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Abstract
Text-to-SQL is the task that aims at translating
natural language questions into SQL queries.
Existing methods directly align the natural
language with SQL Language and train one
encoder-decoder-based model to fit all ques-
tions. However, they underestimate the inher-
ent structural characteristics of SQL, as well as
the gap between specific structure knowledge
and general knowledge. This leads to struc-
ture errors in the generated SQL. To address
the above challenges, we propose a retrieval-
argument framework, namely ReFSQL. It con-
tains two parts, structure-enhanced retriever
and the generator. Structure-enhanced retriever
is designed to identify samples with compara-
ble specific knowledge in an unsupervised way.
Subsequently, we incorporate the retrieved sam-
ples’ SQL into the input, enabling the model to
acquire prior knowledge of similar SQL gram-
mar. To further bridge the gap between specific
and general knowledge, we present a maha-
lanobis contrastive learning method, which fa-
cilitates the transfer of the sample toward the
specific knowledge distribution constructed by
the retrieved samples. Experimental results on
five datasets verify the effectiveness of our ap-
proach in improving the accuracy and robust-
ness of Text-to-SQL generation. Our frame-
work has achieved improved performance when
combined with many other backbone models
(including the 11B flan-T5) and also achieved
state-of-the-art performance when compared to
existing methods that employ the fine-tuning
approach.

1 Introduction

Relational databases, which serve as ubiquitous
components within data management systems, of-
fer a means of storing heterogeneous data types,
encompassing text, integer, float, and various other
formats. However, the proficient utilization of man-
aging databases by ordinary users remains a chal-
lenge, primarily due to their limited proficiency in
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Figure 1: Example 1, 2, and 3 are three Text-to-Sql in-
stances. Example 4 shows the difference in the grammar
between natural language and SQL .

translating their information needs into the struc-
tured query language (SQL), which serves as the
standard database language. To facilitate the query-
ing process for non-professional users, researchers
have introduced the Text-to-SQL task, which seeks
to automate the translation of users’ natural lan-
guage questions into SQL queries.

Recently, with the rapid development of lan-
guage models, many work (Qi et al., 2022; Li et al.,
2023) have leveraged one encoder-decoder-based
model to fit the entire training set, directly trans-
formed SQL queries into a serialization structure
and aligned them with natural languages. However,
such methods can easily lead to structural errors in
the generated SQL, e.g., missing "JOIN IN" opera-
tions, conducting incorrect comparison operations,
etc. The observed phenomenon can be attributed
to the underestimation of the inherent structural
characteristics as well as the gap between specific
knowledge and general knowledge.

Natural languages exhibit inherent characteris-
tics where the appearance of each word is highly
influenced by the preceding or following sequence.
In contrast, as shown in Example 4 in Figure 1,
SQL language possesses unique inherent structural
characteristics, i.e., heavily relies on the database
schema and SQL grammar but lacks robust natural
language attributes. Previous methods that directly
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align the distributions of natural language and SQL
query may fail to capture these inherent structural
characteristics in SQL .

In the real world, SQL structures exhibit signif-
icant variations due to diverse structural charac-
teristics, such as different database schemas and
complex SQL grammars. As illustrated in Figure 1,
Example 1 and Example 2 undergo drastic changes
in their SQL representations when the underlying
schema differs. The conventional approach in Text-
to-SQL is to train a one-size-fits-all model to fit the
entire training set, acquiring the general knowledge,
i.e., the distribution in the global space. However,
such models struggle to acquire specific knowledge,
i.e. the distribution of the local space, and adapt
to the varied samples. The gap between specific
and general knowledge significantly contributes to
structural errors in the generated SQL. This dis-
crepancy is particularly pronounced in cases with
complex structures, where the general distribution
learned by the model fails to adequately fit these
cases unless a substantial amount of data, which
can be prohibitively expensive in practice, is avail-
able.

To overcome these challenges, we draw inspira-
tion from the process of human cognition. As de-
picted in Figure 1, humans can compose appropri-
ate SQL queries by referring to similar samples that
share common specific knowledge, including ques-
tion semantics, schema structures, or SQL queries.
In this paper, we propose a retrieval-augmented
framework for Text-to-SQL generation. To iden-
tify samples with comparable specific knowledge,
we design a structure-enhanced retriever that takes
into account question semantics and schema struc-
ture. Subsequently, we incorporate the retrieved
samples’ SQL into the input, enabling our model
to acquire prior knowledge of similar SQL gram-
mar. To further enhance the model’s ability to ac-
quire specific knowledge, we employ a contrastive
learning approach. As highlighted in (Kao et al.,
2021), the utilization of contrastive learning of-
fers a viable solution to mitigate the gaps arising
from disparate distributions. The retrieved sam-
ples serve as building blocks for constructing the
specific distribution that corresponds to the current
sample. Through contrastive learning, we guide the
samples toward the specific knowledge distribution.
However, quantifying the distance from a sample
to the distribution poses a challenge within con-
trastive learning. To address this, we introduce the

Mahalanobis distance as a measure of the distance
between the sample and the specific distribution.
By utilizing the Mahalanobis distance, we employ
a contrastive loss function to facilitate the trans-
fer of the sample toward the specific knowledge
distribution.

In general, our main contributions are listed as
follows:

• We propose a retrieval-augmentation frame-
work for Text-to-SQL generation, which can
adapt to samples with various inherent SQL
characteristics and bridge the gap between
specific knowledge and general knowledge.

• To further bridge the gap between specific and
general knowledge, we present a mahalanobis
contrastive learning method, which facilitates
the transfer of the sample toward the specific
knowledge distribution.

• We verify the effectiveness of the proposed
framework on five widely-used datasets and
achieve state-of-the-art performance in meth-
ods that employ the fine-tuning approach.

2 Preliminaries

Given a natural language query Q and a database
schema S = (T , C), the objective is to generate the
corresponding SQL query Y . The natural language
query Q is represented as a sequence of tokens
Q = {qi}|Q|

i=1, while the schema S consists of a
collection of tables T = {ti}|T |

i=1 along with their
associated columns C = {Ci}|C|i=1. The content of
the database S is denoted as V . Each table ti con-
tains a set of columns represented as Ci = {cij}|Ci|j=1.
Similarly, table names and column names are to-
kenized, such that a table name ti consists of |ti|
tokens and the same applies to column names. In
this study, the predicted SQL query is presented as
a sequence of tokens, Y = {yi}|Y|

i=1.

3 Methodology

In this section, we will describe the proposed frame-
work ReFSQL, which comprises two main com-
ponents: the structure-enhanced retriever and the
generator. The structure-enhanced retriever finds
similar samples based on questions and schemas
and constructing prompts using their correspond-
ing SQL queries. On the other hand, the generator
aims to bridge the gap between specific and general

665



Figure 2: The overall architecture of our framework ReFSQL.

knowledge. It achieves this by employing the Ma-
halanobis distance to guide the sample toward the
distribution of similar samples. Figure 2 provides
an overview of the ReFSQL framework.

3.1 Structure-enhanced Retriever

In this section, we present the design of a structure-
enhanced retriever aimed at identifying samples
that exhibit a similar knowledge to the current
sample. In Text-to-SQL tasks, the question and
schema play crucial roles in generating accurate
SQL queries. To enhance the representation of the
question and schema, we leverage the question-
SQL pairs and schema linking techniques. Thus,
the structure-enhanced retriever consists of two
modules: the linking-structure-enhanced schema
retriever (LSES retriever) and the SQL-structure-
enhanced question retriever (SQLSE retriever). We
provide a detailed description of these modules
below.

3.1.1 SQL-Structure-enhanced Question
Retriever

In this section, we present an unsupervised method
to enhance question representation via SQL struc-
ture information.

In our dataset, each sample comprises a SQL
query and a corresponding question. In order to
acquire effective question representations, we gen-
erate contrastive samples based on the similarity
between SQL queries. Inspired by the methodology
introduced in (Yu et al., 2018a), we leverage the
tree structure of SQL queries to quantify their sim-
ilarity. Specifically, we employ a straightforward
yet powerful method called Tree-Edit-Distance-
based (TED) similarity to measure the similarity

between two tree formats of SQL queries, denoted
as tr1 and tr2. This similarity can be calculated
using the following equation:

δt = TED(tr1, tr2) (1)

Here, δt represents the similarity between tr1
and tr2. To construct the positive set, we randomly
select k samples with the highest similarity scores,
while for the negative set, we also choose k samples
with the lowest similarity scores.

We employ the pre-trained Bert model (Devlin
et al., 2018) with fixed parameters to encode the
question and obtain its representation. The encod-
ing process is performed as follows:

hqi = Bert(qi), (2)

Here, hqi denotes the representation of the question
qi.

We adopt the contrastive learning framework
proposed in (Chen et al., 2020) and employ a
cross-entropy objective with negative samples as
described in (Chen et al., 2017). For each sample
qi, we denote the positive sample as q+i and the neg-
ative sample as q−i . The training objective for the

pair
(
hqi , hq+i

)
with k pairs is defined as follows:

Lsc=−log

(
exp(Dcos

(
hqi , hq+i

)/τ
)

∑
q∗j∈Q exp(Dcos

(
hqi , hq∗i

)
/τ)

)
(3)

Here, q∗j ∈ Q represents the sample constructed
from positive and negative samples. τ is a temper-
ature hyperparameter, and Dcos (h1,h2) denotes

the cosine similarity h⊤
1 h2

|h1|·|h2| .
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After obtaining the learned question represen-
tations, we employ the cosine similarity function
to rank the samples. Finally, we select the top m
similar samples for each sample.

3.1.2 Linking-Structure-based Schema
Retriever

After we obtain m samples by the previous Section
3.1.1, we utilize neural-based models to perform a
reranking task with a focus on the schema structure.

In this section, we introduce the linking-
structure-based schema retriever. The construction
of the interaction graph, which captures the diverse
relations between questions and databases, is elab-
orated. Following that, we adopt an unsupervised
learning approach to derive the representation of
the interaction graph. By leveraging this graph rep-
resentation, we retrieve the relevant samples from
the dataset.

Interaction Graph Construction We extract
a diverse range of relations as triplets, establish-
ing connections between tokens derived from both
the question and the schema. These triplets are
then seamlessly integrated to form a comprehen-
sive graph representation. Our primary focus cen-
ters around two distinct types of relations: schema
encoding and schema linking.

• Schema Encoding. Schema encoding rela-
tions pertain to the interconnections among
schema items, explicitly delineating the
structural information encapsulated within a
database schema. Notable instances of such
relations encompass BELONGS-TO, which
denotes the association between a column and
its corresponding table, and FOREIGN-KEY,
which establishes a linkage between the for-
eign key in one table and the primary key in
another table. By comprehensively captur-
ing these schema encoding relations, a more
holistic understanding of the schema’s inter-
nal structure can be attained.

• Schema linking. Schema linking relations en-
compass the associations between schema and
question items. In line with RAT-SQL (Wang
et al., 2020), we leverage n-gram matches to
signify instances wherein the question refer-
ences specific schema items. However, the
detection of these relations has proven to be
a formidable task in prior investigations, pri-
marily owing to the prevalent discrepancy be-
tween natural language expressions and the

explicit names assigned to schema compo-
nents. Consequently, we employ a distinction
between exact matches and partial matches
to mitigate the deleterious impact of impre-
cise correspondences, thereby minimizing the
noise engendered by imperfect matches.

Interaction Graph Learning The interaction
graph learning module consists of two trainable
components: the graph encoder and the edge de-
coder. The graph encoder encodes the interaction
graph and the edge predictor is used as a down-
stream task. As mentioned above, the interaction
graph is a heterogeneous graph. To model the con-
tent and structure of the interaction graph, we lever-
age R-GCN to encode the interaction graph. We
denote the interaction graph of ith sample as gi,
then the graph embedding hgi is calculated as,

hgi = R-GCN(gi) (4)

Then we use graph embedding learned above
to retrieve the most similar samples through the
cosine similarity function.

We design a simple yet effective SQL prompt
to make the language model learn the SQL char-
acter during encoding. The input of ith sample
mainly contains three parts, the question Qi, the
database schema S, involving Si =< T , C >, and
the SQL prompt SPi. We follow (Qi et al., 2022)
to serialize the inputs. Formally,

SPi = the similar SQL was:sqli1 |sqli2 | · · · , sqlij ,
Xi = Qi|Si|t1 : c11, · · · , c1|T1| | t2 : c21, · · · |SPi

(5)
where sqlij is denoted as the jth SQL of similar
samples for the i sample. ti is the table name, cij
is the j-th column name of the i-th table. We adopt
the "|" symbol to delineate the boundaries between
Q, S, different tables, and SQL prompts. We utilize
the ":" symbol to differentiate between the table
name and its corresponding columns.

3.2 Generator

In this section, we will describe the generator,
which consists of two components: the encoder
and the decoder.

3.2.1 Encoder
In our framework, encoders can be replaced, so we
take the pre-trained model T5 as an example. For
the ith sample,
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hXi = T5-Encoder(Xi) (6)

where hXi is denoted as the encoded state of Xi.

3.2.2 Decoder
As described in Section 1, there exists a gap
between the specific knowledge and the general
knowledge which disturbs the learning of samples.
To further bridge this gap, we introduce contrastive
learning to guide the sample representation toward
the distribution of similar samples and farther away
from the distribution of dissimilar samples.

Contrastive Sample Construction To optimize
the efficacy of the contrastive learning approach,
we propose a more refined strategy for construct-
ing contrastive samples. Following the method-
ology outlined in Section 3.1.1, we identify the
top m samples, denoted as set M . From this set,
we select the top k samples after applying the
linking-structure-enhanced retriever for construct-
ing positive samples. Conversely, we construct
a negative sample set from the remaining lower-
ranked samples in M . This process allows us to
derive a distribution of similar semantic represen-
tations based on the positive samples, represented
as fϕ(hx+) ∼ N(µ+, σ2+). Simultaneously, we
obtain a distribution of dissimilar semantic repre-
sentations based on the negative samples, denoted
as fϕ(hx−) ∼ N(µ−, σ2−).

Mahalanobis Contrastive Learning
To transfer the sample representation toward

a distribution of similar semantic samples and
distance it from a distribution of dissimilar sam-
ples, we propose the employment of the Maha-
lanobis contrastive mechanism (Li et al., 2022b).
This mechanism aims to minimize the mar-
gin between the sample representation hxi and
the similar semantic distribution fϕ(hx+) ∼
N(µ+, (σ2)+), while simultaneously maximizing
the margin between the sample representation hxi

and the dissimilar semantic distribution fϕ(hx−) ∼
N(µ−, (σ2)−).

The contrastive loss, denoted as Lma, can be
defined as follows:

LMA=−log




exp
(
Dma

(
fϕ(hx+

j
),hxi

)
/τ

)

∑
xj∈M exp

(
Dma

(
fϕ(hxj

),hxi

)
/τ

)




(7)

Here, x∗j ∈ M represents the samples retrieved
by the current sample xi, and Dma refers to the Ma-
halanobis distance (De Maesschalck et al., 2000)

between the representation of the current sam-
ple xi and the distribution of retrieved samples
fϕ(hxi) ∼ N(µ, σ2). This Mahalanobis distance
can be calculated as (hxi −µ)σ2I(hxi −µ), where
I denotes the identity matrix. The hyperparameter
τ controls the temperature of the contrastive loss.

3.2.3 Training Details
The loss in the decoding stage mainly consists of
two parts, the MLE loss, and the contrastive loss.
Specifically, the MLE loss, denoted by LCE , is
computed as follows:

LCE = − 1

N

N∑

i=1

V∑

j=1

yi,j log ŷi,j , (8)

Here, N is the number of samples in the training
data, while V represents the vocabulary size. yi,j
denotes the true label of the j-th word in the i-
th sample, and ŷi,j represents the corresponding
predicted probability generated by the model.

Thus, the overall loss is computed as follows:

L = LCE + LMA, (9)

.

4 Experiment

In this section, we present a comprehensive evalu-
ation of our proposed framework, ReFSQL, using
five extensively utilized benchmark datasets. The
obtained results serve as strong evidence to validate
the effectiveness of our method.

4.1 Datasets and Preprocessing
We conduct experiments on several widely-used
Text-to-SQL datasets. The details are shown below.

Spider Spider (Yu et al., 2018b) is a challeng-
ing benchmark that poses significant demands on
the cross-domain and multi-table Text-to-SQL task.
The dataset consists of a training set with 7,000
samples, a dev set with 1,034 samples, and a con-
cealed test set with 2,147 samples.

Spider-DK, Spider-Syn, and Spider-Realistic
To evaluate the robustness of our model, we em-
ploy a training strategy using the Spider train-
ing set while assessing its performance on three
distinct evaluation sets: Spider-DK (Gan et al.,
2021b), Spider-Syn (Gan et al., 2021a), and Spider-
Realistic (Deng et al., 2020). The Spider-DK eval-
uation set consists of 535 samples and focuses on
the integration of domain knowledge to rephrase
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Table 1: EM and EX results on Spider’s development set, and EM and F1 results on WikiSQL’s test set (%).

Approach Spider WikiSQL

DevEM. DevEX. TestEM. TestF1.

RAT-SQL+GAP+NatSQL (Gan et al., 2021c) 73.7 75.0 - -
BRIDGE (Lin et al., 2020) 71.1 70.3 85.7 91.1
LGESQL + ELECTRA (Xu et al., 2020) 75.1 - - -
T5-3B(Shaw et al., 2020) 71.5 74.4 - -
UnifiedSKG(T5-Base) (Xie et al., 2022) 71.7 - 86.0 -
UNISAR (Dou et al., 2022) 70.0 - 86.7 91.7
Uni-Parser(T5-Base) (Liu et al., 2022) 61.2 - 85.8 91.3
Uni-Parser(T5-Large) (Liu et al., 2022) - - 86.9 92.1
ChatGPT (Liu et al., 2023) - 70.1 - -
RASAT + PICARD (Qi et al., 2022) 75.3 80.5 - -
RESDSQL(T5-3B)+NATSQL (Li et al., 2023) 80.5 84.2 - -
RESDSQL(T5-3B)+NATSQL+ReFSQL 83.1 86.2 - -
RESDSQL(Flan-T5)+NATSQL 84.8 87.0 90.2 92.8
RESDSQL(Flan-T5)+NATSQL+ReFSQL 86.6 88.1 91.7 93.4

the questions. In contrast, Spider-Syn comprises
1034 samples where synonyms are used to replace
schema-related words in the questions. Lastly,
Spider-Realistic, comprising 508 samples, involves
the removal of explicitly mentioned column names
in the questions to simulate real-world scenarios
with more ambiguous queries.

WikiSQL (Zhong et al., 2017) is a typical
table-based question answering dataset, which has
80654 hand-annotated examples of questions, SQL
queries and the corresponding answers from execu-
tion.

4.2 Baseline Models and Evaluation Metrics
We compare the proposed model with several base-
line methods, including the current state-of-the-art
model over the two benchmark datasets.

• T5: (Shaw et al., 2020) applies the pre-trained
T5 to text-to-SQL task.

• RATSQL: (Qi et al., 2022) improves the
encoder by adding the relation-aware self-
attention module.

• RESDSQL: (Li et al., 2023) the schema is
ranked and relevant schema items are injected
into the encoder, while the decoder generates
the skeleton first and then the SQL query.

• PICARD: (Scholak et al., 2021) improves
the decoder by constraining beam search to
generate grammatically correct SQL queries.

• RAT-SQL + GRAPPA (Yu et al., 2020) de-
signs a schema item classification pre-training

task to adapt the seq-to-seq model to the struc-
tured input.

• LGESQL (Cao et al., 2021) integrates rela-
tional features using a line graph, and intro-
duces an auxiliary task, called graph pruning,
to enhance the encoder’s capability.

• UNIFIEDSKG (Xie et al., 2022) unifies 21
structured knowledge grounding tasks into
one single text-to-text model.

• Uni-Parser (Liu et al., 2022) proposes a uni-
fied semantic parser method for question an-
swering (QA) on both KB and DB.

• UNISAR (Dou et al., 2022) proposes a uni-
fied structure-aware model to solve text-to-
SQL across various settings.

• ChatGPT (Liu et al., 2023) explores using
chatgpt to solve text-to-SQL tasks.

To assess the performance of the Text-to-SQL
parser, we employ three evaluation metrics: Exact-
set-Match accuracy (EM), Execution accuracy
(EX), and answer accuracy (F1) (Liu et al., 2022;
Zhong et al., 2017). The EM metric determines
whether the predicted SQL query can precisely
match the gold SQL query by converting them into
a specialized data structure. On the other hand, the
EX metric compares the execution results of the
predicted SQL query with the gold SQL query. In
practice, we combine the EM and EX scores to
evaluate the model and select the model with the
best overall performance.
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4.3 Results on Spider and WikiSQL

We implement comprehensive experiments to ver-
ify the effectiveness of our framework. The frame-
work is integrated with the RESDSQL backend
model, which utilizes fine-tuned techniques. The
experimental results are presented in Table 1. Our
ReFSQL framework, when applied to the RES-
DSQL backbone model, outperforms all baseline
models on the two benchmark datasets. The ap-
proach achieves state-of-the-art performance in
methods that employ the fine-tuning approach.
Specifically, after adapting to our framework, the
RESDSQL-based model improves the EM by 1.8
on Spider and 1.5 on WiKiSQL compared with the
original model. In addition, our framework also
has an improvement effect on other metrics.

Table 2: Evaluation results of our framework adapted
with different models(%).

Approach Spider

DevEM. DevEX.

T5-small 47.6 47.8
T5-small+ReFSQL 54.3 53.9
T5-Base 57.2 57.9
T5-Base+ReFSQL 61.8 61.7
T5-Large 65.3 67.2
T5-Large+ReFSQL 67.8 69.8
T5-3B 71.5 74.4
T5-3B+ReFSQL 73.6 76.5
RASAT+PICARD 75.3 80.5
RASAT+PICARD+ReFSQL 77.2 82.1
RESDSQL(T5-3B)+NATSQL 80.5 84.2
RESDSQL(T5-3B)+NATSQL+ReFSQL 83.1 86.0
RESDSQL(Flan-T5)+NATSQL 84.8 87.0
RESDSQL(Flan-T5)+NATSQL+ReFSQL 86.6 88.1

4.4 Analyses on Different Models

As mentioned above, our framework can be used
for different fine-tuning approaches. To further
validate the performance of our framework, we
have integrated our framework with some different
models, the results are shown in Table 2.

Our framework demonstrates flexibility and ef-
fectiveness, allowing for adaptation with numer-
ous backbone models. Remarkably, our frame-
work yields notable improvements when applied
to small-size models like T5-small. This suggests
that our framework can bridge the performance
gap between small and large models, achieving
comparable effects. Furthermore, we conducted
experiments using a larger scale model, Flan-T5,
and observed a substantial improvement of nearly
2%. These results indicate that our framework can

deliver impressive performance even on large lan-
guage models. Additionally, we investigated the
impact of model size. As illustrated in Table 2, our
framework consistently showcases larger perfor-
mance gaps when compared to its T5-3B counter-
part. This observation aligns with previous findings
in other fine-tuning tasks, highlighting the ability
of larger pre-trained models to capture more knowl-
edge effectively.

Table 3: Evaluation results of removing different mod-
ules of our framework (%).

Approach Spider

DevEM. DevEX.

RESDSQL(Flan-T5)+NATSQL+ReFSQL 86.6 88.1
RESDSQL(Flan-T5)+NATSQL+ReFSQL(w/O the SR) 85.3 87.4
RESDSQL(Flan-T5)+NATSQL+ReFSQL(w/O the CLM) 86.0 87.8

4.5 Ablation Study

We conducted a comprehensive ablation study on
the development set of the Spider dataset to thor-
oughly examine the individual impact of each mod-
ule within our framework.

• Structure-enhanced retriever To assess the
efficacy of the structure-enhanced retriever,
we conducted an experiment. Instead, we re-
lied solely on Bert for calculating the seman-
tic similarity between questions. We selected
samples with higher ranks as positive exam-
ples and randomly sampled other samples as
negative examples within the batch. The re-
sults, as presented in Table 3, demonstrate a
decrease in EM and EX scores when this mod-
ule is removed. This outcome suggests that
the retriever plays a crucial role in obtaining
similar samples and facilitating the model’s
acquisition of specific knowledge during the
text-to-SQL process.

• Mahalanobis Contrastive Learning mecha-
nism We further investigate the efficacy of the
mahalanobis contrastive learning mechanism
in our framework. The results, presented in Ta-
ble 3, indicate that removing this contrastive
learning mechanism results in a decrease in
the EM and EX metrics. This finding sug-
gests that the contrastive learning mechanism
plays a crucial role in guiding the represen-
tation of samples toward a distribution that
encompasses similar samples.
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Table 4: Evaluation results on Spider-DK, Spider-Syn, and Spider-Realistic (%)..

Approach Spider-DK Spider-Syn Spider-Realistic

EM. EX. EM. EX. EM. EX.

LGESQL + ELECTRA (Xu et al., 2020) 48.4 - 64.6 - 69.2 -
T5-3B+PICARD (Shaw et al., 2020) - - 59.4 65.3 63.2 65.0
RASAT + PICARD (Qi et al., 2022) - - - - 69.7 71.9
RESDSQL(T5-3B)+NATSQL (Li et al., 2023) 53.3 66.0 69.1 76.9 77.4 81.9
RESDSQL(Flan-T5)+NATSQL 55.6 67.6 71.3 79.2 79.6 84.2
RESDSQL(Flan-T5)+NATSQL+ReFSQL 56.9 69.2 72.8 80.6 82.4 86.5

4.6 Robustness
To evaluate the robustness of our framework, we
train our model on the training set of the Spi-
der dataset and assess its performance on three
challenging Spider variants: Spider-DK, Spider-
Syn, and SpiderRealistic. The results, presented
in Table 4, reveal a surprising and signifi-
cant performance advantage of RESDSQL(Flan-
T5)+NatSQL+ReFSQL overall strong competitors
across all three datasets. This finding suggests that
our framework can also enhance the robustness of
Text-to-SQL parsers.

5 Related Work

5.1 Text-to-SQL
In recent studies, significant advancements have
been made in enhancing the performance of seq-to-
seq models for text-to-SQL tasks, focusing on both
the encoding and decoding stages. (Qi et al., 2022)
introduce relation-aware self-attention into the T5
encoder, enabling the capture of important struc-
tural information such as schema linking. (Scholak
et al., 2021) proposes a beam search constraint dur-
ing inference to ensure the generation of grammati-
cally correct decoding results. (Li et al., 2023)en-
hance the encoder by incorporating the most rele-
vant schema items into the input sequence, leading
to improved performance.

5.2 Retrieval-augmented generation
Retrieval-augmented generation, which incorpo-
rates large language models with external retrieval
modules, has achieved impressive performance in
various tasks in recent years (Li et al., 2022a).
One line of research focuses on enhancing lan-
guage models with retrieval modules to provide
additional knowledge (Si et al., 2022; Borgeaud
et al., 2022). Another approach involves leveraging
retrieval techniques to extract useful information
from the training data. For example, (Long et al.,

2022) fuse the base image encoder with relevant
images retrieved from the training data to address
the challenge of long-tail visual recognition. (Xiao
et al., 2021) incorporate relevant sentences in the
target style to improve the unsupervised style trans-
fer model

6 Conclusion

This paper presents a research focus on the Text-
to-SQL task, aiming to improve SQL generation
through a retrieval-augmented framework called
Ref-SQL. The main objective is to address the gap
between specific knowledge and general knowl-
edge. To obtain specific knowledge, a structure-
enhanced retriever is devised to identify similar
samples based on question semantics and schema
structure. Additionally, a contrastive learning ap-
proach is employed to facilitate the transfer of sam-
ples towards a similar semantic distribution, further
mitigating the aforementioned gap. The effective-
ness of RefSQL is evaluated on five widely-used
benchmark datasets, where it surpasses all baseline
models, verifying its superior performance.

7 Limitations

To train the retrieval model effectively, it is nec-
essary to allocate sufficient computing resources.
Additionally, our research focus is limited to the
English language due to its availability of a wide
range of analytical tools and resources, which sur-
pass those available for other languages.
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