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Abstract

Many real-world applications require making
multiple predictions from the same text. Fine-
tuning a large pre-trained language model for
each downstream task causes computational
burdens in the inference time due to several
times of forward passes. To amortize the com-
putational cost, freezing the language model
and building lightweight models for down-
stream tasks based on fixed text representations
are common solutions. Accordingly, how to
learn fixed but general text representations that
can generalize well to unseen downstream tasks
becomes a challenge. Previous works have
shown that the generalizability of representa-
tions can be improved by fine-tuning the pre-
trained language model with some source tasks
in a multi-tasking way. In this work, we pro-
pose a prefix-based method to learn the fixed
text representations with source tasks. We learn
a task-specific prefix for each source task in-
dependently and combine them to get the final
representations. Our experimental results show
that prefix-based training performs better than
multi-tasking training and can update the text
representations at a smaller computational cost
than multi-tasking training.

1 Introduction

Fine-tuning large pre-trained language models for
downstream tasks has become a popular solution
in natural language processing (Devlin et al., 2019;
Liu et al., 2019b). Although effective, fine-tuning
the whole language model might cause some com-
putational burdens, especially for those applica-
tions that require making multiple predictions from
the same text. For example, given a Facebook
post, we may want to know its topic, predict its
sentiment, extract events, and decide if it contains
offensive words, etc. If we train a separate model
for each task, we may have a latency during infer-
ence time due to several times of forward passes,
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which causes computational issues especially when
the number of downstream tasks grows.

To amortize the computational cost, several
works (Peters et al., 2019; Du et al., 2020) con-
sider freezing the language model as the text en-
coder. They use the frozen language model to ob-
tain the fixed representations for a text and build a
lightweight model for each downstream task on top
of such fixed representations. They show that by
fine-tuning a pre-trained language model with some
source tasks in a multi-tasking way, the generated
fixed representations capture general information
and generalize well for unseen target tasks.

In this work, we consider the same goal and
make the inference computationally efficient. We
aim to learn fixed representations from some source
tasks that can generalize to unseen target tasks. In-
stead of multi-tasking training, we propose a new
method based on the prefix tuning (Li and Liang,
2021; Liu et al., 2022b) to learn the fixed repre-
sentations. Specifically, we learn a task-specific
prefix for each source task independently. During
inference time, all the task-specific prefixes are
combined together to produce the final fixed repre-
sentations. Since those prefixes carry task-specific
information, the generated fixed representations
capture enough information to generalize to unseen
target tasks.

Compared to multi-tasking training, the advan-
tage of prefix-based training is that the fixed text
representations can be easily updated at a small
computational cost. For example, if we want to
add source tasks, we can simply train new prefixes
for those tasks without re-training the whole model.
Similarly, if we want to remove source tasks, we
can directly disable the corresponding prefixes dur-
ing inference time. In contrast, multi-tasking train-
ing requires re-training the whole model, which is
less flexible and computationally expensive.

Our experimental results show that prefix-based
training performs better than multi-tasking train-

7422



…

Task Prefix 🔥

…

Frozen LM ❄

Representa4ons 🔥

Classifica4on Head 🔥

…

Task 2 Prefix ❄

…

Frozen LM ❄

Fixed Representa4ons ❄

Target Task 1 🔥

…

Task 1 Prefix ❄

… …

Task M Prefix ❄

…
…

…

Task Prefix Pool ❄

Add

Remove

Target Task N 🔥

…

(a) Training stage.

…

Task Prefix 🔥

…

Frozen LM ❄

Representa4ons 🔥

Classifica4on Head 🔥

…

Task 2 Prefix ❄

…

Frozen LM ❄

Fixed Representa4ons ❄

Target Task 1 🔥

…

Task 1 Prefix ❄

… …

Task M Prefix ❄

…
…

…

Task Prefix Pool ❄

Add

Remove

Target Task N 🔥

…

(b) Inference stage.

Figure 1: Overview of prefix-based training. (a) We train a task-specific prefix for each source task. (b) All
task-specific prefixes are combined together to obtain the fixed text representations. The text representations can be
easily updated by adding or removing task-specific prefixes. The snowflake symbol and the fire symbol indicate
whether the module is frozen or not.

ing in terms of transferring knowledge from source
tasks to target tasks. In addition, we design two ex-
periments to highlight the flexibility of prefix-based
training to easily update the text representations.
All the results suggest that prefix-based training can
be a promising approach to this research direction.

2 Related Work

General purpose text representations. Large
pre-trained language models are usually used for
extracting text representations (Devlin et al., 2019;
Liu et al., 2019b; Lewis et al., 2020). Several ap-
proaches consider self-supervised learning to im-
prove the quality of representations (Yan et al.,
2021; Liu et al., 2021a; Gao et al., 2021; Chuang
et al., 2022). To improve the generalization for un-
seen tasks, some works consider additional source
tasks to learn the representations, such as natural
language inference corpus (Conneau et al., 2017;
Cer et al., 2018; Reimers and Gurevych, 2019) and
paraphrase pairs (Huang et al., 2021). Recently,
frozen text representations have caught attention
for amortizing the computational cost in real-world
applications (Peters et al., 2019; Du et al., 2020).

Prefix tuning and prompt tuning. Recently,
prefix tuning and prompt tuning become popular
ways to learn parameter-efficient models. Early
works usually consider discrete prompts, where
the prompts consist of real words (Shin et al.,
2020; Schick and Schütze, 2021a,b; Scao and Rush,
2021). Later works study soft prompts, where the
prompt words are learnable (Li and Liang, 2021;
Liu et al., 2021b; Lester et al., 2021a; Qin and Eis-
ner, 2021; Liu et al., 2022b). Several studies have
shown that prefixes and prompts can effectively
capture the key information about the tasks (Liu
et al., 2022a; Hsu et al., 2023; Wan et al., 2023;

Cao et al., 2023). Our work is motivated by the
fact that those learnable parameters can be viewed
as embeddings for transferring knowledge or rep-
resenting tasks (Vu et al., 2022; Asai et al., 2022;
Zhou et al., 2022).

3 Method

3.1 Problem Setup
Our goal is to learn fixed text representations
that perform well on unseen target tasks. During
the training stage, we consider M source tasks
T s
1 , T

s
2 , ..., T

s
M to learn text representations. In the

inference stage, we train a lightweight classifier
for each target task T t

1, T
t
2, ..., T

t
N based on the

learned fixed text representations. That is, only the
lightweight classifier will be trained while the text
representations remain the same to reduce the com-
putational burden during the inference time. Addi-
tionally, we expect the learned representations can
be easily updated (e.g., add/remove/update source
tasks) at a small computational cost.

3.2 Training Stage
As illustrated by Figure 1a, we learn a task-specific
prefix (Li and Liang, 2021; Liu et al., 2022b) for
each source task. It is worth noticing that ev-
ery task-specific prefix is learned independently.
Specifically, we follow the implementation of P-
Tuning v2 (Liu et al., 2022b) and consider the soft
prompt tuning (Lester et al., 2021b) for each Trans-
former layer. For each layer, we learn an addi-
tional key matrix Kp = {k1, ...,kl} and an ad-
ditional value matrix Vp = {v1, ...,vl}, where l
is the length of the prefix. When computing the
attentions for each layer, we concatenate the addi-
tionally learned key matrix Kp and value matrix Vp

with the original key matrix K and value matrix V .
That is, we use K ′ = Kp ⊕K and V ′ = Vp ⊕ V
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to calculate the scaled dot-product attention. More
training details can be found in Appendix A.1.

The final task-specific prefix P consists of those
learned key matrices {K(1)

p , ...,K
(L)
p } and value

matrices {V (1)
p , ..., V

(L)
p } for all layers, where L is

the number of layers. Since the language model
is frozen during training, we expect that all task-
specific information is captured by the prefix P .

3.3 Inference Stage

Assuming the task-specific prefixes we learn for the
source tasks T s

1 , T
s
2 , ..., T

s
M are P1, P2, ..., PM , we

concatenate them to be a large prefix P ∗. In other
words, for each Transformers layer, we use K∗ =
K ′

1⊕K ′
2⊕ ...⊕K ′

M and V ∗ = V ′
1⊕V ′

2⊕ ...⊕V ′
M

to calculate the attention and compute the final text
representations. We then train classifiers for target
tasks on top of the same fixed text representations,
as illustrated by Figure 1b. Appendix A lists more
details.

As mentioned in Section 1, to reduce the com-
putational cost, all the prefixes and the language
model are frozen during the inference stage. How-
ever, the task-specific prefixes can still pass the
task-specific information via the learned key matri-
ces and value matrices when calculating attention.
Therefore, the final text representations contain nec-
essary information about source tasks that can be
transferred to unseen target tasks.

3.4 Comparison to Multi-Tasking Training

Multi-tasking learning (Collobert and Weston,
2008; Zhang and Yang, 2017; Ahmad et al., 2018;
Liu et al., 2019a; Zhou et al., 2021) is a common
way to incorporate the knowledge of several source
tasks into language models. It fine-tunes a language
model with multiple objectives for source tasks at
the same time. Compared to multi-tasking training,
our prefix-based training has several advantages for
obtaining fixed text representations.

The biggest advantage of prefix-based training is
that the text representations can be easily updated
at a small computational cost. For example, if we
want to add (update) some source tasks, we can sim-
ply train new (update) prefixes for those tasks. Sim-
ilarly, if we would like to remove some source tasks,
we can directly disable the corresponding prefixes
during the inference time. Compared to multi-
tasking training, which needs to re-train the whole
language model when adding/updating/removing
source tasks, prefix-based training has great flexi-

Dataset Task Type # of Train

Source Tasks

MNLI Natural Language Inference (NLI) 393K
QNLI Natural Language Inference (NLI) 105K
QQP Paraphrase Identification (PI) 364K
SST-2 Sentiment Analysis (SA) 66K
Yelp-2 Sentiment Analysis (SA) 540K
ReCoRD Question Answering (QA) 101K
WinoGrande Commonsense Reasoning (CR) 40K

Target Tasks

RTE Natural Language Inference (NLI) 2.5K
MRPC Paraphrase Identification (PI) 3.7K
CR Sentiment Analysis (SA) 2.3K
MR Sentiment Analysis (SA) 6.4K
MPQA Sentiment Analysis (SA) 6.4K
BoolQ Question Answering (QA) 9.4K
MultiRC Question Answering (QA) 27K
CosmosQA Commonsense Reasoning (CR) 25K

Table 1: Datasets.

bility for updating text representations.
In addition, prefix-based is faster and easier.

Since all task-specific prefixes are trained inde-
pendently they can be trained in parallel, using
different parameters (e.g. learning rates). This
solves the difficulty of multi-task training where it
is hard to find a good configuration for all source
tasks, as different tasks have different properties,
e.g. tasks have varying sizes of training examples,
which causes some tasks to be dominated by others
(Liang and Zhang, 2020; Mao et al., 2022).

4 Experiments

We conduct experiments to show the potential of
prefix-based training and its flexibility for updating
text representations.

4.1 Tasks

We consider different types of NLP tasks, includ-
ing natural language inference, paraphrase identi-
fication, sentiment analysis, question answering,
and commonsense reasoning, as listed in Table 1.
The source tasks include the following 7 datasets
with more than 40K annotations: MNLI (Williams
et al., 2018), QNLI (Demszky et al., 2018), QQP
(Wang et al., 2019), SST-2 (Socher et al., 2013),
Yelp-2 (Charwad et al., 2015), ReCoRD (Zhang
et al., 2018), and WinoGrande (Sakaguchi et al.,
2020). The target tasks include the following 8
relatively small datasets: RTE (Giampiccolo et al.,
2007), MRPC (Dolan et al., 2004), CR (Hu and Liu,
2004), MR (Pang and Lee, 2005), MPQA (Wiebe
et al., 2005), BoolQ (Clark et al., 2019), MultiRC
(Khashabi et al., 2018), and CosmosQA (Huang
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Method Freeze RTE MRPC CR MR MPQA BoolQ MultiRC CosmosQA Avg.

Upper bound (computationally expensive)

Fine-tuning the whole language model ✗ 86.38 88.01 93.59 91.19 91.93 85.28 80.80 77.77 86.87

Lower bound, without source task pre-training

Fine-tuning with frozen language model ✓ 58.59 77.28 91.66 87.99 90.29 70.53 68.74 57.27 75.29

With source task pre-training

Multi-tasking training ✓ 82.16 84.90 91.03 90.60 90.83 79.44 74.00 66.53 82.44
Prefix-based training (ours) ✓ 84.86 85.37 92.03 90.08 91.05 80.84 75.66 70.90 83.85

Table 2: 5-run average results for transfer setting. Prefix-based training performs better than multi-tasking training.

Method Freeze RTE MRPC CR MR MPQA BoolQ MultiRC CosmosQA Avg.

Multi-tasking training ✓ 82.16 84.90 91.03 90.60 90.83 79.44 74.00 66.53 82.44

Prefix-based training ✓ 84.86 85.37 92.03 90.08 91.05 80.84 75.66 70.90 83.85
- Removing at most 1 task ✓ 86.76 86.21 92.05 90.64 91.28 81.65 76.12 71.11 84.48
- Removing at most 2 tasks ✓ 87.30 86.67 93.05 90.76 91.70 82.18 76.12 72.00 84.97

Table 3: Best results from all combinations of removal. Removing hurtful source tasks leads to improvements.

et al., 2019).
For those datasets with the standard train, dev,

and test split, we follow the standard split for train-
ing. For those datasets without the standard split
(e.g., GLUE tasks), we randomly split 1/3 exam-
ples from the dev set as the internal dev set and use
the rest 2/3 examples as the testing set.

4.2 Baselines for Comparison

We compare our proposed prefix-based training
with multi-tasking training (Collobert and Weston,
2008; Zhang and Yang, 2017; Ahmad et al., 2018;
Liu et al., 2019a; Zhou et al., 2021). Both ap-
proaches are trained on the same source tasks and
use pre-trained RoBERTa-large (Liu et al., 2019b).
Then, we freeze both models and get fixed text rep-
resentations as the features to train classifiers for
the target tasks. Please refer to Appendix A for
more details. To analyze the influence of source
tasks and fixed representations, we additionally
consider two simple fine-tuning baselines: fine-
tuning the whole language model and fine-tuning
with the frozen language model. Note that they
directly use RoBERTa-large without training on
source tasks.

4.3 Results for Transfer Setting

From Table 2, we first observe that simple fine-
tuning without freezing text representations per-
forms much better than with freezing. This indi-
cates that although fixed representations reduce the
computational cost, they largely limit the power
of pre-trained language models. However, if we

freeze the representations, with training on source
tasks, we see an overall improvement for all target
tasks, which shows the importance of knowledge
transfer from source tasks to target tasks.

Prefix-based training consistently performs bet-
ter than multi-tasking training, especially for those
target tasks that require high-level understanding,
such as natural language inference and common-
sense reasoning. We hypothesize that those types
of tasks are more difficult than others and might
be dominated by other simpler tasks, such as senti-
ment analysis, during multi-tasking training. There-
fore, multi-tasking training cannot transfer knowl-
edge from those types of tasks well. In contrast,
prefix-based training has promising performance
for all types of tasks.

4.4 Flexibility for Updating Representations
As mentioned in Section 3, one advantage of prefix-
based training is that the text representations can
be easily updated with a small computational cost.
We conduct two experiments to verify this merit.

Removing hurtful source tasks. Prefix-based
training gives us an easy way to disable some
source tasks during the inference stage — just
removing the corresponding prefixes without re-
training. Therefore, we can easily find out some
hurtful source tasks for a particular target task by
removing different combinations of source tasks.

Table 3 shows the best results from all combina-
tions of removal. We observe improvements when
removing hurtful source tasks. For example, re-
moving SST-2 task is helpful for natural language
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Figure 2: Results of sequentially adding source tasks.

inference and commonsense reasoning tasks, while
removing ReCoRD task is helpful for sentiment
analysis tasks. This experiment shows that we can
use the flexibility of prefix-based training to find
out hurtful source tasks and improve performance.

Adding new source tasks. To mimic the situa-
tion when new source tasks are introduced, instead
of training on all source tasks together, we sequen-
tially add one source task every round and update
both models of prefix-based training and multi-
tasking training. For prefix-based training, we train
a prefix for the new task. For multi-tasking training,
we re-train the whole model with all existing source
tasks. To fairly compare the two approaches, we fix
the number of training steps per round. We run 8
repeats of experiments with different orders to add
tasks and report the average performance on target
tasks for each round in Figure 2. Experimental
details can be found in Appendix B.1.

Overall, prefix-based training is better than
multi-tasking training for every round. When the
number of training steps becomes smaller, prefix-
based training still has similar performance while
the performance of multi-tasking training drops a
lot. This is because prefix-based training can use all
training steps for the new task while multi-tasking
training has to share the training steps over all ex-
isting source tasks. This experiment shows the
flexibility of prefix-based training for updating text
representations at a smaller computational cost.

5 Conclusion

We focus on learning fixed text representations with
source tasks that can generalize well to unseen
target tasks. We propose a prefix-based training
method that learns a task-specific prefix for each
source task. The fixed text representations are com-

puted by combining all task-specific prefixes to-
gether. Our experimental results show that prefix-
based training performs better than multi-tasking
training and can update representations at a smaller
computational cost than multi-tasking training.

Limitations

In this work, our goal is to prove the concept that
prefix-tuning training is better than multi-tasking
training in terms of transferring knowledge and up-
dating fixed text representations. We try to include
as many tasks as possible in our experiments. How-
ever, we understand that there might be some differ-
ences between our experimental settings and real-
world cases. For example, the current experiments
are limited to text-understanding tasks. Some other
types of tasks, such as structure predictions and
syntax-related tasks, are not considered in the cur-
rent version. Also, in the real-world case, the num-
ber of source tasks and target tasks can be larger.
In this work, we provide a proof of concept and
demonstrate the potential benefits of the prefix-
based training method. Increasing the number of
tasks is therefore considered as our future study.

Broader Impacts

Our model is based on large pre-trained language
models. It is known that the models trained with a
large text corpus may capture the bias reflecting the
training data. Therefore, it is possible that the pre-
dictions produced by our model inherit the bias of
pre-trained language models. We suggest to care-
fully examining the potential bias before applying
our method to any real-world applications.
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A Training Details

All the models are trained with NVIDIA Tesla
V100 GPU.

A.1 Details for Training Task-Specific Prefix

We follow the implementation of P-tuning v2 (Liu
et al., 2022b) and set the prompt length to 5. The
Batch size is 16 for all source tasks and the number
of epoch is 40. We use Adam optimizer with the
learning rate being 5e-3 and the weight decay being
1e-5. The classification head is one layer of MLP.

We notice that in the original implementation of
P-Tuning v2, they add positional encoding to pre-
fix. However, as we will concatenate several task-
specific prefix together during the inference time,
we remove the positional encoding when training
the prefix to avoiding position mismatch between
training and inference.

A.2 Details for Training Target Tasks

Following previous work (Du et al., 2020), we train
one attention layer on top of the fixed text repre-
sentations and train one layer of MLP based on the
CLS token representation for each target task. The
batch size is 32 and the number of epoch is 80. We
use Adam optimizer with the learning rate being
1e-4 and the weight decay being 1e-5.

A.3 Details for multi-tasking

We uniformly sample data from source tasks for
every batch. The batch size is 16 and the number of
training steps is 400000. We use Adam optimizer
with the learning rate being 1e-5 and the weight
decay being 1e-5. The classification head is one
layer of MLP.

B Experimental Details

B.1 Sequence Order

We consider the following 8 sequence to add the
source tasks sequetially.

• MNLI, QQP, ReCoRD, QNLI, SST-2, Wino-
Grande, Yelp-2

• Yelp-2, MNLI, ReCoRD, SST-2, QNLI, Wino-
Grande, QQP

• QQP, ReCoRD, MNLI, SST-2, QNLI, Wino-
Grande, Yelp-2

• ReCoRD, Yelp-2, WinoGrande, QQP, MNLI,
SST-2, QNLI

• SST-2, QNLI, ReCoRD, MNLI, WinoGrande,
Yelp-2, QQP

• QNLI, WinoGrande, MNLI, QQP, SST-2,
ReCoRD, Yelp-2

• WinoGrande, SST-2, Yelp-2, QQP, QNLI,
ReCoRD, MNLI

• QNLI, Yelp-2, QQP, ReCoRD, WinoGrande,
MNLI, SST-2
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