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Abstract
Table Understanding (TU) is a crucial aspect of
information extraction that enables machines
to comprehend the semantics behind tabular
data. However, existing methods of TU cannot
deal with the scarcity of labeled tabular data.
In addition, these methods primarily focus on
the textual content within the table, disregard-
ing the inherent topological information of the
table. This can lead to a misunderstanding of
the tabular semantics. In this paper, we pro-
pose TabPrompt, a new framework to tackle
the above challenges. Prompt-based learning
has gained popularity due to its exceptional per-
formance in few-shot learning. Thus, we intro-
duce prompt-based learning to handle few-shot
TU. Furthermore, Graph Contrastive Learning
(Graph CL) demonstrates remarkable capabili-
ties in capturing topological information, mak-
ing Graph Neural Networks an ideal method
for encoding tables. Hence, we develop a novel
Graph CL method tailored to tabular data. This
method serves as the pretext task during the
pre-training phase, allowing the generation of
vector representations that incorporate the ta-
ble’s topological information. The experimen-
tal results of outperforming all strong baselines
demonstrate the strength of our method in few-
shot table understanding tasks.

1 Introduction

Abundant tabular data resources are readily avail-
able nowadays (Cafarella et al., 2008). How-
ever, the extensive knowledge within these cor-
pora remains largely untapped because most tables
are designed to be “human-friendly” rather than
“machine-friendly” (Dong et al., 2019b). Conse-
quently, to extract knowledge stored within these
vast tables, it is crucial to enable machines to com-
prehend the semantics of tabular data, referred to as
Table Understanding (TU). Furthermore, TU is fun-
damental in numerous subsequent tasks, including

∗ R. Jin and J. Wang contributed equally to this work.
† Corresponding author.

Knowledge Base Augmentation (Bhagavatula et al.,
2015) and Table QA (Zhang and Balog, 2020).

Early methods involved manual feature construc-
tion designed for specific table datasets (Chen and
Cafarella, 2014) or utilizing CNN or LSTM ar-
chitectures (Nishida et al., 2017). These methods
demonstrate good performance only when there is
an ample amount of manually labeled training data
available. However, labeling tabular data requires
high labor costs due to the inherent characteristics
of tables, such as their two-dimensionality and flex-
ible layouts. Consequently, these methods struggle
to cope with the challenge posed by the scarcity of
labeled tabular data.

More recently, researchers have explored the
application of pre-trained language models to the
task of TU (Wang et al., 2020b; Deng et al., 2020;
Herzig et al., 2020). During the pre-training phase,
the model learns optimal initialization parameters
through self-supervised training on many unlabeled
tabular data, enabling it to achieve excellent per-
formance after fine-tuning downstream tasks. Al-
though self-supervised pre-training reduces the bur-
den of manual annotation to some extent, it still
requires a substantial amount of labeled table data
during the fine-tuning process. Thus, the existing
“pre-training, fine-tuning” methods also remain in-
sufficient in addressing the scarcity of labeled tab-
ular data when performing TU tasks. In other
words, existing methods struggle to perform well
in few-shot TU.

On the other hand, tables are structured data that
encompass not only textual content but also topo-
logical information related to their layout. How-
ever, the existing methods sometimes misunder-
stand the tabular semantics resulting from dis-
regarding the topological information within
tables. For example, many pre-training models
(Herzig et al., 2020) flatten a table and concatenate
its contents row by row into one-dimensional plain
texts as the input of the encoder. These methods
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only focusing on textual content overlook the topo-
logical information of the table, as cells in the same
column typically have semantic commonalities. As
depicted in Fig. 1 (a), cells in the second column
belong to the language category.

To address the above two challenges, we pro-
pose a new framework called TabPrompt. First, we
incorporate soft prompts (Li and Liang, 2021) into
the framework and devise a prompt-based learn-
ing method suitable for tabular data. Recently,
the new paradigm of “prompt-based learning” has
attracted extensive attention due to its remark-
able performance in few-shot scenarios (Liu et al.,
2021a). Prompt-based learning enables more effec-
tive knowledge transfer by making downstream TU
tasks more compatible with the pre-training task.
By leveraging it, TabPrompt is capable of effec-
tively tackling the challenges posed by few-shot
TU. Second, we employ a novel Graph Contrastive
Learning (Graph CL) to encode tabular data during
pre-training. GNNs are well-suited for process-
ing data with topology (Kipf and Welling, 2016),
making them an ideal choice for capturing the topo-
logical information of tabular data. In addition,
to encode the intrinsic structure knowledge, CL is
one the most effective and popular pretext tasks
(Zhang et al., 2020). In this regard, TabPrompt
introduces a graph constructing method that fully
considers the internal relationship between cells,
which enables TabPrompt to better learn the topo-
logical structure information of the table during pre-
training. To evaluate TabPrompt, we conduct ex-
tensive experiments in few-shot scenarios on three
public datasets by comparing TabPrompt against
several strong baselines. The results of outperform-
ing all the baselines demonstrate the effectiveness
of TabPrompt in the few-shot scenarios.

The contributions of this paper are summarized
in the following points:

• We apply prompt-based learning to the TU
task to tackle the scarcity of labeled tabular
data. To the best of our knowledge, this is the
first attempt to introduce prompt learning into
the field of TU.

• To obtain vector representations that incorpo-
rate the topological information of tables, we
introduce a novel Graph CL method as the
pretext task to pre-train the encoder GNN.

• To evaluate TabPrompt, we conduct experi-
ments on publicly available datasets, focusing
on two specific few-shot TU sub-tasks. In

both tasks, the results of TabPrompt outper-
forming all baselines underscore its superior-
ity in handling few-shot TU scenarios.

2 RELATED WORKS

Graph Neural Network (GNN). GNN architec-
tures, such as GCN (Kipf and Welling, 2016) and
GIN (Xu et al., 2018), have gathered substantial
interest among researchers for their remarkable ca-
pability to handle real-world data containing inher-
ent topological structure. Recognizing that tables
inherently embody topological information, sev-
eral studies (Du et al., 2021; Wang et al., 2021)
have explored the application of GNNs in table-
related research fields. However, their methods of
constructing the tabular graph fail to fully consider
the topological relationships between different cell
types, resulting in the misunderstanding of tabular
semantics.
Pre-training and Fine-tuning. Since the introduc-
tion of BERT, the “pre-training and fine-tuning”
paradigm has gained significant attention. Re-
searchers have adapted this paradigm to TU by
designing customized pretext tasks tailored to tabu-
lar data (Wang et al., 2020b; Iida et al., 2021; Deng
et al., 2020). While these methods effectively lever-
age unlabeled data during pre-training, they still
rely on a substantial amount of labeled data in the
fine-tuning stage to achieve optimal performance.
As a result, these methods struggle to handle few-
shot TU scenarios where only a limited amount
of labeled data is available. Additionally, these
methods often flatten the table into a sequential
input, disregarding the inherent topology of the ta-
ble. This can lead to the loss of crucial topological
information during the modeling process.
Other Deep Learning-based TU. In the early
stages of table understanding (TU) research, the
emphasis was primarily on Cell Entity Linking
(Ibrahim et al., 2016; Hassanzadeh et al., 2015;
Efthymiou et al., 2017; Bhagavatula et al., 2015).
These methods often relied on pre-defined ontolo-
gies and external knowledge bases, which limited
their versatility. However, more recent work has
shifted towards addressing broader TU tasks such
as Table Cell Classification (Ghasemi-Gol et al.,
2019; Sun et al., 2021) and Table Type Classifi-
cation (Eberius et al., 2015; Nishida et al., 2017).
These methods typically utilize manual features or
early neural architectures like LSTM, which need a
large quantity of manually labeled data for training.
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rank language total
enrollments percentage Years Net lending/

borrowing
Primary
balance

1 Spanish 822,985 52.20% 1995 -7.3 3.8
2 French 206,426 13.10% 1996 -6.6 4.5
3 German 94,264 6% 1997 -3.0 6.2
4 American Sign 78,829 5% 1998 -3.0 4.9
5 Italian 78,368 5% 1999 -1.8 4.6 index
6 Japanese 66,605 4.20% 2000 -1.3 4.8 indexName
7 Chinese 51,582 3.30% 2001 -3.4 2.7 value
8 Arabic 23,974 2% 2002 -3.1 2.4 valueName

Net lending/borrowing & primary balance in Italy List of most commonly learned foreign languages in the U.S.

(a) A sample table in TURL (b) A sample table in WebSheet

Figure 1: A subtask of TU: Cell Type Classification. Cells of different colors represent different cell types.

ISBN 312424094 Authors Name Size Waist Buy PbNation T-Shirts
ISBN-13 9780312424091 Raadik, Tarmo Small 28" - 30" About Us
Pages 224 Raadik, Tarmo A. Medium 30" - 32" FAQ
Publisher Picador USA Raas-Rothschild, A Large 32" - 35" Staff
Published 2004 Raasch, Beverly XLarge 36" - 39" Members
Language English Rabaa'i, Ahmad A. XXLarge 40" - 44" Leaderboard
Alibris ID 12873728485 Rabago, D.

(b) list table (d) non-data table(a) entity table (c) relational table

Figure 2: A subtask of TU: Table Type Classification. Examples of table types from WCC.

Prompt-based Learning. The main idea of the
new paradigm “pre-train, prompt, and predict” (Liu
et al., 2021a) is to reformalize the target task to look
more like the pretext task to use better what the
model has already learned. An increasing number
of novel prompt-based learning methods have been
proposed, encompassing various forms of prompts,
such as soft prompts (Li and Liang, 2021). How-
ever, it is worth noting that there is currently no
research available on the development of prompts
specifically designed for tabular data.

3 PROPOSED METHOD

In this section, we first introduce the preliminar-
ies of TU sub-tasks relevant to our work and then
describe TabPrompt in detail. In this section, we
begin by introducing the preliminaries of TU sub-
tasks relevant to our work. Subsequently, we
present a comprehensive description of TabPrompt.

3.1 Preliminaries

Given a table T = {ci,j |0 ≤ i < N, 0 ≤ j < M}
where N is the number of rows, M is the number
of columns, and ci,j is the cell located in the ith
row and jth column.
Cell Type Classification (CTC). This sub-task
of TU involves the identification of the cell type
for each cell ci,j in a table T . CTC has been
widely studied by many works in which different
taxonomies of cell types were used (Wang et al.,

2020b; Du et al., 2021; Sun et al., 2021). In our
work, we adopt the taxonomy used in Dong et al.
2019a and expand it by including an additional type
for a comprehensive comparison, as shown in Fig.
1. Definitions of four cell types are as follows: A
value represents a basic unit describing the content
within a table. A valueName serves as a summary
unit of value cells in the same column. An index
is utilized to index value cells. An indexName
acts as a summary unit for index cells in the same
column.
Table Type Classification (TTC). This task in-
volves table-level categorization, requiring ma-
chines to classify tables based on certain taxonomy.
Similar to CTC, there are multiple taxonomies in
this task. We follow the taxonomy introduced in
Wang et al. 2020b as illustrated in Fig. 2. The
taxonomy consists of four types: relational, entity,
list, and non-data.

3.2 An Overview of TabPrompt

An overview of our framework is shown in Fig. 3
First, TabPrompt transforms the tabular data into
graph data, taking into account the topological rela-
tionships between cells during the graph construc-
tion. Second, TabPrompt utilizes the tabular Graph
CL as the pretext task to pre-train the encoder GNN.
Lastly, TabPrompt is trained on a limited amount
of labeled data to tune soft prompts. This is accom-
plished by reformulating the objectives of CTC and
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Figure 3: An Overview of TabPrompt.

TTC, aiming to bridge the gap with the pre-trained
objective.

3.3 Construct the Tabular Graph

Existing methods that utilize GNNs often consider
adjacent table cells or cells with similar strings as
neighboring nodes in the graph (Du et al., 2021;
Wang et al., 2021). However, these methods fail
to adequately capture the internal topological re-
lationships between nodes of different types. In
order to address this limitation, we adopt a more
sophisticated method of constructing graph data.
We establish connections between cells that exhibit
specific topological relationships. This transforma-
tion method aligns with the fundamental assump-
tion of our tabular Graph CL method, which posits
that connected nodes should have closer relation-
ships and display higher similarity in their vector
representations.

According to our observations of tabular data,
we identify several characteristics of table cells: 1)
Cell pairs within the same column exhibit higher
levels of relatedness compared to cell pairs across
different columns. 2) Cells within the header row of
a table tend to have similar levels of dependencies.
3) Each individual cell within a merged cell is the
same type. 4) The string within the header cell
often serves as a summary description for the non-
header cells in the same column. Based on these
patterns, we establish links between cells in the
following situations: 1) Adjacent cells within the
same column. 2) Adjacent cells within the header
row. 3) Cells split from merged cells. 4) Cells
within the header row and non-header cells within
the same column.

3.4 Tabular Graph Pre-training
In this section, we initially introduce our tabular
Graph CL employed for pre-training, followed by
a detailed discussion of the pre-training process.

...

Sample Triplets

A Tabular Graph

SamplingSampling

Tabular CL

negvnegv

Tabular CL

negv

Training

[ ]][ ]

[ ]][ ][ ]

Figure 4: Tabular Graph Contrastive Learning.

Tabular Graph Contrastive Learning. After ta-
bles are transformed into graphs, our graph CL
tailored to tabular data can be carried out. The pro-
cess of our tabular graph CL method is shown in
Fig. 4.

A tabular graph of table T can be defined as
Tg = (V,E), where V is the set of nodes repre-
senting cells C in table T . Let xij ∈ Rd denote the
embedding of node vij ∈ V . xij consists of the
output of the string in the cell cij through BERT
(Devlin et al., 2019) and some handcrafted features
that are general on tabular data. We observe that
the information carried by surrounding cells may
be helpful in determining the identity of the central
cell. For example, if a cell is surrounded by nu-
meric cells, the cell is also likely to be numeric. We
define Bij as the embedding of cell cij combining
with neighbors’ information. The formula of Bij

is as follows:

Bij = readout({xij , XN(xij)}), (1)

where N(xij) is the cell set containing adjacent
cells of xij . XN(xij) is the embedding set of cells
in N(xij). Note that Bg is the vector representa-
tion of a whole tabular graph Tg. The choice of
readout function is flexible such as sum pooling,
mean pooling, or concatenation.

Our tabular Graph CL method follows the as-
sumption that the distance of connected cell pairs

7376



should be closer than that of unconnected cell pairs
in the embedding space. Formally, given a sample
triplet of cells (cab, cpos, cneg) that (cab, cpos) ∈ E
and (cab, cneg) /∈ E, the vector distance between
the former cell pair should be smaller than that of
the latter as follows:

dis(Bab, Bpos) < dis(Bab, Bneg), (2)

where dis is the reciprocal of the cosine distance
function.
Pre-Training. The strength of pre-trained models
lies in their ability to leverage a vast amount of
unlabeled data. Similarly, in our tabular Graph CL,
we capitalize on its label-free nature by employing
it as the pretext task for model pre-training. During
this phase, the model learns to assign similar vector
representations to two highly related nodes. After
pre-training, we can determine whether there is a
high degree of correlation between two cells by
measuring the vector distance between them.

Before initiating the pre-training process of the
model, it is necessary to prepare the training data.
The training data comprises triples that consist of
nodes along with their corresponding positive and
negative nodes. Formally, given a tabular graph Tg,
we sample a pair of positive and negative cells for
every cell in Tg to form a triplet (cij , cpos, cneg) for
CL. To construct a sample set S for pre-training, we
sample triplets from every graph Tg in the tabular
graph set TG. We employ GNN as the pre-trained
encoder with its parameters Wi. The objective
function of pre-training is as follows:

Z(ij, pos, neg) = exp(dis(Bij , Bpos)/τ) (3)

+ exp(dis(Bij , Bneg)/τ),

Lpre(Wi) =
∑

(cij ,cpos,cneg)∈S
(cij ,cpos)∈E
(cij ,cneg)/∈E

ln
exp(dis(Bij , Bpos)/τ)

Z(ij, pos, neg)
, (4)

where τ is a temperature hyperparameter often used
in CL to adjust the distribution shape.

When pre-training ends, the encoder GNN is
utilized to handle downstream TU tasks with the
pre-trained parameters Wi.

3.5 Tabular Graph Prompting

Prompting-based learning aims to bridge the sig-
nificant gap between pre-training and downstream
tasks, which allows the model to transfer the knowl-
edge acquired during pre-training more effectively.

In this section, we introduce the process of reformu-
lating two TU tasks to enhance their compatibility
with the pre-training objective, as well as the de-
tails for tuning the soft prompts. Fig. 5 shows the
process of prompting for CTC.
Prompt Addition. In the prompting stage, a key
step is to reformulate the raw input by designing
the appropriate prompt addition (Liu et al., 2021a).
For instance, in machine translation, the input “I
love you.” is reformulated as “English: I love you.
French: [Z]” with [Z] denoting an answer slot. Nev-
ertheless, applying such templates to tabular data
is challenging due to the interdependence of text
within adjacent cells. Therefore, we develop a cus-
tomized prompt addition specifically designed for
tabular data.

As mentioned above, our pre-trained model is
inclined to give closer vector representations to
highly related cells when presented with a table as
input. Consequently, the machine can determine
whether two nodes share the same type based on
the distance between their embeddings. Following
this idea, we create proxy cells for each cell type,
with their vector representations calculated as the
mean of the vector representations of the same type
of nodes in the few-shot training set. For each cell
in a table, the machine compares its vector repre-
sentation with those of all proxy nodes to determine
its type. Similar prompt addition is also employed
for the TTC task, the added proxy node represents
the type of the table, and its vector is calculated as
the mean of the BTg of tables of the same type.
Prompt tuning. In the prompt-based training pro-
cess, there is a potential risk of overfitting in few-
shot experimental settings if all parameters are
tuned (Dong et al., 2021). To mitigate this, we
freeze the pre-trained parameters Wi and introduce
the soft prompt (Fang et al., 2022). This involves
employing the learnable prompts pc and pt for the
CTC and TTC tasks, respectively. We perform the
element-wise multiplication between the vector of
each node and the corresponding soft prompt. This
operation can be seen as assigning weights to each
element of the vector. By tuning the learnable soft
prompts, the model can assign larger weights to el-
ements that are more relevant to the specific tasks,
thereby enhancing its performance.

Formally, given the CTC dataset DC
t containing

a labeled set of tabular graphs T
′
g where each cell

cij is associated with a label yCcij , we denote the
label set for the CTC task as Y C = {yC0 , ..., yC4 }.
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Figure 5: Prompting for CTC.

The formulas for training pc are as follows:

BC
ij = readout({pc ⊙ xuv|xuv ∈ Nx(ij)

}), (5)

Lpro(pc) =
∑

Tg∈DC
t

(cij ,y
C
cij

)∈T ′
G

ln
exp(dis(BC

ij , ByC
cij

)/τ)
∑4

u=0 exp(dis(B
C
ij , ByC

u
)/τ)

, (6)

where ByCu
is the vector of the proxy node repre-

senting the table cell labeled as yCu . Similarly, the
TTC dataset DT

t contains a set of labeled tabular
graph T

′
g = (V,E, yTg ) where yTg is the label of its

table type. The label set of our TTC task is denoted
as Y T = {yT0 , ..., yT4 }. The formulas for training
pt are as follows:

BT
g = readout({pt ⊙ xuv|xuv ∈ V }), (7)

Lpro(pt) =
∑

(T
′
g,y

T
g )∈DT

t

ln
exp(dis(BT

g , ByT
g
)/τ)

∑4
u=0 exp(dis(B

T
g , ByT

u
)/τ)

, (8)

where ByTu
is the vector of the proxy node repre-

senting the table labeled as yTu .

4 EXPERIMENTS

In this section, we conduct experiments on public
datasets to evaluate the performance of TabPrompt
in both the CTC and TTC tasks.

4.1 Datasets

Although our method can be applied to tables from
other documents (CSV sheets, PDF documents,
etc.), we focus on web tabular data in this paper
since they are easily accessible and easy to parse.
We employ four datasets in our work. 1) TabEL
(Bhagavatula et al., 2015) contains around 1.6M
tables extracted from Wikipedia pages. 2) TURL
(Deng et al., 2020) selected 670k relational tables

from TabEL and annotated the column number cor-
responding to the subject column of each relational
table. 3) WebSheet (Dong et al., 2019a) contains
about 3k tables with cell type labels which were se-
lected and manually annotated from web-crawled
Websheet (only 50 of them publicly available). 4)
WCC (Ghasemi-Gol and Szekely, 2018) is a sam-
ple of July 2015 Common Crawl and is annotated
with the web table taxonomy introduced by Crestan
and Pantel 2011. The taxonomies adopted in these
datasets differ slightly from the taxonomy used in
this paper. We comprehensively describe the cor-
respondence between the various taxonomies and
other details in the appendix A.
4.2 Baselines
We compare TabPrompt with strong baselines
for CTC and TTC to verify the effectiveness of
TabPrompt.

We employ the following baselines for CTC.
TCC-Embd (Ghasemi-Gol et al., 2019) is a tab-
ular cell classification method with pre-trained
CBOW&Skip-gram cell embeddings (Mikolov
et al., 2013). PSL (Sun et al., 2021) reformalizes
the CTC task into block detection, which aims to
detect the data blocks in the table. TabularNet
(Du et al., 2021) utilizes a homogeneous graph
constructed out of the WordNet (Fellbaum, 2000)
knowledge base and adopts GCN as the encoder
and LSTM. TableFormer (Yang et al., 2022) is guar-
anteed to be invariant to row and column order
perturbations. Because it is specifically for Table
QA and Table Verification, it means that it cannot
handle the TU directly. To adapt it for TU, we treat
these models as encoders that output embeddings
of table cells and stack layers of downstream classi-
fiers (including an MLP layer and a pooling layer)
on top of the encoders. In that case, these meth-
ods can be compared with our method. FewTPT
(Liu et al., 2022) is a Chinese tabular language
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model, thus, we pre-train it using 570k Wiki tables
in English from scratch. While the "Table Classi-
fication" mentioned in FewTPT centres on identi-
fying header domains within tables, distinct from
the focus of TTC, we employ a similar processing
methods as in the case of TableFormer to facilitate
handling the TU addressed in this paper. TUTA
(Wang et al., 2020b) is a pre-training model with
tree-based transformers for TU, which achieves
SOTA performance among existing methods.

We employ the following baselines for TTC.
DWTC (Eberius et al., 2015) train a Random For-
est model through manually engineered features.
TabNet (Nishida et al., 2017) utilizes a hybrid deep
neural network architecture of LSTM and CNN.
TabVec (Ghasemi-Gol and Szekely, 2018) is an
unsupervised method to embed tables based on
table-level manual features. Additionally, when
considering TTC, TableFormer and FewTPT can
also be assessed by applying stacked downstream
classifiers. In addition to CTC, TUTA (Wang et al.,
2020b) also performs well on TTC.

4.3 Settings and parameters

The embedding of a node in a tabular graph is com-
posed of semantic information and manual features.
The embedding of semantic information is obtained
by feeding the string of the node into Sentence-
BERT (Reimers and Gurevych, 2019) and then
performing dimensionality reduction. The manual
features used in our work are introduced in Crestan
and Pantel 2011, which have strong versatility on
tabular data. We present details of the manual fea-
tures in Appendix B. To be fair, the manual features
used in TabPrompt are also used by all baselines.
We employ the macro-F1 score and the standard de-
viation as the evaluation metric in our experiments,
commonly used in other TU works.

In the pre-training phase, we employ a 3-layer
GIN as the backbone and set the hidden dimension
as 64. We randomly sample 5k tables from TabEL
and utilize the tabular Graph CL method mentioned
above as the pretext task to pre-train the parameters
of the backbone. The details of hyper-parameters
can be found in Appendix C.

Following a typical k-shot classification setting
(Liu et al., 2021b; Zhou et al., 2019; Wang et al.,
2020a), we generate a series of few-shot down-
stream tasks of CTC and TTC for model training,
validation, and testing.

For CTC, we conduct this downstream task on

Table 1: Macro-F1 evaluation on CTC.

Methods
TURL WebSheet

1-shot 3-shot 1-shot 3-shot

TCC-Embd 26.72 ± 6.27 31.14 ± 8.51 19.62 ± 12.54 21.42 ± 12.39

PSL 29.23 ± 7.55 39.72 ± 7.43 15.53 ± 10.11 18.55 ± 13.18

TabularNet 34.41 ± 7.47 45.14 ± 4.77 20.64 ± 12.92 29.44 ± 12.56

TableFormer 33.68 ± 6.33 45.78 ± 5.88 21.74 ± 8.95 27.75 ± 7.15

FewTPT 33.21 ± 10.22 44.71 ± 8.13 22.93 ± 9.75 28.41 ± 8.42

TUTA 35.73 ± 6.81 47.32 ± 9.48 27.65 ± 13.25 34.77 ± 9.84

TabPrompt 46.82 ± 8.80 57.79 ± 9.01 30.78 ± 10.25 35.96 ± 9.76

two datasets, i.e., TURL and WebSheet. On each
dataset, we generate ten z-shot Cell Type Classi-
fication tasks for training and validation. In each
task, z tables are randomly sampled for both train-
ing and validation, where z ∈ {1, 3}. Additionally,
we randomly generate 20 tables for testing from
the remaining not sampled for training and vali-
dation. After conducting the experiments, we cal-
culate the mean macro-F1 score of the ten testing
results, along with the standard deviation. For TTC,
following a similar process of CTC, we randomly
generate 10 z-shot (z ∈ {3, 5}) table classification
tasks (i.e., sample z tables per class in one task)
from WCC and the remaining tables not sampled
for testing.

4.4 Performance Evaluation

In this section, we analyze the results of exper-
iments of CTC and TTC conducted on public
datasets, respectively.
CTC. Based on the results of the few-shot CTC
presented in Table 1, we draw the following con-
clusions. Firstly, the superior performance of
TabPrompt over all baselines underscores the effec-
tiveness of our proposed framework. This result
proves that prompt-based learning is well-suited for
addressing few-shot TU scenarios. Secondly, de-
spite TUTA having a higher number of parameters
pre-trained with more data, TabPrompt achieves
better performance. This finding highlights the sig-
nificance of bridging the gap between pre-training
and downstream tasks, as it enhances the effec-
tiveness of knowledge transfer from pre-training
to downstream tasks. Thirdly, TabPrompt out-
performs TabularNet, indicating that considering
the topological information within the table sig-
nificantly aids the model in better comprehending
the table’s semantics. Fourthly, TableFormer and
FewTPT exhibit inferior performance compared to
TUTA despite all being pre-trained. This is mainly
because neither are designed for the TU task, lead-
ing to the absence of modules tailored to TU tasks.
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Table 2: Macro-F1 evaluation on TTC.

Methods
WCC

3-shot 5-shot

DWTC 26.12 ± 9.71 31.52 ± 10.01

TabNet 14.53 ± 13.76 16.35 ± 10.17

TabVec 31.43 ± 8.63 49.12 ± 10.26

TableFormer 42.14 ± 6.73 50.17 ± 6.18

FewTPT 44.97 ± 7.13 52.72 ± 6.42

TUTA 46.12 ± 8.73 54.45 ± 8.27

TabPrompt 50.75 ± 7.18 57.41 ± 5.14

TTC. We present the results of few-shot TTC in Ta-
ble 2. First, the consistently superior performance
of TabPrompt once again demonstrates the effec-
tiveness of our proposed framework. Second, as
both CTC and TTC share the same parameters of
the pre-trained model, the superior performance of
GraphPrompt on both types of tasks further sup-
ports the notion that our tabular Graph CL enables
the models to learn better vector representations.
Performance with different shots. From Table
1 and Table 2, it is evident that the performance
of all models improves as the number of samples
increases. Therefore, we study the trends in per-
formance with varied shots. We have Method A,
Method B, and our method tested with different
shots on the TURL dataset in Fig 6. The graph
shows that in the case of low shots, TabPrompt
consistently outperforms other methods. Although
TabPrompt is surpassed when it comes to 50 shots
(typically beyond 600 table cells), the amount of
data is beyond the scope of our target scenario.

25

40

55

70

85

1 3 5 10 20 50

TabularNet TUTA TabPrompt

Figure 6: Impact of varied shots on CTC.

4.5 Ablation study

To analyze the individual contribution of each com-
ponent in TabPrompt, we conduct the following
ablation study:

• w/o cl: When constructing graph data without

Table 3: Ablation results.

CTC CTC TTC
(TUTA) (WebSheet) (WCC)
3-shot 3-shot 5-shot

TabPrompt 57.79 ± 9.01 35.96 ± 9.76 57.41 ± 5.14

w/o cl 46.12 ± 10.48 31.52 ± 9.01 54.52 ± 8.76

w/o sp 55.74 ± 11.16 33.25 ± 9.87 56.14 ± 9.11

w/o pr 49.15 ± 9.38 30.18 ± 10.47 52.32 ± 13.5

taking into account the topological informa-
tion of the table, link all adjacent cells simply.

• w/o sp: Downstream tasks are performed
without tuning the parameters of the soft
prompt.

• w/o pr: Using fine-tuning instead of prompt
tuning to train the model in downstream tasks.

Results of ablation experiments are shown in Ta-
ble 3. It is evident that TabPrompt’s performance
significantly deteriorates when using a vanilla
method to construct graph data. This can be at-
tributed to the fact that the vanilla method dramati-
cally diminishes the effectiveness of tabular Graph
CL. It confirms that considering the topological
information within tables aids machines in compre-
hending the semantics of tables more effectively.

In our previous analysis, we hypothesize that the
soft prompt can assign more weight to distinguish
features during the prompting process. We observe
that when the parameters of the soft prompt are not
tuned, the performance of TabPrompt experiences
a slight decrease. This observation confirms our
hypothesis.

When we replace the prompt tuning method with
fine-tuning, we observe a decrease in the model’s
performance across all three datasets. This out-
come further reinforces that prompt tuning can
effectively enhance the model’s performance in
scenarios with limited training tabular data.

4.6 Case Study

To facilitate an intuitive interpretation, we present
a typical case in the CTC testing data that demon-
strates the functionality of tabular Graph CL.

Fig. 7 shows two classification results for a ta-
ble. Fig. 7 (a) represents a correct CTC result,
whereas the classification results in Fig. 7 (b) have
some flaws. It highlights that misunderstanding
may result from neglecting the topological struc-
ture information within the table, such as the cells
in one column tending to be a category as well
as that cells in the header rows being more likely
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to be a valueName rather than a value. For in-
stance, the misclassified cell “July 1780 Typhoon”
should have a stronger relationship with the up-
per and lower cells, while the relationship with the
right cell “1780” is relatively weak despite both
containing the textual content of “1780”.

indexName index valueName value

year fatalities  
1881 300,000
1975 229,000
1780 100,000
1922 60,000
1912 50,000

year fatalities
1881 300,000
1975 229,000
1780 100,000
1922 60,000
1912 50,000

typhoon
" Haiphong "

Deadliest Pacific typhoons

(a) CTC results of TabPrompt

" Haiphong "
Nina

July 1780 Typhoon
" Swatow "

"China"

typhoon

(b) CTC results of TabPrompt w / o  cl

Nina
July 1780 Typhoon

" Swatow "
"China"

Figure 7: A real case for CTC.

5 CONCLUSION

In this paper, we proposed a new framework
TabPrompt. To tackle the scarcity of labeled tab-
ular data and capture the untapped topological in-
formation, we resorted to prompt-based learning
and Graph CL, respectively. The experimental re-
sults of outperforming all baselines demonstrate
the effectiveness of TabPrompt in few-shot TU.

In future work, we aim to extend our method to
handle domain-specific tables and more complex
table structures, further enhancing its capabilities.
In addition, we introduce a multimodal technique
that leverages both text and image data within the
table to enhance the understanding of its semantics.

Limitations

First, the input of TabPrompt must be a machine-
parsable data format, such as HTML files with
<table> tags or CSV files. TabPrompt does not
encompass the processes of locating or extracting
tables from images or original web pages. Sec-
ond, TabPrompt cannot handle tables with overly
complex layouts, such as tables with images or too
many empty cells. Third, TabPrompt performs
poorly on small-sized tables due to the limited
amount of text information available within these
tables.
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A Correspondence with Different
Taxonomies and More Details

In this section, we comprehensively describe the
correspondence between the various taxonomies.

The annotation taxonomy employed in TURL
focuses on annotating the subject column within
tables. For instance, in Fig. 1 (a), the subject
column of the table is the second column titled
“language”. The correspondence between the tax-
onomy of TURL and ours is illustrated in Fig. 8.
The taxonomy of this WebSheet is nearly identical
to ours, except that they do not explicitly annotate
unlabeled cells with value. Regarding the WCC
dataset, we classify the tables categorized as Ma-
trix into the category of Relational tables. This
decision is made due to the absence of clear bound-
aries between these two types, as they share similar
cell types.

To ensure data quality, we applied filters to re-
move certain tables. This includes tables with ir-
regular layouts, where rows do not have the same
number of cells as other rows, as well as tables
with pictures, huge tables, and repeated tables. The
filtering process was implemented through some
rules.

√ ×
√ indexName index
× valueName value

is located in header rows?

is located in the
 subject column?

Figure 8: Manual features.

B Manual Features

The main manual features used in our work are
listed in Fig 9.

C Hyper-parameters

The semantic features of nodes are first output
by Roberta and then reduced dimensions to 512
through PCA. We employ a 3-layer GIN architec-
ture as the backbone whose hidden dimension is set

For CTC
the number of row the current cell is located in

the number of column the current cell is located in
whether the string of the current cell

is unique in the current column
the string type of the current cell

whether the current cell is from the merged cell
For TTC

the number of rows of the current table
the number of columns of the current table

Figure 9: Manual features.

as 1024. The activation function of GIN is ReLu.
For pre-training, we set the learning rate as 0.01,
the weight decay as 1e-5, and the dropout as 0.5.
We set the readout function as mean pooling.
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