TFIDF vector and BERT embed-
dings. Specifically, “Random” means completely
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Figure 5: Performance and docid statistics under differ-
ent docid lengths.

random sampling, “ASI” means sampling from the
same docid, and “p-value” represents whether the
difference between the above two is statistically sig-
nificant based on t-test (usually, p < 0.01 means
extremely significant).

As shown in Table 12, the similarity between
the documents of same docid is significantly
larger than that between random documents, which
demonstrates the effectiveness of docid assign-
ments learned by ASI. We will add the above re-
sults in the revision.

C Parameter Sensitivity

There are two essential hyper-parameters in ASI,
i.e., the length of docid m, and the range of each id
token. In this section, we study the impact of these
two hyper-parameters.

C.1 Impact of Docid Length
We evaluate the Recall@K and Quality Score for
ASI of different docid lengths from 2 to 6 and
the docid range is set to 256. As depicted in Fig-
ure 5(a), as the length of the docid increases, the
micro- and macro-averaged Quality Scores achieve
much better while the Recall@1/5/10 on the con-
trary decrease obviously. This is because the model
capacity increases with the growth of docid length,
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Figure 6: Performance and docid statistics under differ-
ent docid ranges.

while the difficulty of generation for the decoder
also increases due to the longer target docid. Con-
sequently, ASI could assign different docids to doc-
uments based on their finer-grained semantics (re-
ferring to 5(b)), supporting better retrieval quality
at the expense of recall.

C.2 Impact of Docid Range
We evaluate the performance of ASI with different
docid ranges from [0, 32) to [0, 512), where
the length is set to 4. As illustrated in Figure 6,
there are similar observations to those above
for different ranges of docids. Differently, the
performance of ASI is not very sensitive to the
docid range. We analyze it may be due to the
fact that model capacity grows exponentially
with docid length, but polynomial with docid range.

All in all, the above two experimental results
imply a trade-off in practical applications between
efficiency and effectiveness. Therefore, in the main
body of this paper, we choose to set the length of
docid m=4 and the range of each id token is set to
[0, 256).
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