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Abstract

With large language models surpassing human
performance on an increasing number of bench-
marks, we must take a principled approach for
targeted evaluation of model capabilities. In-
spired by pseudorandomness, we propose pseu-
dointelligence, which captures the maxim that
“(perceived) intelligence lies in the eye of the
beholder.” That is, that claims of intelligence
are meaningful only when their evaluator is
taken into account. Concretely, we propose a
complexity-theoretic framework of model eval-
uation cast as a dynamic interaction between a
model and a learned evaluator. We demonstrate
that this framework can be used to reason about
two case studies in language model evaluation,
as well as analyze existing evaluation methods.

1 Introduction

Recent works claim that GPT-4 achieves expert-
level performance on complex reasoning tasks
(Katz et al., 2023; Lin et al., 2023), with some
researchers concluding that it exhibits sparks of
intelligence (Bubeck et al., 2023).

But how should intelligence be evaluated? This
question dates back to Descartes (1637), formal-
ized by Turing (1950), and continues to be the sub-
ject of recent discussion (Chollet 2019; Mitchell
and Krakauer 2023; Burnell et al. 2023 inter alia).
However, none of these attempts prescribe a par-
ticular evaluator (e.g., sequence of questions) that
guarantees the intelligence of the evaluated model.

This is not a coincidence. We argue that intelli-
gence is in the eye of the evaluator. This maxim
is particularly important for the future of natural
language processing (NLP): progress cannot be
measured by static benchmarks (Raji et al., 2021;
Hutchinson et al., 2022; Shirali et al., 2023), with
contemporary models surpassing human perfor-
mance on new evaluations within a few years (Kiela

∗Equal contribution. Authors listed alphabetically.

et al., 2021), and benchmarks leaking into training
data (Elangovan et al., 2021).

Instead, we define the notion of pseudointelli-
gence. Analogous to pseudorandomness (Blum and
Micali, 1984; Yao, 1982), which measures a distri-
bution by its distinguishability from true random-
ness, pseudointelligence applies to the evaluation
of the capabilities of learned models. Importantly,
a claim that a model has learned a certain capability
is innately entangled with the distinguishing ability
of an evaluator.

With the future of NLP in mind, we focus on
learned evaluators. These evaluators are trained on
samples specific to a given capability, much like the
models they assess. Notably, emerging evaluation
methods, such as model-based evaluation (Perez
et al., 2023; Ribeiro et al., 2021) and adversarial
evaluation (Jia and Liang, 2017; Nie et al., 2020;
Bartolo et al., 2020), can be viewed as specific
instances of the framework we propose. Our main
takeaways are:

P1: A claim of intelligence must be supplemented
by an explicitly-defined evaluator and (intelli-
gent) capabilities (Section 3.1).

P2: Increased resources dedicated to model devel-
opment should be accompanied by increased
resources dedicated to evaluation. These in-
clude the number of examples of the capabil-
ity, and the complexity of the space of possible
models and evaluators (Section 3.2).

P3: Self-evaluation cannot support a claim of in-
telligence if the evaluator is directly derived
from the model. It might, however, be useful
as means towards a different end (Section 3.3).

Besides laying the foundation for theoretical
analysis, our framework also provides a unifying
lens on existing evaluation methods (Section 4).
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Figure 1: Targeted evaluation of a pseudointelligent model. For each capability µ, (1) iid samples are drawn and
(2) fed to the learners, which (3) output a model and an evaluator. (4) The distinction diste(g, µ) is computed
as the expected difference in evaluator output during a multi-round interaction with (5) the model g versus (6)
the ground-truth capability µ. (7) If diste(g, µ) < ε with probability1greater than (1 − δ), we say that LG is
pseudointelligent against LE w.r.t capabilitiesM. See Definition 3.2 for a formal definition. Note that the targeted
evaluator is trained on samples from the capability µ, and adaptively interacts with the model g.

2 Background

Pseudorandomness. First, a brief introduction
of pseudorandomness, which forms the conceptual
backbone of our framework. For an extended intro-
duction, see Goldreich (2008).

Tessa and Obi are playing a game, and would
like to decide who gets to go first. They agree
to make the decision based on a coin toss: Tessa
tosses a coin, and Obi calls Heads or Tails. If Obi
calls the outcome correctly he gets to go first, and
otherwise Tessa does. Now consider two cases:

1. Obi is calling the coin based only on the infor-
mation available to him from eyesight.

2. Obi has access to an array of sensors that mea-
sure the initial conditions of Tessa’s coin toss,
and a powerful computer that can perform
complicated calculations in a millisecond.

Tessa would not be happy with a coin toss in the
second case, because Obi could call the coin cor-
rectly with ease. In other words, the coin toss is
no longer “random-enough” due to Obi’s increased
computational power. More generally, a distribu-
tion is pseudorandom against a particular observer
if she cannot distinguish it from a truly random.
Formally,

Definition 2.1. Fix ε ∈ (0, 1) and a finite set X .
Let UX denote the uniform distribution over X . A

1Over the samples from µ, and any randomness used by
the learners LG, LE , model g and evaluator e.

distribution P over X is ε-pseudorandom against a
class of distinguishers D if for every d ∈ D,

∣∣∣∣ Prx←P
[d(x) accepts ]− Pr

x←UX
[d(x) accepts ]

∣∣∣∣
< ε.

One can view Definition 2.1 as consisting of an
ideal source (uniformly random elements), and a
pseudoideal approximation to this source (pseu-
dorandom elements). Unlike randomness, intel-
ligence does not have a canonical mathematical
operationalization.

The Turing Test. In the Turing Test (Turing,
1950), an evaluator converses with either a machine
or a human; the machine attempts to convince the
evaluator that it is human, while the evaluator aims
to distinguish machine from human. If the machine
successfully fools the evaluator, Turing argued that
it should be considered as exhibiting intelligent
behavior. However, while passing the Turing test
signifies that the machine is indistinguishable from
human by a particular evaluator, it alone does not
imply human-level learning or comprehension (in-
dependent of an evaluator). Pseudointelligence is
defined with this intuition in mind; however, it ex-
plicitly requires specifying the particular evaluator
and (intelligent) capabilities against which the ma-
chine is measured.
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3 Pseudointelligence

Our main message (P1) is that claims of intelli-
gence should center the evaluator, and not just
the (allegedly) intelligent model. Put differently,
a claim that a model is intelligent is actually a
claim that it is “intelligent-enough,” therefore it
is meaningful only with respect to a specific class
of evaluators. We provide a complexity-theoretic
framework in which evaluators are placed front and
center, formalizing Figure 1.

3.1 Setup
A model is a (possibly randomized) mapping
g : X → Y , where X is a set of queries and Y
is a set of responses.

Capabilities. A capability is a distribution µ over
X × Y . For a given query x ∈ X , we let µ(x)
denote a sample from the conditional distribution
on acceptable responses µ(· | x); thus, µ can be
thought of as the ground-truth randomized mapping
µ : X → Y against which models are evaluated.

Evaluators. In this work, we study the perceived
intelligence of a model. That is, how well a model
appears to posses certain capabilities as perceived
by an evaluator.2 We formalize this by considering
an evaluator e which is an algorithm that is given
black-box access to the model g; for each of i ∈ [r]
rounds, the evaluator queries g on xi to receive
response yi; finally, the evaluator “accepts” g if it
thinks it is the ground-truth capability, and rejects
it otherwise. Note that the query xi may depend on
previous responses y1, . . . , yi−1.

The degree to which an evaluator e is able to
distinguish between the model g and a (ground-
truth) capability µ is defined next.

Definition 3.1 (Distinction). Let e be an evaluator,
g : X → Y be a model and µ be a capability over
X × Y . For any ε ∈ (0, 1), we say that e can
ε-distinguish between g and µ if

|Pr [e accepts g]− Pr [e accepts µ]|︸ ︷︷ ︸
diste (g,µ)

> ε.

If diste (g, µ) ≤ ε then we say that e cannot ε-
distinguish between g and µ.

The distinction diste (g, µ) captures the likeli-
hood that an evaluator distinguishes a given model

2We prefer evaluator over benchmark as it emphasizes its
role as an active participant in an interaction, rather than a
passive dataset.

g from the (ground-truth) capability µ. However,
intelligence is not the same as possessing a partic-
ular capability (Gunderson and Gunderson, 2008).
Rather, we view it as an ability to learn various
capabilities. Thus, we consider a learner LG that
learns a model g ∈ G from finite samples of µ.

We will say that the learner is pseudointelligent
if, with high probability, the evaluator cannot distin-
guish between the learned model and the capability.
Lastly, to allow for targeted evaluation of the capa-
bility, we consider an evaluator learner LE that is
also given (different) samples from the capability,
and outputs an evaluator e ∈ E targeted at it.

Definition 3.2 (Pseudointelligence). Fix a query
setX , response setY , and a class of capabilitiesM.
Fix sample complexity functions m,n : (0, 1)2 →
N. Given a model class G = (G,LG,m) and an
evaluator class E = (E,LE , n), we say that G is
pseudointelligent with respect to E and capabilities
M if, for any ε, δ ∈ (0, 1), whenever LG (resp.
LE) is given m := m(ε, δ) (resp. n := n(ε, δ)) iid
samples from µ, with probability at least 1 − δ,3

LG and LE output model g and evaluator e such
that e cannot ε-distinguish between g and µ:

∀µ ∈M Pr
g←LG◦µm

e←LE◦µn

[diste(g, µ) ≤ ε] ≥ 1− δ.

Note that the number of rounds of interaction
between the evaluator e and the model g (denoted
r := r(ε, δ) in Figure 1), also scales with ε and
δ. Next, we examine two case-studies to under-
stand the effect of the implicit parameters in Defi-
nition 3.2 on the validity of claims of intelligence.

3.2 Model resources vs. evaluator resources

Our main message (P2) underscores the importance
of resources allocated to the evaluator relative to
those allocated to the model. There are several axes
on which this comparison can be made:

Samples. To evaluate capabilitiesM within er-
ror δ and distinction ε, the model learner is given
m(ε, δ) samples and the evaluator learner is given
n(ε, δ) samples of each capability µ ∈ M. How
do each of these grow as a function of δ and ϵ?

Learner expressivity. The model learner LG out-
puts a model g ∈ G, and the evaluator learner LE

outputs an evaluator e ∈ E. How expressive is
the class of possible models G as compared to the

3Ibid., 1.
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class of possible evaluators E? A naive measure
of expressivity compares the number of parame-
ters needed to encode each: log |G| vs. log |E|.
Supervised learning theory has more refined mea-
sures that can be applied to infinite spaces and
provide tighter bounds (Natarajan, 1989; Daniely
and Shalev-Shwartz, 2014). While these measures
can be applied to the model class, new measures
must be developed to capture evaluator classes.

Learner compute resources. How much compu-
tational power is used to train LG and LE? Note
that learner expressivity is concerned only with the
existence of a model g ∈ G that is indistinguish-
able by the evaluator, but not with how to find it.
This search takes compute resources; the amount
of resources available to LG vs. LE affects the
outcome of the evaluation.

Model and evaluator computational power.
Given a query x ∈ X , how much computational
power is needed to compute a response g(x)? On
the evaluator side, how much power is needed
to compute the ith query issued by the evaluator,
given the preceding (i− 1) queries and responses?
Additionally, given a full evaluation (xi, yi)

r
i=1,

how much power is needed by the evaluator to
decide whether it accepts?

3.3 Should a model evaluate itself?
One particularly interesting case is when the model
is pitted against itself by playing a dual rule: both
model and evaluator. Self-evaluation can be used
to assist human evaluators (Saunders et al., 2022)
or to increase model “honesty” (Kadavath et al.,
2022). The validity of self-evaluation for claims
of intelligence remains contested (cf. Zhang et al.,
2023 and the discussion around it), and is the focus
of this case study.

To consider self-evaluation in our framework, we
first map models onto evaluators g 7→ eg.4 Once
such a mapping is fixed, we map a model learner
LG to an evaluator learner LEG

that, given samples
S ← µn, computes g ← LG(S) and outputs eg.

Can LG be pseudointelligent with respect to
LEG

? This is akin to asking whether LG is pseu-
dointelligent with respect to itself. This brings
us to a crucial detail of our framework: For self-
evaluation to fit in our framework, LEG

and LG

4For example, consider the case that g models yes-no ques-
tions (Y = {0, 1}). Then one can obtain an evaluator eg from
a model g by sampling a query x, querying the black box to
receive a response y, and accepting if and only if g(x) = y.

should receive independent samples from µ. This
is in stark contrast to the existing practice of
deriving the evaluator directly from the trained
model ĝ 7→ eĝ (Kadavath et al., 2022; Saunders
et al., 2022; Zhang et al., 2023). Our main mes-
sage (P3) is that this does not show that LG is
pseudointelligent—although it may be useful as
means towards a different end, as in Kadavath et al.
(2022); Saunders et al. (2022).

4 Existing evaluations through the lens of
pseudointelligence

Pseudointelligence can serve a unifying role by al-
lowing a direct comparison between different eval-
uation methods. We cast several existing evaluation
paradigms into our framework.

Static Datasets. The evaluator memorizes sam-
ples drawn from the capability, and queries its black
box on a random sample: Given samples S ← µn,
LE outputs an evaluator eS that draws a sample
(x, y) ← S at random, queries the black box on
x, and accepts if and only if the response was y.
Clearly, like all inductive inference settings, an
evaluator can be fooled by any pseudo-intelligent
model that just happens to get the correct labels by
learning simple shortcuts.

Adversarial Evaluation (AE). AE requires ac-
cess to some auxiliary model ĝ that LE can use
to search for a challenge test set, which can then
be used by an evaluator. Concretely, given seed
samples S and an auxiliary model ĝ, LE filters out
all examples where ĝ outputs the correct response,
thereby creating a challenge test set Ŝ. Such a fil-
tering process can be done in several rounds, where
human annotators modify an initial query until ĝ
makes an error (Bartolo et al., 2022). Intuitively,
based on the quality of ĝ, such filtering can cre-
ate increasingly hard datasets. Thus, the central
resources here are the amount of seed samples S
and the complexity of the auxiliary model ĝ.

Model-based Evaluation. These evaluators also
use an auxiliary ĝ, albeit in a non-adversarial way.
For instance, Ribeiro et al. (2021) use human-
generated templates, filled in by a language model,
as queries. Perez et al. (2023) use two auxiliary
models: one to generate queries, and the other to
find those targeted at a particular capability.
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5 Conclusion

This paper introduces a principled framework for
model evaluation, inspired by the theory of pseu-
dorandomness. Our main message is that claims
about model capability must be supplemented with
a thorough discussion of the resources given to the
evaluator, especially in settings where model re-
sources are largely unknown (e.g. OpenAI, 2023).
Central to our framework is a model-based evalua-
tor that is targeted at specific capabilities as well as
specific models (via multi-round interactions). We
hope our framework encourages rigorous analysis
of LLM evaluation, and helps unify the study of
this increasingly-important topic.

6 Limitations

This paper is focused on motivating and defining
pseudointelligence, as well as demonstrating its
potential use for unifying and analysing LLM eval-
uation. Deeper analyses, such as provable bounds
comparing model and evaluator sample complexi-
ties (m vs. n), are left for future work.

The impact of large language models extends far
beyond their alleged (pseudo-)intelligence (Bom-
masani et al., 2021). Pseudointelligence does not,
for example, correspond to an ability to respond
to queries in an ethical or responsible manner. In
general, psueodintelligence is concerned with the
distinguishing ability of a class of evaluators, but
does not consider the usage of a model in a real-
world context which may not conform to this class
(cf. Mitchell et al., 2019; Suresh et al., 2023). Fi-
nally, like all abstract definitions, it must not be
used as a rubber stamp; that is, it cannot replace
a case-by-case assessment of potential impacts of
models prior to their deployment.
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