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Abstract

Many real-world NLP applications face the
challenge of training an entity disambiguation
model for a specific domain with a small label-
ing budget. In this setting there is often access
to a large unlabeled pool of documents. It is
then natural to ask the question: which samples
should be selected for annotation? In this paper
we propose a solution that combines feature di-
versity with low rank correction. Our sampling
strategy is formulated in the context of bilinear
tensor models. Our experiments show that the
proposed approach can significantly reduce the
amount of labeled data necessary to achieve a
given performance.

1 Introduction

Many real-world NLP applications face the chal-
lenge of training an entity disambiguation model
for a specific domain with a small labeling budget.
For example, a defense research analyst might be
interested in mapping mentions of military equip-
ment appearing in military research articles to a
target knowledge base describing emergent defense
technologies. The time of an expert might be costly
and we would like to minimize the amount of an-
notations required from them.

When training an entity disambiguation model
one has often access to a large unlabeled pool of
documents. We assume that we can recognize men-
tions of the target class and that we can generate a
set of candidate Knowledge Base (KB) entities for
each of them. Solving the entity disambiguation
task involves training a model that takes a target
mention and a set of candidate KB entities as inputs
and outputs the correct grounding (i.e. the correct
entity in the KB). We assume that we have a small
annotation budget and that our goal is to train the
best model possible under the budget constraints.

One natural approach to tackle this problem is
to design sampling strategies that attempt to max-
imize the diversity of the selected samples. We

follow this line of work and develop a method that
combines a model correction step designed to im-
prove the generalization performance of models
learnt under tight annotation budgets with a diver-
sity sampling strategy.

Our work is framed in the context of bilinear ten-
sor models for entity disambiguation. These types
of models score mention-entity pairs by exploiting
a rich representation of the mention context and
entity descriptions in the target KB. Furthermore,
our model has a bilinear lexicalized attention mech-
anism that assigns a score to every pair in the Carte-
sian product space of context and entity description
words. Our first observation is that the lexicalized
bilinear attention matrix will be typically low-rank.
Following this insight we develop a model correc-
tion technique based on matrix completion that can
improve the generalization performance of bilinear
tensor models trained on tight annotation budgets.
We combine this with feature diversity sampling,
and it is by combining these two ideas that we
obtain optimal results.

The two main contributions of this work are: 1)
We develop a novel strategy to improve the gen-
eralization performance of bilinear tensor models
trained under tight annotation budgets. Our strategy
combines low-rank matrix completion of a lexical
attention matrix and feature diversity sampling. 2)
Our experiments on entity disambiguation show
that the proposed approach can significantly reduce
the amount of labeled data necessary to achieve a
given entity disambiguation performance.

2 Related Work

The sampling problem in learning under a budget
is related to active learning (Zhang et al., 2022). A
few works addressed active learning for entity link-
ing (Lo and Lim, 2020; Oberhauser et al., 2020).
Different to active learning in the low budget set-
ting, we don’t assume the existence of a prior model
and thus our setting resembles the cold start prob-
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lem (Yuan et al., 2020; Jin et al., 2022). To the
best of our knowledge we are the first ones to ad-
dress cold start for entity disambiguation. As in
active learning, the sampling approach can exploit
either the informativeness or the representative-
ness of data points (Zhang et al., 2022). Hacohen
et al. (2022) showed that, for low-budget scenar-
ios, representativeness is a better query strategy.
We propose two representative-based sampling ap-
proaches and study their effectiveness for the case
of entity disambiguation. Our method combines
diversity sampling with low-rank matrix comple-
tion, which has been shown to help generalization
in low-budget scenarios (Primadhanty et al., 2015;
Quattoni et al., 2014).

3 Tensor Model with Bilinear Attention

3.1 Learning Setting

Our goal is to train a local entity disambiguation
model that takes as input an entity mention in con-
text and a set of candidate KB entities and predicts
the gold entity in the KB to which the mention
should be linked. More formally, we assume that
we are given: 1) A set of target entities KB =
{e1, e2, . . .}, each with an associated description.
2) A training set tuples (m,mc,C(m), g(m)) ∈ T ,
where m is an entity mention, mc is the mention
context, C(m) is a set of candidate entities (i.e. a
subset of KB) generated by some candidate gen-
eration algorithm, and g(m) is the correct entity
for the given mention1. Our goal is to use T and
KB to train a model that takes as input a tuple
(m,mc,C(m) and predicts an entity2 e ∈ KB.

In order to train our model, we also assume that
we can compute a set of features of the mention, its
context and all entities in the KB. More precisely,
for each mention, we compute (contextual) pre-
trained BERT embedding vectors of the mention
text bm and its context bmc, as well as a sparse fea-
ture vector of the context s(mc). On the KB side,
we represent each entity by a pre-trained BERT
embedding be and a sparse feature function s(e)
of its description. The embeddings bmc and be

are computed by taking the average of the BERT
embeddings of all words in mc and the entity e
description, respectively. The functions s(mc) and

1For training we assume that g(m) ∈ C(m), otherwise
we manually add it to the set returned by C(m).

2At test time we cannot assume that the correct entity for a
given mention will be in the candidate set, in practice however
we work with candidate generation algorithms of high recall.

s(e) return the set of their unique words3.
In a learning under a budget setting we assume

that we are given an unlabeled dataset of tuples
(m,mc,C(m)) ∈ U and a labeling budget n. We
can select n samples from U to be labeled to create
the training set T . The goal is to train the most
accurate model under the given budget constraint.

3.2 Tensor Entity Disambiguation Model

We will consider tensor models of the form:

P (e|(m,mc,C(m)) =
expθ(e,mc,C(m))

∑
e′∈C(m)

expθ(e′,mc,C(m))

The scoring function θ(e,m,mc) computes the
compatibility between an entity and a mention in
context. This function will be parameterized by
a dmc×de attention matrix A, where dmc is the
number of unique words appearing in the context
of any mention and de is the number of unique
words appearing in the description of any entity.
The attention matrix is indexed by context mention
words and entity description words and the (i, j)
matrix cell is expected to capture the compatibility
between a mention context word and an entity de-
scription word. The scoring function is also param-
eterized by two db×db matrices W and Z, where
db is the dimensionality of the BERT embeddings.
This two matrices are expected to capture the com-
patibility between mention and entity description
embeddings and between mention context and en-
tity description embeddings, respectively. The scor-
ing function is the sum of a contextual and mention
term:

θ(e,m,mc) =
∑

p∈s(mc),q∈s(e)
A[p, q] + bt

mWbe + bt
mcZbe

To train a model we perform standard max-
likelihood estimation and find the parameter matri-
ces A, W and Z that minimize the negative log-
likehood of the examples in T .

4 Diversity Sampling and Low-rank
Matrix Completion Correction

In this section we present our approach for learning
an entity disambiguation under a budget setting.
Our approach combines a low-rank model correc-
tion step with diversity sampling.

3After removing stop words.
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4.1 Matrix Completion Correction

The intuition behind our model correction strategy
is quite simple. Think of the attention matrix A
as an instance of the classical collaborative filter-
ing problem. In this problem one assumes that
some users (rows of the matrix) have rated a set
of movies (columns of the matrix) and the goal is
to predict the ratings of users on movies that they
have not rated. The underlying assumption behind
the matrix completion solution to this problem is
that, to predict unknown ratings for a given user,
we can interpolate the predictions of similar users
(i.e. users that made similar ratings). The low-rank
observation stems from the realization that there
might be a few users (i.e. rows) and a few movies
(i.e. columns) that can serve as a basis to make
all predictions, i.e. unknown predictions can be
expressed as linear interpolations of these basis
vectors. In the case of the model’s attention matrix
A, rows correspond to mention contextual words
and columns to entity description words. The low-
rank basis assumption states that there is a subset
of context and entity words from which one can
guess the compatibility of all other word pairs by
performing low-rank matrix completion.

More precisely, the model correction algorithm
that we propose is as follows: Given a set R
of l rank value parameters for the matrix com-
pletion, we compute the max(R)-rank singu-
lar value decomposition of A. Then, for each
ri ∈ R, we build the rank-ri low-rank reconstruc-
tion, keep only the positive values and convert
it into binary matrix Ari , and we compute their
mean Am. Next, for each entry A(i, j) we com-
pute its reconstruction uncertainty: Au(i, j) =
Var([Ar1(i, j) . . .Arl(i, j)]). Finally, we create
the complete matrix A∗ = Am−Au and add bias;
given some threshold th, if A∗(i, j) < th then
A∗(i, j) = th.

4.2 Diversity Sampling for Optimal Attention
Completion

The model correction step described in the previ-
ous section exploits the information in the observed
entries of A in order to predict the unseen entries.
To guarantee the success of the completion step we
must ensure that the observed entries in A provide
sufficient information to produce a good estimate
(Ruchansky et al., 2015). The weights in A cor-
respond to features in the Cartesian product space
of mention and entity sparse word features. Under

a budget constraint we want to select a set of n
samples (m,mc,C(m) ∈ U that gives us the most
information to produce a good completion of A.
To achieve this we propose to select a sample that
maximizes the coverage of the features in the Carte-
sian product space. We call this sampling strategy:
cross-product diversity.

The cross-product diversity sampling problem
can be reduced to an instance of a combinato-
rial N-set-cover problem. In the classical N-set
cover problem, one is given a set of elements
P = {p1, p2, . . .} (called the universe), a collec-
tion S of k subsets of P and a budget N on the num-
ber of subsets that can be used for the cover. The
problem consists in identifying a sub-collection of
N subsets of S whose union maximizes the number
of elements of P covered. While this problem is
known to be NP-hard, there exists several approx-
imation algorithms, we use a simple greedy algo-
rithm. In our case the universe will be the set of fea-
tures in the Cartesian-product space and the subsets
are the samples in the unlabeled pool. Each sample
(m,mc,C(m)) can be thought as a set of features
obtained by taking the union of the cross features
with each candidate. More formally, the subset cor-
responding to sample (m,mc,C(m)) ∈ U will be
defined as:

⋃
e∈C(m) s(m,mc)× s(e).

We observed that considering all the features in
the Cartesian-product might not be optimal and
that it is beneficial to filter out very infrequent fea-
tures. Therefore we include a feature frequency
threshold so that only features that appear more
than the allowed threshold are considered. The ex-
periments section provides more details about how
this parameter is validated.

The cross-product diversity strategy attempts
to explicitly maximize diversity in the sparse Carte-
sian product space. An alternative is to design a
sampling strategy that exploits the dense represen-
tations, we refer to this strategy as: dense diversity.
For this strategy we first compute the BERT repre-
sentation be of all entities appearing in U as well
as the contextual BERT representation bmc of all
mentions in U . Then for each tuple (m,mc,C(m))
we generate a vector representation by summing
together the bmc and the average be vectors of all
candidate entities in e ∈ C(m). To select n sam-
ples from U we perform k-means clustering and
obtain n clusters, then for each cluster we select the
sample closest to the cluster centroid. Compared
to the cross-product diversity strategy, the dense
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Figure 1: Performance on AIDA testa* and testb*

diversity strategy is significantly more costly since
it requires running BERT over all mentions and
contexts in the unlabeled pool.

5 Experiments: Learning with a tight
budget

We run our experiments on AIDA CoNLL-YAGO4

(Hoffart et al., 2011) annotated with entities from
WikiData5. We follow van Hulst et al. (2020) to se-
lect the candidate entities and ignore samples anno-
tated with out-of-KB entities. We produce a learn-
ing curve by training models with increasing anno-
tation budgets. Each point uses five random seeds,
and we report their average performance. We val-
idate all hyper-parameters (both for the sampling
strategy and model optimization) on randomly se-
lected 50 samples from each testa and testb par-
titions. We will use testa* and testb* to refer to
the testa and testb set that excludes the 50 samples
used for validation.

4https://resources.mpi-inf.mpg.de/yago-naga/aida
5https://www.wikidata.org

In addition to the Cross-Product Diversity (CPD)
and Dense Diversity (DD) methods, we experiment
with two other baseline methods. Random (R) sam-
pling and Candidate Diversity (CD) which tries to
cover as many unique candidate entities as possible
(see section 4.2 for the approach to the N-set-cover
problem.).
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Figure 2: Performance on AIDA testb*.

Figure 1 shows performance on testa* and testb*
partition. The methods marked with "+" use low-
rank matrix completion correction. We can see that
CPD and DD sampling combined with low-rank
matrix completion help increases model accuracy
compared to random and CD sampling, especially
with lower budgets. To give some concrete exam-
ples, on testa* CPD+ model correction achieves
81% accuracy with 50 labeled mentions, to get the
same accuracy with random sampling you need at
least 150 mentions, that is 3 times the number of
samples. With 200 mentions CPD+ model correc-
tion attains 84.4% accuracy, to get that accuracy
with random sampling we need more than 500 an-
notations. In both instances with our approach the
amount of supervision required to attain a given
performance is reduced by at least half.

Figure 5, shows two arbitrary points from the
learning curve and decouple the sampling strate-
gies from the low-rank correction. Both CPD and
DD sampling helps the model’s performance even
without low-rank matrix completion. Moreover,
low-rank matrix completion increase models’ accu-
racies regardless of the sampling strategies.

6 Conclusion

We have shown that by combining low-rank matrix
completion of a lexicalized attention matrix with
diversity sampling we can significantly improve the
generalization performance of a bilinear entity dis-
ambiguation model under tight annotation budget
constraints.
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Limitations

As mentioned in section 3.1, we are focusing on
the task of local entity disambiguation, that is, our
model is trained to disambiguate entities in isola-
tion. One could further improve the local disam-
biguation model by imposing some global consis-
tency constraints that capture the interaction be-
tween entities but this is outside the scope of this
work.

Moreover, in entity disambiguation, we are as-
suming that the mentions have been correctly de-
tected in the text. It will be interesting to consider
how to adapt the methods to the task of end-to-end
Entity Linking, where we also need to identify the
mentions.

In section 2, we mention how learning under
budgets can be related to active learning. We do
not try to use our methods as a cold-start technique
in active learning in this study, but this can be con-
sidered for future works.
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A Additional Details

A.1 Model Description
In figure 3, we show an example of an entity disam-
biguation problem and the source of features and
representations that we use in our model:

• b(mc) is obtained by averaging the BERT
embeddings of the context of the mention,

• b(m) is the BERT embedding of the mention
itself,

• b(E) is the average of BERT embeddings of
the entity’s description

In addition to that, we also use s(mc) and s(E)
which can be considered as bag-of-words features
of the mention context and entity description.

We also show an example of the learned matrix
entry A(i, j) that is expected to capture the com-
patibility between a mention context word and an
entity description word.

A.2 Detailed Model Correction Algorithm
Algorithm 1 describes in more details the low rank
(LR) attention completion algorithm we briefly de-
scribed in section 4.1.

B Additional Results

Figure 4 shows the same evaluation as Figure 5
done on testa* partition. These results show the
same observation as seen in evaluation on testb*
partition; the Cross-Product Diversity and Dense
Diversity sampling, as well as low rank completion
correction can help in tight-budget scenarios.

Figure 5 and 6 shows the breakdown as seen in
Figure 5 and 4 for all points in the learning curve,
and as we can see, the same observation still holds
throughout the curve.

C Dataset

We run our experiments on AIDA CoNLL-YAGO6

(Hoffart et al., 2011). The dataset is partitioned
into three sets: train, testa and testb. We follow van
Hulst et al. (2020) to select the candidate entities
and ignore samples annotated with out-of-KB enti-
ties. Using this strategies, we obtain 17174, 4422,
and 4226 number of annotated mentions for the
train, testa and testb partition, respectively.

Originally, testa is a validation partition, and
testb is a test partition. But in our scenario, it

6https://resources.mpi-inf.mpg.de/yago-naga/aida

Algorithm 1: LR Attention Completion
Input:

• A , Attention matrix.

• R , a set of l rank value parameters for the
matrix completion.

• th, bias threshold.

Output: A∗.

• Compute the max(R)-rank singular value
decomposition of A = USV

• For each r ∈ R build the rank-r low-rank
reconstruction:
A′

r = U(:, 1 : r)S(1 : r, 1 : r)V (1 : r, :)

Ar(i, j) =

{
1 if A′

r(i, j) > 0,

0 otherwise.

• Compute the mean reconstruction:
Am =

∑
i∈R Ari
|R|

• For each entry A(i, j) compute its
reconstruction uncertainty:
Au(i, j) = Var([Ar1(i, j) . . .Arl(i, j)]

• Create the completed matrix:
A′ = Am −Au

A∗(i, j) =

{
A′(i, j) if A′(i, j) > th,

th otherwise.

• Return:A∗
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Figure 3: This figure displays a concrete disambiguation training example, where the mention is NBA, and the gold
KB entity is National Basketball Association.
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Figure 4: Performance on AIDA testa*.

0 500 1,000 1,500 2,000

0.8

0.9

# Mentions

A
cc

ur
ac

y

R R+

CD CD+

DD DD+

CPD CPD+

All data

Figure 5: Performance on AIDA testa*.
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Figure 6: Performance on AIDA testb*.

is unrealistic to assume that we have access to a
large validation partition since we only have a small
budget for annotation. We create a small validation
set from both testa and testb instead, selecting 50
random examples from each. It has also been well
documented in previous studies that due to some
difference in the distribution, testa seems to be an
“easier” partition (models trained on the standard
train set will perform better in testa) than testb. So,
we test on both to see if the strategies will behave
differently depending on how “hard” the data is.

D Qualitative Analysis

To understand better how the matrix completion
correction might help improve performance, we
performed a qualitative analysis of our results. We
use the model trained on 300 random training sam-
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(a) Before matrix completion correction.

(b) After matrix completion correction.

Figure 7: Heatmap of a subset of the attention matrix
before and after matrix completion correction. The
model was trained using 300 random mentions. The
rows are features of the mentions, while the columns
are features of the entities.

ples and compare the correctly identified test sam-
ples before and after applying matrix completion
correction (i.e. Rand R+). We focus on correctly
identified entities not in the training set and choose
one, in this case, “Juventus F.C.”; two mentions
of “Juventus F.C.” are identified after applying ma-
trix completion correction. We then look at the
feature cross products of one mention and the en-
tity and compare their weights in Rand R+, which
shows that R+ can propagate weight to 35 unseen
feature products, one being “defender” vs “asso-
ciation_football_club”. In 7a, we select a subset
of the cross-product space to illustrate how the
weight “propagation” works similarly to collab-
orative filtering mentioned in section 4.1. If we
treat the row as users and columns as movies, then
let’s look at the user “defender” and movie “asso-
ciation_football_club”. We can see that the user
“defender” has quite similar patterns to many other
users such as “national”, “tuesday”, “cup”, and
“new”. But we don’t know if this user will like the
movie “association_football_club”, so we can use
the clue from user “Tuesday”, “cup”, and “new” to
guess that this user will like it. We can see in Fig-
ure 7b that the matrix completion correction does
that and “propagates” the weight to the cell.

We can also see from the patterns of seen
cross products that “association_football_club”
is quite similar to “association_football_player”
and “footballer”, it seems natural that “de-
fender” would also be compatible with “associa-
tion_football_club”. This illustrates how the matrix
completion correction step is implicitly learning
latent classes of features. In this example, “associ-
ation_football_club”, “association_football_player”
and “footballer” seem to belong to the same class
of features.

E Hyperparameters

Here we specify the different hyperparameters we
use to obtain the results shown in the paper. We run
each experiments with 5 random seeds {1,2,3,4,5}
and report the average performance. The learn-
ing curve is created using the following number of
samples: {10, 30, 50, 70, 90, 200, 300, 400, 500,
600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400,
1500, 1600, 1700, 1800, 1900, 2000}. We use UN-
LocBoX (Perraudin et al., 2016) for optimization
and uses LIP = 10, TAU = 0.01, and maximum iter-
ation of 30. We use th = 0.1 and R = {1 . . . 20}.
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