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Abstract

Model-agnostic meta-learning has garnered at-
tention as a promising technique for enhancing
few-shot cross-lingual transfer learning in low-
resource scenarios. However, little attention
was paid to the impact of data selection strate-
gies on this cross-lingual meta-transfer method,
particularly the sampling of cross-lingual meta-
training data (i.e. meta-tasks) at the syntactic
level to reduce language gaps. In this paper, we
propose a Meta-Task Collector-based Cross-
lingual Meta-Transfer framework (MeTaCo-
XMT) to adapt different data selection strate-
gies to construct meta-tasks for meta-transfer
learning. Syntactic differences have an effect
on transfer performance, so we consider a syn-
tactic similarity sampling strategy and propose
a syntactic distance metric model consisting
of a syntactic encoder block based on the pre-
trained model and a distance metric block using
Word Move’s Distance (WMD). Additionally,
we conduct experiments with three different
data selection strategies to instantiate our frame-
work and analyze their performance impact.
Experimental results on two multilingual NLP
datasets, WikiAnn and TydiQA, demonstrate
the significant superiority of our approach com-
pared to existing strong baselines1.

1 Introduction

Few-shot cross-lingual transfer surpasses zero-shot
transfer (Lauscher et al., 2020; Hu et al., 2020;
Zhao et al., 2021) using multilingual pre-trained
language models (PLMs) (Devlin et al., 2019; Pires
et al., 2019; Conneau and Lample, 2019; Conneau
et al., 2020; Chi et al., 2021). It significantly im-
proves model performance in the target language
with minimal annotation costs. Recent studies
have highlighted the benefits of Model-Agnostic
Meta-Learning (MAML) (Finn et al., 2017) for
few-shot cross-lingual transfer learning in NLP

†Corresponding authors.
1The code is available at https://github.com/

wulinjuan/MeTaCo-XMT

Figure 1: EM score of 4 languages on the TydiQA
dataset based on the X-METRA model. † refers to
results from (M’hamdi et al., 2021). The subscript imp
means the result from our implementation. The seed
indicates the random seed number for random sampling.

tasks (Nooralahzadeh et al., 2020; Ponti et al., 2021;
Liu et al., 2021; M’hamdi et al., 2021). Our focus
in this paper is primarily on cross-lingual meta-
transfer methods for low-resource languages (Liu
et al., 2021; M’hamdi et al., 2021), utilizing sup-
port sets from high-resource languages to establish
an effective initialization for training in the low-
resource target language.

The selection strategies for meta-tasks in cross-
lingual meta-transfer learning typically involve ran-
dom sampling (Nooralahzadeh et al., 2020; Ponti
et al., 2021; Liu et al., 2021) or semantic similar-
ity (Wu et al., 2020a; M’hamdi et al., 2021). We
compare these two strategies using the X-METRA
model (M’hamdi et al., 2021) on four languages
from the TydiQA dataset (Clark et al., 2020). Fig-
ure 1 illustrates that models trained with randomly
sampled meta-tasks (X-METRAseed) in different
seed setting generally perform a big variance of
results compared with X-METRAimp. Different
random seed means the different selection of in-
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stances to construct meta-task, and better selection
can generate better results. It emphasize the piv-
otal role of meta-task construction in enhancing
cross-lingual meta-transfer learning.

Motivated by the above finding, we propose a
Meta-Task Collector-based Cross-lingual Meta-
Transfer framework (MeTaCo-XMT). As shown in
Figure 2(a), the meta-task collector includes a data
encoder and data selector with a distance metric
block, which can be designed according to different
data selection strategies. For instance, multilingual
semantic representation and cosine similarity met-
rics can realize semantic similarity sampling strat-
egy. Specifically, the data encoder encodes all data
to semantic space, and the data selector selects top-
v cosine-similar support instances for each query
data as candidates. Finally, the meta-task can be
constructed according to the setting.

However, the semantic similarity sampling is
limited for different tasks. For example, in the ma-
chine reading comprehension (MRC) task, most
semantically similar samples are subject-related,
ignoring the relationship between question and
paragraph. In practice, different questions with
a common paragraph may choose the same sup-
port instance. For structural tasks like named entity
recognition (NER), syntactic similarity sampling
is more effective due to language-specific syntac-
tic differences. Therefore, we propose a Syntactic
Distance Metric Model (SDMM) based on multilin-
gual PLM and the Word Mover’s Distance (WMD)
(Kusner et al., 2015). As shown in Figure 2(b),
the SDMM incorporates a syntactic linear layer
for syntactic tree learning and employs a triplet
loss to distinguish WMD between close and distant
languages from pivot languages (e.g., English).

In order to further explore the impact of data se-
lection strategy on cross-lingual meta-transfer per-
formance, we compare three sampling strategies
to build meta-tasks including semantic similarity
sampling, task-similarity sampling, and syntactic
similarity sampling. We conduct experiments on
13 typologically diverse target languages of two
cross-lingual tasks: NRE and MRC. Our main con-
tributions are listed below:

• We propose a meta-task collector-based cross-
lingual meta-transfer framework (MeTaCo-
XMT) to accommodate different data select
strategies to reducing the gap of languages.

• We propose a syntactic distance metric model
to calculate the distance of text pairs at the

syntactic level for syntactic similarity sam-
pling.

• We investigate three different data selection
strategies and experiment on two cross-lingual
datasets (WikiAnn and TydiQA) to demon-
strate that our framework equipped with syn-
tactic similarity sampling strategy signifi-
cantly outperforms existing strong baselines.

2 Related Work

We focus on two threads of related work: (1) meta-
learning for cross-lingual transfer and (2) train-
ing data selection. Sherborne and Lapata (2023)
and Wu et al. (2020b) use meta-learning for cross-
lingual NER and Semantic Parsing with a slight
enhancement in minimal resources. X-MAML
(Nooralahzadeh et al., 2020) combines the MAML
and cross-lingual transfer method based on PLM
and demonstrates improvement in zero-shot and
few-shot settings. X-MAML samples the support
and query data from the same language, which lim-
its the ability of the model for cross-lingual trans-
fer. XLA-MAML (Liu et al., 2021) performs direct
cross-lingual adaptation in the meta-learning stage
by sampling the meta-tasks from two or more lan-
guages. X-METRA-ADA (M’hamdi et al., 2021)
follows the setting of cross-lingual meta-transfer
training and adds a meta-adaptation stage for fur-
ther improvement. While Wu et al. (2020b) and
M’hamdi et al. (2021) use semantic similarity to se-
lect the meta-tasks, we explore more data selection
strategies to get better cross-lingual meta-transfer
performance.

Training data selection has been extensively stud-
ied for several tasks, such as domain adaptation
(Liu et al., 2019; Ivison et al., 2022) and cross-
lingual transfer (Maurya and Desarkar, 2022; Ku-
mar et al., 2022). In the cross-lingual transfer set-
ting, the selection of training data can reduce the
performance gaps across languages. Kumar et al.
(2022) proposed approaches of data selection rely
on multiple measures such as data entropy using
an n-gram language model, predictive entropy, and
gradient embedding. Maurya and Desarkar (2022)
use meta-learning techniques for cross-lingual gen-
eration and choose centroid languages to meta-
training the model and improve other languages. In
this paper, we propose a cross-lingual meta-transfer
framework based on a meta-task collector and ex-
plore the performance of different data sampling
strategies.
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Figure 2: Diagram of (a) the proposed meta-task collector-based cross-lingual meta-transfer framework and (b) the
syntactic distance metric model trained with triplet loss Ldis and syntax tree loss LSTL. The superscript d and c in
(b) represent the distant and close language from pivot language (without superscript) respectively.

3 Preliminaries

Model Agnostic Meta-Learning (MAML) (Finn
et al., 2017) as an optimization-based meta-
learning method is compatible with any model fθ
that updates parameters θ through gradient descent.
Formally, given a task τi from meta-tasks set τ with
loss function Lτi , the optimal target of MAML is:

θ = argmin
θ

∑

τi∈τ
Lτi(fθ′i), (1)

θ
′
i = θ − α▽θLτi(fθ), (2)

where the τi = {Si,Qi}, consisting of a support
set Si and a query set Qi. MAML optimizes the
parameters toward the optimal target in Equation 1
via an inner step and a meta step. The support set Si
is used for the inner step (as Equation 2) to update
the θ to θ

′
with learning rate α. The meta step

uses the updated model f
θ
′
i

and optimizes θ with a
learning rate β across query set Qi, as follow:

θ ← θ − β▽θLτi(fθ′i) (3)

The optimized-based meta-learning algorithm
can perform the model fast adaptation to a new task
during the adaptation training phase.
Cross-lingual Meta-transfer Learning mainly fo-
cuses on the meta-training phase of MAML. In the
inner step, the model fθ learns a good initializa-
tion of parameter θ

′
by repeatedly simulating the

learning process on source language support set
S ∈ Dsrc. The meta step is fine-tuning the initial-
ized model in a target language query setQ ∈ Dtgt.
These two steps are iterated repeatedly to optimize
the parameters θ. We skip the adaptation phase and
directly evaluate the target language test dataset.

4 Methodology

Figure 2 shows the architecture of our meta-task
collector-based cross-lingual meta-transfer frame-
work and the proposed syntactic distance metric
model. Our framework consists of three essential
components: task-specific base PLM, cross-lingual
meta-transfer learner, and meta-task collector. In
this section, we first introduce the training proce-
dure of MeTaCo-XMT (§ 4.1) and a detailed de-
scription of the meta-task collector (§ 4.2). Then
syntactic distance metric model (§ 4.3) is proposed
to instantiate the meta-task collector and two other
data selection strategies are described in § 4.4.

4.1 Training Procedure of MeTaCo-XMT

As shown in Figure 2(a), for the task-specific base
PLM, we first initialize our model fθ with multilin-
gual PLM such as mBERT (Pires et al., 2019) or
XLM-R (Conneau et al., 2020) and fine-tune it on
English monolingual labeled data. This step allows
the PLM to take benefit of the high resource data
and to serve as a baseline model.

Before the cross-lingual meta-transfer stage, we
sample a batch of meta tasks T = {S,Q} from
dataset D = {Dsrc,Dtgt} by meta-task collector,
which uses high-resource source language (typi-
cally English) data in support sets and low-resource
target language data in the query sets. For every
task τi = {Si,Qi}, we update θ

′
i over r steps us-

ing support instances in Si, as Equation 2. At the
end of inner loop, we compute the gradients with
respect to the loss of θ

′
i on Qi. After each batch

training, we sum over all pre-computed gradients
and update θ, thus completing one outer loop.

At test stage, we directly evaluate the optimized
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model fθ on the target language test dataset.

4.2 Meta-Task Collector
The large variations illustrated in Figure 1 demon-
strate that meta-task selection has a profound im-
pact on the performance of cross-lingual meta-
transfer learning. So we equip the cross-lingual
meta-transfer framework with a meta-task collector
to select the training data strategically. As shown in
Figure 2(a), our meta-task collector is to construct
a meta-task with q query instances and k support
instances, described in the following.

In this few-shot cross-lingual transfer setting, we
have a rich-resource source language (i.e. English)
dataset Dsrc = {(xsrc, ysrc)} and a low-resource
target language dataset Dtgt = {(xtgt, ytgt)},
where (x, y) is a pair of text x and ground truth
labels y. We form the meta-tasks T = {S,Q}
with the following process:

1. Sample num target data as query instances
set Q = {(x(i)tgt, y

(i)
tgt)}numi=1 ∈ Dtgt. The entire

source dataset is used as candidate support
instances S = {(x(j)srs, y

(j)
src)}Mj=1 ∈ Dsrc.

2. Encode text x in query and support instances
set by encoder block to obtain vector s.

3. Calculate the distance dij between s
(i)
tgt and

s
(j)
src by distance metric block (DMB):

dij = DMB(s
(i)
tgt, s

(j)
src), (4)

For each query instance qi = (x
(i)
tgt, y

(i)
tgt), we

choose top-v closest instances as its candidate
support subset Sqi = {(x

(ij)
srs , y

(ij)
src )}vj=1 ∈ S.

4. Finally, we draw a task τi = {Si,Qi} ∈ T
by first randomly choosing q query instances,
forming Qi. For each query instance qj in
Qi, we draw the k/q most closest candidate
support instance from Sqj thus forming Si.
The number of meta-tasks is also a hyper-
parameter.

How to adapt the meta-task collector to syntactic
similarity sampling is described in detail below.

4.3 Syntactic Distance Metric Model
Linguistic disparities affect the performance of
cross-lingual transfer (Pires et al., 2019; K et al.,
2020; Wu et al., 2022), such as the difference
in word order or other syntactic differences. So

we propose a Syntactic Distance Metric Model
(SDMM) to select syntactic-similar source in-
stances for meta-learning, which consists of a syn-
tactic encoder block and a distance metric block.

As shown in Figure 2(b), We first encode the
multilingual text into a universal syntactic space
and use Word Mover’s Distance (WMD) (Kusner
et al., 2015) to measure the syntactic distance of
text pairs. To train the model, we optimize a triplet
loss by using three-way parallel texts (x, xd, xc).
The three languages include the pivot language
(English), a distant language ld, and a close lan-
guage lc compared to English. The distance be-
tween languages is calculated by the lang2vec (Lit-
tell et al., 2017), a tool that extracts features of
different languages by querying the URIEL typo-
logical database2. Based on the relationship be-
tween language distance and transfer performance
in (Ahmad et al., 2019), the threshold for language
classification is set as 0.52. A language with a dis-
tance of more than 0.52 from English is a distant
language, otherwise, it is a close language. Next,
we introduce the two blocks and losses.

4.3.1 Syntactic Encoder Block
Many studies have found that PLMs can encode
syntactic structures of sentences (Hewitt and Man-
ning (2019); Chi et al. (2020)). For learning syn-
tactic representation, we design a syntactic encoder
block consisting of the multilingual PLM layer and
the syntactic linear layer. Specifically, for an in-
put text x = {wi}ai=1, the output representations
h(x) ∈ Ra×b from the frozen multilingual PLM
are fed into the syntactic linear layer (a matrix
B ∈ Rb×c). Then h(x) is transformed into univer-
sal syntactic space g(x) = Bh(x), so the syntactic
vectors of ith word wi can be defined as:

si = Bh(wi) (5)

Inspired by Hewitt and Manning (2019), we
adopt the syntactic labels from Universal Depen-
dencies (UD3) to learn syntactic embedding with
two tasks: depth prediction of a word and distance
prediction of two words in the parse tree T . The
losses of these two subtasks are defined as:

Ldepth =
∑

i

(|wi| − ∥si∥22), (6)

Ldistance =
∑

i,j

∣∣dT (wi, wj)− dB(si, sj)
∣∣ (7)

2http://www.cs.cmu.edu/ dmortens/projects/7_project
3https://universaldependencies.org
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where |wi| is the parse depth of a word defined
as the number of edges from the root of the parse
tree to wi, and ∥si∥2 is the tree depth L2 norm of
the syntactic vector. dT (wi, wj) is the number of
edges in the path between the ith and jth word in
the parse tree. As for dB(si, sj), it can be defined
as the squared L2 distance:

dB(si, sj) = (si − sj)
T (si − sj) (8)

To induce parse trees, we minimize the summa-
tion of the above two losses Ldepth and Ldistance

and define the syntactic tree loss (STL) as:

LSTL = Ldepth + Ldistance (9)

4.3.2 Distance Metric Block
Syntactic information is at the word level, so we
introduce Word Mover’s Distance (WMD) (Kusner
et al., 2015) to calculate text syntactic distance
incorporating the dissimilarity between word pairs.
WMD is the cost of transporting a set of word
vectors to the other in an embedding space.

Formally, the three-way parallel texts (x, xd, xc)
can be encoded into a syntactic space by our syn-
tactic encoder to obtain the vectors (s, sd, sc). The
inputs of WMD are probability weight and trans-
portation cost function. As shown in the upper of
Figure 2(b), the transportation cost function is:

cd = 1− cos(s, sd), cc = 1− cos(s, sc) (10)

where cos(·, ·) is cosine similarity function. Fol-
lowing (Yokoi et al., 2020), we use norm of a word
vector as the probability weight, and the norm of
ith word vector si is:

ai = ∥si∥ (11)

Therefore, the syntactic distance is defined as:

ddW =
N∑

i,j=1

Tijc
d, dcW =

N∑

i,j=1

Tijc
c, (12)

where T is a transportation matrix, which is the
solution for WMD to get the minimum cumulative
cost of moving s to target. The transport values
Tij or Tji is subjected to the probability weight
ai or aj , respectively. In the experiment, we use
EMD (Yu and Herman, 2005) class of the python
package cv4 to solve the T. The triplet loss is:

Ldis = max{0,m− ddW + dcW }, (13)
4https://pypi.org/project/cv/

where the m represents a margin between a distant
language and a close language from English.

Finally, the loss of the Syntactic Distance Metric
Model (SDMM) is:

L = LSTL + Ld
STL + Lc

STL + Ldis, (14)

where (LSTL, L
d
STL, L

c
STL) are syntactic tree

losses of three-way parallel texts.

4.4 Other Data Selection Strategies
In this section, we introduce other two data selec-
tion strategies to instantiate the meta-task collector.
Semantic Similarity Sampling was used in recent
works (Wu et al., 2020a; M’hamdi et al., 2021) to
construct meta-tasks. In the experiment, we fol-
low (M’hamdi et al., 2021) to use the cross-lingual
extension to SBERT’s pre-trained model (Reimers
and Gurevych, 2019, 2020) as encoder block and
use cosine similarity algorithm in distance metric
block. For NER and MRC, the input is only the text
of the task and the concatenation of the question
and paragraph, respectively.
Task-level Similarity Sampling is proposed for
tasks with long input text or multiple input texts
because semantic similarity sampling ignores task
information between texts. We use a pre-trained
model fine-tuned on the English dataset as an en-
coder, called a task-specific pre-trained model. The
distance metric block uses the cosine similarity al-
gorithm. For MRC or NER, the input is the form of
task fine-tuning followed by Devlin et al. (2019).

5 Experiments

5.1 Languages and Datasets
We evaluate the performance of our framework
on NER and MRC benchmarks from XTREME
(Hu et al., 2020) in 13 target languages, including
Afrikaans (af), Arabic (ar), Bengali (bn), Finnish
(fi), Javanese (jv), Indonesian (id), Korean (ko),
Russian (ru), Swahili (sw), Telugu (te), Tagalog (tl),
Yoruba (yo), and Chinese (zh). Among them, two
languages (bn and te) are considered low-resource,
while five languages (sw, af, tl, jv, and yo) are
classified as extremely low-resource according to
the classification method described in Bang et al.
(2023). Additional details on language classifica-
tion and statistics can be found in Appendix A.

For MRC, we use the gold passage version
of the TydiQA dataset (TydiQA-GoldP) (Clark
et al., 2020). It is more challenging than XQuAD
(Artetxe et al., 2020) and MLQA (Lewis et al.,
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Model TydiQA-GoldP (EM)
ru ar fi id ko bn te sw avg

m
B

E
R

T

PRE†(Hu et al., 2020) 38.8 42.8 45.3 45.8 50.0 32.7 38.4 37.9 41.5
PRE 39.4 44.8 43.2 48.5 46.6 35.2 38.4 39.9 42.0
X-METRA (M’hamdi et al., 2021) 48.9±0.4 63.3±0.8 59.1±1.1 65.2±0.5 – 39.0±1.9 49.7±0.5 61.4±0.4 55.2
FT 52.0±0.5 62.1±0.4 59.4±1.5 65.4±1.5 48.8±1.0 49.7±0.9 61.1±3.2 57.6±0.6 57.0
FT w/syn_sample 51.7±0.7 62.6±1.1 59.8±0.4 64.1±0.5 49.5±1.2 49.4±1.6 62.9±0.4 60.1±1.5 57.5
XMTrandom 52.8±0.9 62.2±0.3 61.5±0.9 66.4±1.4 51.3±3.7 49.9±1.5 62.5±0.9 62.1±0.5 58.6
Ours
MeTaCo-XMTsem 51.7±0.3 62.7±0.3 61.5±0.9 65.7±0.8 50.9±0.2 48.1±2.4 62.7±0.3 64.3±1.5 58.4
MeTaCo-XMTtask 52.7±0.6 63.5±0.2 61.2±0.7 66.0±0.9 51.3±1.3 52.8±1.2 64.0±0.3 63.4±0.3 59.4
MeTaCo-XMTsyn 53.0±0.5 63.4±0.3 61.6±0.7 66.8±0.4 51.9±0.4 54.3±0.9 64.5±0.2 64.3±0.5 60.0

X
L

M
-R

la
r
g
e

PRE†(Hu et al., 2020) 42.1 40.4 53.2 61.9 10.9 47.8 43.6 48.1 45.0
PRE 41.9 55.2 56.5 64.2 47.4 50.1 54.7 52.7 53.7
FT 54.2±0.9 63.2±0.7 64.7±1.1 71.8±1.0 51.5±2.6 60.9±2.8 52.1±1.6 68.5±2.1 60.6
FT w/syn_sample 53.6±0.5 62.9±1.0 66.0±1.1 70.7±1.0 52.4±1.8 60.4±2.7 65.3±0.8 66.7±1.2 62.3
XMTrandom 55.1±0.8 64.5±1.6 65.2±0.8 72.6±0.5 55.8±0.7 66.7±3.0 67.4±0.8 69.9±0.2 64.7
Ours
MeTaCo-XMTsem 55.7±0.9 64.8±1.4 65.3±0.6 71.0±0.4 53.9±0.5 66.1±0.6 66.5±0.4 71.7±0.2 64.4
MeTaCo-XMTtask 56.0±1.0 64.6±1.2 65.6±0.9 73.0±0.3 55.1±0.7 67.3±0.9 67.4±0.9 71.7±1.3 65.1
MeTaCo-XMTsyn 56.0±0.3 65.3±1.1 66.3±0.4 72.9±0.4 56.9±0.5 68.4±0.7 67.5±0.1 71.6±0.4 65.6

Table 1: EM score and standard deviation of 8 target languages and average on the TydiQA-GoldP dataset.

2020) as questions have been written without see-
ing the answers. The dataset is segmented follow-
ing M’hamdi et al. (2021), with English training
data as Train and 10% of training data from other
languages as Dev for few-shot or meta-transfer.
The provided test sets are used for evaluation. For
the NER task, we employ the multilingual WikiAnn
dataset (Pan et al., 2017), reserving num = 100
instances from the training data of other languages
as Dev. Appendix B.1 provides detailed dataset
statistics.

5.2 Baselines
mBERT (Pires et al., 2019) and XLM-Rlarge (Con-
neau et al., 2020) are used as the base PLM. We
compared our model with the following baselines:

• PRE: An initial task-specific base PLM base-
line is fine-tuned on the English Train and
evaluated on other languages Test.

• FT: A standard few-shot transfer baseline to
fine-tune the PRE on target language Dev.

• FT w/syn_sample: We fine-tune the PRE
model on Dev split of the target languages
and the selected English support dataset by
syntactic sampling method in Section 4.3.

• XMTrandome: The framework is similar to
Figure 2(a), except the data selection is im-
plemented by random sampling.

For TydiQA-GoldP, we focused on the baseline
X-METRA (M’hamdi et al., 2021) which shares a
similar setting with our framework, utilizing se-
mantic similarity sampling based on (paragraph,

question, answer) triples. For generality, we only
concatenate the paragraph and question.

For WikiAnn, we added the competitive and
challenging zero-shot baselines with pseudo-
labeled data, including CROP(Yang et al., 2022)
and SL_LEU(Xu et al., 2021). They leverage trans-
lation or self-training methods to obtain pseudo-
labeled data for target languages. Further details
on these baselines can be found in Appendix C.

5.3 Implementation Details
MeTaCo-XMT is initialized by PRE following
the hyper-parameters settings in XTREME (Hu
et al., 2020). The meta-task collector employs
English Train data as support sets and target lan-
guage Dev data as query sets. We implemented the
MAML using the learn2learn5 library. MeTaCo-
XMTsyn, MeTaCo-XMTtask and MeTaCo-XMTsem

respectively represent the framework of meta-tasks
constructed by syntactic similarity sampling, task-
similarity sampling, and semantic similarity sam-
pling. For each model (except that PRE uses a fixed
seed 42), we run 3 random initialization and report
the average and standard deviation.

For SDMM, we collected a syntax-labeled cor-
pus of 7k instances from the UD 2.7 Treebank (Ze-
man et al., 2020), covering 7 distant languages and
7 languages close to English (detailed information
can be found in Appendix B.2). We utilize Uni-
versal HEAD tags in UD 2.7 for optimizing the
syntactic tree loss. Further hyper-parameter details
can be found in Appendix D.

5https://www.cnpython.com/pypi/learn2learn
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Model WikiAnn (F1)
ru zh ar fi id ko bn te af jv sw tl yo avg

m
B

E
R

T

PRE†(Hu et al., 2020) 64.0 42.7 41.1 77.2 53.5 59.6 70.0 48.5 78.9 62.5 67.5 73.2 33.6 59.4
PRE 61.9 43.3 46.2 76.8 58.5 59.9 67.6 49.2 75.5 56.8 68.6 68.4 51.1 60.3
CROP (Yang et al., 2022) 69.7 54.4 48.0 79.1 46.4 62.6 74.9 61.6 81.0 57.7 68.3 75.5 52.6 64.0
SL-LEU (Xu et al., 2021) 79.9 54.8 70.0 86.2 53.4 71.8 83.6 69.9 81.5 65.3 70.4 81.3 43.5 70.1
FT 75.8±0.6 56.6±0.8 72.4±0.3 81.0±0.1 83.4±3.2 66.7±0.6 70.9±1.2 67.9±0.4 80.9±0.4 83.8±0.3 83.1±1.6 78.3±0.7 81.8±1.0 75.6
FT w/syn_sample 75.7±1.0 59.7±0.4 73.5±0.3 79.8±1.0 81.9±0.9 70.5±0.3 72.0±1.9 65.7±0.1 82.4±0.5 76.7±1.1 85.5±0.4 81.3±0.7 90.7±1.3 76.6
XMTrandom 75.3±0.5 59.4±0.7 74.3±0.8 82.0±0.3 83.8±0.4 70.0±0.6 74.2±1.1 73.8±0.7 81.4±0.3 80.4±0.9 85.7±0.1 76.3±1.7 91.9±1.1 77.6
Ours
MeTaCo-XMTsem 75.2±0.5 60.0±0.6 75.1±0.4 82.0±0.2 84.2±0.1 69.8±0.1 74.2±2.2 73.1±0.6 82.0±0.1 81.4±1.1 86.3±0.8 78.2±0.4 92.3±0.5 78.0
MeTaCo-XMTtask 75.6±0.3 59.8±0.2 74.8±0.6 82.2±0.3 84.1±0.1 70.1±0.1 73.2±1.0 73.1±0.6 81.8±0.2 91.8±0.2 85.9±1.1 77.1±1.0 91.8±0.2 78.6
MeTaCo-XMTsyn 77.6±0.2 61.9±0.4 74.7±0.1 82.2±0.1 84.6±0.3 71.7±0.0 76.2±0.4 74.6±0.8 84.5±0.4 93.7±0.2 88.0±0.3 81.8±0.6 93.8±0.4 80.4

X
L

M
-R

la
r
g
e

PRE†(Hu et al., 2020) 69.1 33.1 53.0 79.2 53.0 60.0 78.8 55.8 78.9 62.5 70.5 73.2 33.6 61.6
PRE 71.6 26.5 57.6 81.5 55.2 63.2 78.0 59.6 77.3 63.0 68.4 74.1 40.2 62.8
FT 80.2±1.9 48.3±7.5 77.0±2.4 85.2±1.1 78.0±5.6 72.2±3.2 77.3±4.9 70.1±6.2 83.0±0.4 85.4±1.1 86.7±2.4 78.6±1.3 84.2±2.4 77.4
FT w/syn_sample 79.8±0.3 49.9±5.0 76.1±2.4 82.7±0.2 86.2±0.5 70.6±2.4 77.2±2.0 71.4±2.2 82.4±0.5 84.9±1.2 86.7±0.6 76.9±0.9 89.0±2.2 77.9
XMTrandom 80.7±0.5 53.9±1.6 77.7±0.7 83.8±0.5 82.9±4.6 72.4±0.6 79.8±0.9 77.5±0.6 84.0±0.1 80.2±5.3 86.8±0.8 80.5±0.7 86.9±4.4 79.0
Ours
MeTaCo-XMTsem 80.7±0.6 51.4±4.6 76.0±0.6 83.2±0.1 85.4±0.0 74.8±1.3 80.1±1.4 74.1±0.9 83.1±0.4 79.2±0.3 87.8±0.3 77.1±1.1 91.8±1.3 78.8
MeTaCo-XMTtask 79.7±1.6 53.3±0.3 77.1±0.1 82.9±0.1 85.6±0.1 73.7±1.3 80.7±0.2 75.2±0.5 82.9±0.8 81.2±0.9 87.1±0.1 78.0±0.4 89.1±0.8 79.0
MeTaCo-XMTsyn 80.9±0.3 54.3±0.2 78.1±0.1 83.5±0.2 87.8±0.2 74.9±0.1 82.1±0.6 75.7±0.2 83.8±0.1 85.8±0.3 87.2±0.5 77.9±0.3 92.1±0.2 80.3

Table 2: F1 score and standard deviation of 13 languages and average on the WikiAnn dataset.

Model Languages
ru zh ar fi id ko bn te af jv sw tl yo avg

TydiQA-GoldP (EM)

m
B

E
R

T MeTaCo-XMTsyn 53.0±0.5 – 63.4±0.3 61.6±0.7 66.8±0.4 51.9±0.4 54.3±0.9 64.5±0.2 – – 64.3±0.5 – – 60.0
wo STL 53.0±0.6 – 63.3±1.3 61.0±1.5 65.4±0.4 51.2±1.2 53.7±3.2 64.1±0.8 – – 62.9±0.8 – – 59.4

WMD→cos. 53.3±1.3 – 63.0±0.3 60.8±0.3 65.8±0.9 51.8±0.5 51.6±2.9 64.2±0.5 – – 62.1±0.6 – – 59.1

WikiAnn (F1)

m
B

E
R

T MeTaCo-XMTsyn 77.6±0.2 61.9±0.4 74.7±0.1 82.2±0.1 84.6±0.3 71.7±0.0 76.2±0.4 74.6±0.8 84.5±0.4 93.7±0.2 88.0±0.3 81.8±0.6 93.8±0.4 80.4
wo STL 75.1±1.1 59.9±0.4 73.9±0.4 82.4±0.4 83.9±0.3 69.5±0.6 74.1±0.6 74.0±0.5 84.1±0.6 92.1±0.4 85.4±1.1 82.3±1.3 88.6±1.1 78.9

WMD→cos. 75.0±1.2 60.0±0.4 73.8±0.2 82.4±0.4 83.8±0.2 69.8±0.6 73.6±0.8 73.9±0.5 84.0±0.5 91.7±0.4 85.5±1.0 82.1±1.4 88.6±1.1 78.8

Table 3: Ablation results for MRC and NER task based on mBERT.

5.4 Results

Table 1 shows the results of the Exact Match (EM)
score on TydiQA-GoldP, while F1 scores are re-
ported in Table 9 of Appendix E.1. Our method
based on SDMM (i.e. MeTaCo-XMTsyn) is supe-
rior to the baselines in terms of EM for all 8 target
languages. Notably, MeTaCo-XMTsyn achieves
a significant EM improvement of 4.4%, 1.6%,
and 2.2% over the mBERT baseline for the low-
resource languages Bengali (bn), Telugu (te), and
the extremely-low resource language Swahili (sw),
respectively. MeTaCo-XMTsyn based on mBERT
and XLM-Rlarge demonstrates average EM im-
provements of 1.4% and 0.9% compared to the
strong baseline XMTrandom. Moreover, among the
models with reported standard deviations, MeTaCo-
XMTsyn exhibits the highest stability, indicated by
a lower average standard deviation.

The results of WikiAnn in 13 languages are
shown in Table 2. The MeTaCo-XMTsyn model
achieves an average improvement of 2.8% and
1.3% over the strong baseline XMTrandom on
mBERT and XLM-Rlarge, respectively. Our
mBERT-based MeTaCo-XMT outperforms other
models on all 5 extremely-low resource languages
and exhibits the lowest average standard deviation.
These findings validate the effectiveness of syntac-

tic similarity sampling for structural tasks like NER.
Overall, the results from both tasks demonstrate the
efficacy of our MeTaCo-XMT framework.

The results of three data selection strategies
and random sampling strategy show that MeTaCo-
XMTsyn obtains best performance and with lower
standard deviation. Semantic similarity sampling
is less effective than random sampling may due
to limited diversity in the support samples caused
by high semantic similarity among query samples.
The task-similarity sampling strategy is better than
the semantic similarity sampling, demonstrating
that task information is significant for meta-task
selection in MRC and NER.

Ablation study was conducted based on the
MeTaCo-XMTsyn model with different structures
of SDMM. We study the effectiveness of the syn-
tactic tree loss (STL) and WMD metric, as shown
in Table 3. The results show the importance of
all proposed components, as removing syntactic
tree loss (STL) or using cosine similarity instead of
Word Mover’s Distance (WMD) leads to a slight
decrease in average effectiveness across both tasks.

6 Analysis

Our analytical experiments consider the perfor-
mance of the four cross-lingual meta-transfer mod-
els with random, semantic-similar, task-similar,
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Figure 3: The effect gain δ relative to the FT model in
13 language of WikiAnn. The distances between the
language and English increase from left to right. Lan-
guages starting with Arabic (ar) are distant languages.

and syntactic-similar samples named ’random’,
’sem’, ’task’, and ’syn’ for short, respectively.

Syntactic Distance Analysis Our MeTaCo-XMT
framework significantly improved the average
performance on NER task, especially MeTaCo-
XMTsyn. Therefore, we explored the influence
of different sampling strategies on languages with
different syntactic distances from English (calcu-
lated by lang2vec (Littell et al., 2017)). As shown
in Figure 3, the y-axis is the effect gain percent δ
relative to FT model based on mBERT:

δ =
F1MeTaCo−XMT − F1FT

F1FT
(15)

The results show that MeTaCo-XMTsyn always
obtains the positive gain in 13 languages, and the
syntactic similarity sampling schema is more ad-
vantageous in distant languages from English than
other strategies.

Case Study for Meta-task In order to observe the
sampling effect of different data selection strate-
gies, an example of English (en)-Indonesian (id)
match pairs in WikiAnn are listed in Table 4 (more
cases shown in Appendix E.5). In example #1,
original Indonesian and syn English sentences have
similar syntax and even semantics, and the task sen-
tence has a similar syntax to the original sentence.
random and sem sentences are no obvious connec-
tion to the Indonesian query sentence. Combining
the results of four strategies on NER, the struc-
turally similar examples might benefit cross-lingual
meta-transfer learning. Furthermore, the struc-
turally similar examples can more effectively stim-
ulate the ability of meta-learning in cross-lingual

#1 id: Lagu ini ditulis oleh [Matthew Bellamy]PER .
en: This song was written by [Matthew Bellamy]PER .

random [The History of England from the Accession of James II]ORG ”

sem [Thom Bell]PER – composer

task The artwork was credited to [Arnold Roth]PER .

syn All tracks are written by [Jason Lytle]PER .

Table 4: A example of different data select strategies in
WikiAnn.

Figure 4: Avarage F1 in five extremely-low resource
languages of NER task with different num.

transfer, as analyzed in Appendix E.2.

Query Data Size Analysis In the few-shot cross-
lingual transfer scenario, the target language has
a certain number of annotated data. Low resource
languages are challenging to collect annotation
data, so we explore (i) whether a small amount of
data can achieve an improvement and (ii) the robust
performance of different data selection strategies
with different sizes num of query instances.

With different num settings, we reported the av-
erage F1 in five extremely-low resource languages
of the NER task (the entire results can be found
in Appendix E.4). As shown in Figure 4, even
with only 5 query samples, the method MeTaCo-
XMTsyn based on syntactic similarity sampling
can achieve the best results with great improve-
ment than strong baseline FT and XMTrandom. For
MeTaCo-XMTtask and MeTaCo-XMTsem, they
are not suitable for only 5 query instances; and
when the query examples are less than 30, the ef-
fect is lower than XMTrandom. So task and sem
strategies are suitable for scenarios with a certain
amount of target language data. However, even
when query data is scarce, XMTrandom always has
an advantage. This may be because randomly sam-
pled instances preserve the diversity of the samples.
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According to the better performance of MeTaCo-
XMTsyn and the cases study, the sample selection
with syntactic similar conforms to the syntactic
distribution of the target language and ensures the
diversity of samples.

7 Conclusion

In this paper, we have presented a novel meta-task
collector-based cross-lingual meta-transfer frame-
work, which can adapt different meta-task selec-
tion strategies to construct meta-transfer training
data, reducing the cross-lingual performance gap
between languages due to language differences.
To close the syntactic distance between languages,
we propose the syntactic distance metric model
that encodes text pairs to syntactic space and se-
lects meta-task by WMD for meta-transfer learn-
ing. Two other data selection strategies are ex-
plored: semantic similarity sampling and task-
similarity sampling. We demonstrate the valid-
ity of our framework on both the NER and MRC
tasks, especially the syntactic similar sampling-
based method reaches a new state-of-the-art for
most languages. Further analyses suggest that
the proposed MeTaCo-XMT with syntactic similar
sampling can effectively improve the cross-lingual
transfer performance with only a small amount of
data, especially for low-resource languages.
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8 Limitations

Due to the computation constraints, we were not
able to experiment with our framework on more
NLP tasks with more languages, which will be sup-
plemented in the future. The syntactic difference
is a key factor affecting cross-lingual, and syntac-
tic distance can help to understand or quantify the
transfer differences. Our framework with SDMM
is a simple attempt to use syntactic distance metrics
to construct meta-task and reduce the language gap
in cross-lingual transfer learning.More work needs

to be done on syntactic differences and syntactic
distance metrics.
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Appendices

A Classify the resource levels for
Languages

Following Bang et al. (2023) and Lai et al. (2023),
the 13 languages in our study are grouped into
categories based on their data ratios in the Com-
momCrawl corpus6(i.e., the main data to pre-train
multilingual language models). In particular, a lan-
guage will be considered as High Resource (H),
Medium Resource (M), Low Resource (L), and
Extremely-Low Resource (X), if its data ratio is
greater than 1% (> 1%), between 0.1% and 1% (>
0.1%), between 0.01% and 0.1% (> 0.01%), and
smaller than 0.01% (< 0.01%) respectively. Ta-
ble 5 presents information and categories for the
languages considered in our work.

B Dataset Statistics

B.1 Benchmark Dataset

Tables 6 and 7 show the statistics of WikiAnn and
TydiQA-GoldP respectively per language and split
in our study.

6https://commoncrawl.github.io/cc-crawl-
statistics/plots/languages.html
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Language Code Pop. CC size
(M) (%) Cat.

English en 1,452 43.8846 H
Russian ru 258 9.2012 H
Chinese zh 1.118 5.1984 H

Indonesian id 199 0.7399 M
Arabic ar 274 0.6688 M
Korean ko 81 0.5944 M
Finnish fi 4.9 0.3535 M
Bengali bn 272.7 0.0454 L
Telugu te 95.7 0.017 L
Swahili sw 71 0.0074 X

Afrikaans af 6.2 0.0072 X
Tagalog tl 72 0.0068 X
Javanese jv 60 0.0012 X
Yoruba yo 42 0.0004 X

Table 5: List of languages, language codes, numbers of
first and second speakers, data ratios in the Common-
Crawl corpus, and language categories.

Lang ISO Train Dev Test

English en 20,000 – –
Afrikaans af 5,000 100 1,000

Arabic ar 20,000 100 10,000
Bengali bn 10,000 100 1,000
Finnish fi 20,000 100 10,000

Javanese jv 100 100 100
Indonesian id 20,000 100 10,000

Korean ko 20,000 100 10,000
Russian ru 20,000 100 10,000
Swahili sw 1,000 100 1,000
Telugu te 1,000 100 1,000
Tagalog tl 10,000 100 1,000
Yoruba yo 100 100 100
Chinese zh 20,000 100 10,000

Table 6: 13 languages statistics of WikiAnn dataset in
our study.

Lang ISO Train Dev Test

English en 3,326 – –
Arabic ar 13,324 1,481 921
Bengali bn 2,151 239 113
Finnish fi 6,169 686 782

Indonesian id 5,131 571 565
Korean ko 1462 163 276
Russian ru 5,841 649 812
Swahili sw 2,479 276 499
Telugu te 5,006 557 669

Table 7: Statistics of TydiQA-GoldP dataset per lan-
guage and split.

Lang Script Family Dist. to English Cat.

English Latin Indo-European – –

Spanish Latin Indo-European 0.4 Clos.
German Latin Indo-European 0.42 Clos.
French Latin Indo-European 0.46 Clos.

Icelandic Latin Indo-European 0.47 Clos.
Portuguese Latin Indo-European 0.47 Clos.

Russian Cyrillic Indo-European 0.49 Clos.
Italian Latin Indo-European 0.51 Clos.

Thai Thai Tai-Kadai 0.56 Dist.
Chinese Han (Traditional) Sino-Tibetan 0.57 Dist.
Arabic Arabic Afro-Asiatic 0.57 Dist.
Hindi Devanagari Indo-European 0.59 Dist.

Korean Hangul Koreanic 0.62 Dist.
Japanese Japanese Japonic 0.66 Dist.
Turkish Latin Turkic 0.7 Dist.

Table 8: List of Languages, languages script, language
family, and the distance to English. A distance larger
than 0.53 is the distant language (Dist.) to English, and
conversely is the close language (Clos.) to English.

B.2 Dataset for SDMM

The training data of SDMM is from UD 2.7 Tree-
bank. In particular, we select 15 languages (includ-
ing English) from Parallel Universal Dependen-
cies (PUD) treebanks7, each language containing
1000 sentences. According to the distance between
each language and English, we construct a three-
way parallel corpus with 7 distant languages and 7
close languages for SDMM, including 6500 data
for training and 500 data for development. The
distance information between each language and
English is shown in Table 8.

C Baselines for NER

For WikiAnn, we compared our method with two
high-performance zero-shot baselines:

• CROP (Yang et al., 2022): A Cross-lingual
Entity Projection framework (CROP) with
a multilingual labeled sequence translation
model. It obtains the labels on the English
NER model by translating the target language
raw corpus (more than 100k instances) into
English and then utilizes the multilingual la-
beled sequence translation model to obtain
the labels of the target language corpus. The
whole pipeline is integrated into an end-to-end
NER model by way of self-training.

• SL-LEU (Xu et al., 2021): A self-learning
framework (SL) that further utilizes unlabeled
data of target languages based on a model
fine-tuned on English training data, combined
with uncertainty estimation in the process to

7http://universaldependencies.org/conll17/

7442



select high-quality silver labels. The best per-
formance of SL for the NER task is achieved
by adopting Language Heteroscedastic Uncer-
tainty (LEU) as the uncertainty estimation. It
uses all of the dev set of target languages on
task data as the source of unlabeled data.

They leverage translation or self-training methods
to obtain pseudo-labeled data for target languages.

D Hyperparameters

For the meta-task collector, we set q = k = 6 or
q = k = 8 to construct a meta-task. The number
of meta-tasks is [300, 400, 500, 600]. The learning
rate (lr) α and β are 3e-5 on the NER task. For Ty-
diQA, α is 3e-5 and β is 1e-5. The step size r for
the inner loop is 4 or 3. The batch size of the outer
loop is 4 or 5. The three seeds for NER and MRC
tasks are [111, 222, 3333]. We experimented us-
ing [3, 4, 5, 6, 7, 8] epoch number for meta-transfer
training, referring the setting in M’hamdi et al.
(2021); Liu et al. (2021); Nooralahzadeh et al.
(2020). However, the 5 or 8-epoch setting led to
the best results in our experiments.

For hyper-parameters in SDMM, we use a batch
size of 16 and 20 for the model based on mBERT
and XLM-R large baselines respectively, Adam
with the lr of 1e-3, and the epoch is 20. The mar-
gins m were 0.6 or 0.5, and the syntactic vector
dimensions were 32 and 64 for SDMM based on
mBERT and XLM-R large baselines respectively.

E More Result

E.1 F1 Score of TydiQA-GoldP

Tables 9 show the F1 score of TydiQA-GoldP
in 8 target languages. MeTaCo-XMTsyn outper-
forms the strong baselines based on mBERT and
XLM-R by 1.4% and 0.6% on average, respec-
tively. And its standard deviation is also sig-
nificantly lower than the random sampling-based
method XMTrandom. For extremely-low resource
language, our MeTaCo-XMT framework can al-
ways outperform XMTrandom with a lower stan-
dard deviation.

E.2 Data Selection in Meta-learning and
Fine-tuning

We extended the baseline FT w/syn_sample to ex-
periment on four data selection methods (called FT
w/sample), and the results of the NER task (except
rich-resource languages) are shown in Figure 5.

Figure 5: The results of MeTaCo-XMT and FT
w/sample in NER task (except rich-resource languages)
with four data selection methods.

The results of our MeTaCo-XMT framework are
also shown in Figure 5 to compare the performance
of different learning methods (meta-learning and
fine-tuning) using these selected data.

Overall, meta-learning methods outperform fine-
tuning methods in most languages, especially in
medium-resource languages. From the compari-
son of different data selection strategies, MeTaCo-
XMTsyn always outperforms FT w/syn_sample.
MeTaCo-XMTtask can also surpass the fine-tuning
method in most languages. However, MeTaCo-
XMTsem and XMTrandom are difficult to outper-
form the FT w/sample in extremely-low resource
languages. The examples based on syntactically
similar selection can more effectively stimulate the
ability of meta-learning in cross-lingual transfer
learning.

E.3 Comparison with Translation-train
Baselines

The method fine-tuned on translation-train data is
a strong baseline, such as translate-train baseline
in XTREME (Hu et al., 2020) and translate-train
setting in ByT5 (Xue et al., 2022). They fine-tuned
on one or all target languages data translated from
English data, which is significantly more than the
DEV data (10% of training data in one target lan-
guage) we used. Compared with ByT5 based on the
mT5base model (580M parameter) in the translate-
train setting, we can have improvement by 2.7 and
3.9 on the avarage of F1 and EM metric in TydiQA-
GoldP. Furthermore, the results reported in the
XTREME benchmark for the Translate-train base-
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Model TydiQA-GoldP (F1)
ru ar fi id ko bn te sw avg

m
B

E
R

T

PRE†(Hu et al., 2020) 60.0 62.2 59.7 64.8 58.8 49.3 49.6 57.5 57.7
PRE 59.4 64.3 59.0 64.8 57.1 51.8 47.8 59.8 58.0
X-METRA (M’hamdi et al., 2021) 66.1±0.1 78.4±0.6 72.7±0.4 77.7±0.2 – 53.2±0.5 66.6±0.4 71.7±0.2 69.5
FT 68.3±0.7 77.5±0.4 72.0±1.0 77.9±1.0 59.0±0.7 63.4±1.0 76.5±2.6 69.2±0.5 70.5
FT w/syn_sample 68.6±0.6 78.2±0.5 72.2±0.6 77.2±0.4 58.6±1.3 63.9±1.9 77.3±0.3 71.0±1.7 70.9
XMTrandom 68.7±0.7 77.5±0.4 73.3±0.9 77.8±1.1 60.4±3.2 62.1±2.2 76.6±0.9 71.6±1.1 71.0
Ours
MeTaCo-XMTsem 67.4±0.2 77.8±1.3 72.7±0.7 78.2±0.8 59.6±2.4 60.5±1.5 76.4±0.6 73.5±0.7 70.8
MeTaCo-XMTtask 68.3±0.4 78.9±0.5 73.3±0.7 77.0±0.9 60.3±2.3 65.6±2.3 78.2±0.5 73.2±0.1 71.8
MeTaCo-XMTsyn 69.1±0.7 79.0±0.2 72.9±0.6 78.0±0.4 61.2±0.7 67.0±0.8 78.7±0.3 73.9±0.7 72.4

X
L

M
-R

la
r
g
e

PRE†(Hu et al., 2020) 67.0 67.6 70.5 77.4 31.9 64.0 70.1 66.1 64.3
PRE 67.6 75.6 73.3 79.6 59.8 66.5 74.2 71.4 71.0
FT 72.8 80.2 78.5 83.3 62.9 75.5 65.3 78.0 74.6
FT w/syn_sample 75.0±0.8 79.9±0.7 80.4±0.9 83.6±0.8 64.1±1.6 76.2±1.0 80.8±0.6 77.0±0.7 77.1
XMTrandom 73.5±0.9 80.5±0.9 78.4±1.2 83.7±0.4 66.2±1.4 79.2±2.4 82.1±0.7 78.4±0.3 77.7
Ours
MeTaCo-XMTsem 73.4±0.1 80.7±1.0 78.6±0.3 83.4±0.7 64.6±0.8 76.8±1.4 81.5±0.2 79.7±0.3 77.3
MeTaCo-XMTtask 74.1±0.8 81.1±0.6 78.8±1.2 83.3±0.2 64.9±0.7 79.9±2.8 82.5±0.3 79.8±0.2 78.1
MeTaCo-XMTsyn 73.8±1.0 81.1±0.5 79.2±0.9 83.7±0.1 66.0±0.8 80.4±2.1 82.4±0.5 80.2±0.3 78.3

Table 9: F1 score and standard deviation of 8 target languages and average on the TydiQA-GoldP dataset.

Model WikiAnn (F1)
af jv sw tl yo avg

mBert baseline 75.5 56.8 68.6 68.4 51.1 64.1

num = 30

FT 72.4±1.1 68.0±0.6 71.5±0.1 73.4±2.2 74.4±5.0 71.9
random 80.0±0.4 76.1±0.2 83.2±0.4 75.8±0.4 73.2±1.2 77.7
sem 78.5±0.2 75.4±1.1 83.1±0.5 74.7±1.1 75.3±1.4 77.4
task 78.8±0.5 76.2±0.1 83.0±0.4 74.7±1.1 75.3±1.4 77.6
syn 82.0±0.1 75.7±0.4 83.6±0.1 77.0±0.3 75.8±0.5 78.8

num = 20

FT 77.5±0.2 62.5±2.2 71.8±0.5 74.1±3.0 75.4±0.6 72.3
random 79.5±0.3 72.3±0.7 82.3±0.5 76.5±0.4 61.3±2.1 74.4
sem 77.1±0.2 72.8±1.9 82.0±0.1 74.6±0.9 64.0±0.5 74.1
task 77.1±0.2 72.7±1.8 82.0±0.1 74.7±1.0 61.9±2.1 73.7
syn 81.2±0.3 74.0±0.4 83.6±0.3 76.4±0.1 71.8±0.9 77.4

num = 10

FT 78.9±0.7 63.4±2.8 69.2±0.4 63.0±0.2 57.1±5.5 66.3
random 77.2±0.2 61.9±0.3 79.4±0.4 64.7±1.2 60.6±0.9 68.7
sem 73.8±0.4 61.9±0.3 79.5±0.0 61.5±0.5 59.6±1.9 67.2
task 73.8±0.4 62.1±0.5 79.5±0.1 61.5±0.5 59.9±1.6 67.4
syn 80.3±0.2 74.0±0.4 83.6±0.4 74.0±0.2 60.2±0.6 74.4

num = 5

FT 75.9±1.2 62.8±0.5 68.1±0.8 58.4±0.3 49.8±5.5 63.0
random 74.7±0.3 57.0±0.6 67.2±0.4 61.4±0.6 59.7±1.2 64.0
sem 68.2±0.3 57.1±0.9 62.5±1.2 54.5±0.3 59.1±0.4 60.3
task 68.5±0.2 56.9±0.4 62.5±1.2 54.3±0.7 59.0±0.8 60.2
syn 79.3±0.2 65.9±0.4 66.0±0.0 75.0±0.3 63.9±0.4 70.0

Table 10: F1 score and standard deviation of 5 extremely-low resource languages on the NER task with different
num setting.
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line are also lower than our model in the TydiQA-
GoldP task. Performance increasement demon-
strates the advantages of our model in the few-shot
scenario.

E.4 The Results with Different Query Data
Size

Table 10 shows the F1 score and standard deviation
of 5 extremely-low resource languages on the NER
task with different num settings.

E.5 Case Study
We report more data select cases in Table 11.
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#2 fi: Hän syntyi [Stralsundissa]LOC ja opiskeli [Leipzigin konservatoriossa]ORG.
en: He was born in [Stralsund]LOC and studied at the [Leipzig Conservatory]ORG.

random 1997 : [Pust Mirom Pravit Lyubov]ORG ”

sem The project went from [New Haven, Indiana to Toledo, Ohio]LOC .

task He moved to [Memphis , Tennessee]LOC with his family at the age of twelve.

syn He was born in [Telečka]LOC , [Zapadna Bačka]ORG, [Serbia]LOC .

#3 id: Saat ini ia bermain untuk [PSIS Semarang]ORG.
en: He currently plays for [PSIS Semarang]ORG.

random [Crystal Tovar Aragón]PER

sem He plays for [Thailand Premier League]ORG clubside [Samut Songkhram FC]ORG.

task [Regional District of Fraser-Cheam]LOC

syn He currently plays for [Sivasspor]ORG in the [Super Lig]ORG.

#4 zh: [蒋中正]PER(中华民国总统、中国国民党总裁)
en: [Jiang Zhongzheng]PER(President of the Republic of China, President of the Chinese Kuomintang)

random His reign was also marked by the highly controversial execution of his son, [Prince Sado]PER, in 1762 .

sem ’ ” [Terengganu]LOC ” ’

task [Governor of Kentucky]PER : [William Owsley]PER ( [Whig ]ORG) ( until September 6 ), [John J.
Crittenden]PER ( [Whig]ORG ) ( starting September 6 )

syn [Bao Zheng]PER (包拯)

Table 11: The examples of different data select strategies in the WikiAnn dataset of three target languages (Finnish(fi),
Indonesian(id), and Chinese (zh)).
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