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Abstract

Transformers have been essential to pretrain-
ing success in NLP. While other architectures
have been used, downstream accuracy is ei-
ther significantly worse, or requires attention
layers to match standard benchmarks such as
GLUE. This work explores pretraining without
attention by using recent advances in sequence
routing based on state-space models (SSMs).
Our proposed model, Bidirectional Gated SSM
(BiGS), combines SSM layers with a multi-
plicative gating architecture that has been effec-
tive in simplified sequence modeling architec-
tures. The model learns static layers that do not
consider pair-wise interactions. Even so, BiGS
is able to match BERT pretraining accuracy
on GLUE and can be extended to long-form
pretraining of 4096 tokens without approxima-
tion. Analysis shows that while the models
have similar average accuracy, the approach
has different inductive biases than BERT and
scales more efficiently to longer sequences.

1 Introduction

Transformers are the de facto model architecture
for NLP pretraining (Vaswani et al., 2017). Since
BERT (Devlin et al., 2018), they have proven
central to NLP tasks with their ability to learn
effectively on large unlabeled datasets. Specif-
ically, the use of attention as a central routing
component seems to be critical to empirical suc-
cess on downstream tasks. Other architectures
have been proposed but require attention layers
for high-accuracy (Tay et al., 2020b; Lee-Thorp
et al., 2021).

Is the centrality of attention in pretraining due
to inductive bias or computational convenience?
This question is complicated by the properties of
common sequence routing layers: recurrent neu-
ral network (RNN) models do not scale as well as
attention, whereas convolutional neural networks
(CNNs) can not easily model long-distance depen-
dencies.

State-space models (SSMs) for deep learning
provide a promising alternative. Recent works
show that SSMs are a competitive architecture
for long-range sequence modeling (Gu et al.,
2021). SSMs achieve strong results on speech
generation (Goel et al., 2022) and on the Long
Range Arena benchmark (Tay et al., 2020a) outper-
form standard and long-range transformer architec-
tures (Gu et al., 2021; Gupta, 2022; Gu et al., 2022;
Smith et al., 2022). In addition to improving accu-
racy, SSM-based routing does not have quadratic
complexity as the length of the sequence grows.
Concretely, the model provides a way to achieve
RNN-like long-range dependencies with CNN-like
training speed.

This work proposes an architecture for apply-
ing SSMs using a Bidirectional Gated SSM (BiGS)
model for BERT-style pretraining. BiGS uses SSM-
routing at its core as a replacement for attention.
However, this change alone significantly degrades
the representational capacity of the model. To tar-
get this issue, we develop a multiplicative gating
architecture (Dauphin et al., 2017; Hua et al., 2022;
Mehta et al., 2022). In combination, this leads to a
simpler routing approach that remains surprisingly
effective at modeling necessary interactions.

Experiments compare SSMs to standard NLP
pretraining. While we find that SSMs by them-
selves underperform on NLP pretraining tasks,
BiGS is able to match the performance of a BERT
model when trained on the same data in a controlled
setting. By additionally pretraining on longer-
length instances, the model is able to grow with-
out approximation to extend to input sequences
of length 4,096. Analysis shows the importance
of multiplicative gating in fixing specific issues of
variable-length textual input. All models from this
work will be available open-source (Apache 2.0
license) upon release.
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2 Related Work

Prior to BERT, promising pretraining approaches
for learning contextual representations were
learned using RNN-based models (McCann et al.,
2017; Peters et al., 2018). While important pre-
cursors, their accuracy did not scale with data or
compute as well as Transformers. This gap re-
mains even when back-porting best-practices from
Transformer pretraining (Peters et al., 2019). Re-
cently Tay et al. (2021) explored pretraining with
several convolutional (CNN) variants. Results
show that CNN without attention does not perform
well, although they note benefits in routing speed.
Lee-Thorp et al. (2021) propose FNet which re-
places the attention layer with a Fourier transform.
Without attention, this achieves 92-97% results on
GLUE (Wang et al., 2018). Other works have used
CNN-based models with multiplicative gating for
NLP tasks such as machine translation (Dauphin
et al., 2017). We believe BiGS is the first model to
achieve BERT-level transfer learning on the GLUE
benchmark without attention.

Researchers have begun to use state-space mod-
els for NLP tasks, and have primarily focused on
auto-regressive language modeling. In S4 (Gu
et al., 2021) and its variants (Gupta, 2022; Gu et al.,
2022), researchers experimented with language
modeling, achieving promising results, though
slightly worse than transformers. Gated State
Space adapts a SSM plus gating approach to lan-
guage modeling (Mehta et al., 2022). Concurrent
to this work, Dao et al. (2022b) propose H3 which
closes the gap in auto-regressive language mod-
eling, and with two attention layers outperforms
transformers on OpenWebText. Finally, a related
method, MEGA (Ma et al., 2022) combines expo-
nential moving average routing with a simple atten-
tion unit to outperform transformer baselines. Our
approach instead focuses on bidirectional masked
language modeling and questions of downstream
generalization.

3 Background

3.1 State Space Models

A state space model (SSM) is a general-purpose
tool for describing the relationship between a
continuous-time scalar input u(t) to scalar output
y(t) by the following differential equations:

x′(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t).

Figure 1: A SSM learns a one-dimensional kernel K,
which is convolved with the input sequence u to produce
output y. Unlike attention, routing is static and does not
depend on the input. In BiGS, we use only two kernels
per layer (forward and backward). Figure 3 shows all
the kernels used in the fully trained model.

Where x(t) ∈ RN is a continuous-time state vec-
tor, x′(t) is its derivative, and the equation is pa-
rameterized by A ∈ RN×N ,B ∈ RN×1,C ∈
R1×N ,D ∈ R1×1.

When applied to a discrete-time scalar input se-
quence u1, . . . uL, the SSM equations and param-
eters can be discretized, leading to the following
recursion,

xk = Axk−1 +Buk, yk = Cxk +Duk.

Where A,B,C,D are functions of the original
parameters and a discretization rate.

This equation can be computed like an RNN
where xk ∈ RN is a hidden state at time k. Un-
like an RNN though, the linearity of the recursion
allows y1 . . . yL to be computed directly using a
convolution with precomputed kernel K ∈ RL ,

K = (CB,CAB, . . . ,CA
L−1

B)

y = K ∗ u

The process is illustrated in Figure 1. In a practical
sense, after training, this kernel K fully character-
izes the SSM, i.e. the model is a 1D convolution
with a very long kernel.

3.2 Learning SSMs
Gu et al. (2020, 2021) demonstrate an effective
approach for using SSMs in neural networks. The
core insight is to propose an initialization of the
transition matrix A, known as HiPPO,

Ank = −





(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

59



+

Forward
SSM

Backward
SSM

Layer 
Norm

Layer 
Norm

+

Stacked

Forward
SSM

Backward
SSM

Gated

(d, 3d)
Dense

(d, d)
Dense

(3d, d)
Dense

(d, d)
Dense

(d, d)
Dense

(d, d)
Dense

Flip

(d, 3d)
Dense

Flip

Layer 
Norm

Flip

×
×

Routing

(d, 4d)
Dense

Flip

(4d, d)
Dense

Routing

+

(2d, d)
Dense

Figure 2: Model Variants. (STACK) is the standard transformer architecture, (GATED) is based on the gated unit
(Mehta et al., 2022; Hua et al., 2022). Different from (Mehta et al., 2022), we avoid reducing model dimension of
the SSM. For the Routing component (dashed lines), we consider both a bidirectional SSM (shown) and standard
self-attention. The gate (⊗) represents element-wise multiplication. The BiGS model uses GATED with SSM.

This matrix yields a stable training regime that
can also be efficiently trained. The full model,
S4, retains the SSM ability to model long-term
sequences while being more efficient than RNNs
to train.

Recently, researchers (Gu et al., 2022; Gupta,
2022) have proposed simplified diagonalized ver-
sions of S4, which achieve comparable results with
a simpler approximation of the original parameteri-
zation. In preliminary experiments, we used several
different S4 parameterizations but did not find a
significant difference in accuracy. Throughout the
work, we use S4D as the parameterization.

While the specifics of SSM discretization, pa-
rameterizations, and training are beyond the scope
of this work, at a high-level, we note that each vari-
ant of SSMs leads to a similar convolution form.
The model can therefore be trained by backpropaga-
tion through the convolution without the serial bot-
tleneck of RNNs, and applied without the quadratic
cost of attention.

3.3 Multiplicative Gating

Gating units have been widely used to improve the
performance of various architectures such as MLP,
CNN, and Transformers (Dauphin et al., 2017;
Shazeer, 2020; Narang et al., 2021). One exam-

ple of such a gating unit is the Gated Linear Unit
(GLU) which has been used effectively for CNN-
based NLP systems (Dauphin et al., 2017). Let u
represent an input activation. GLU first computes
both a gating vector and a linear transform, σ(Wu)
and Vu respectively. The output of the layer is
then the element-wise product σ(Wu)⊗ (Vu).

Recent work has shown that gating can increase
the performance of models using simplified rout-
ing. Hua et al. (2022) show that linear time at-
tention models can benefit from improved gating.
Mehta et al. (2022) propose a Gated State Space
architecture using gating for unidirectional SSM
models. Multiplicative gating may restore some of
the interaction capacity from full attention-based
interactions.

4 BiGS Model

We consider two different architectures for SSM
pretraining: a stacked architecture (STACK) and a
multiplicative gated architecture (GATED) shown
in Figure 2.

Transformer Architecture The STACK architec-
ture with self-attention is equivalent to the BERT /
transformer model. We replace the attention block
with two sequential SSM blocks to mimic the na-
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ture of bi-directional self-attention.

Gated Architecture The GATED architecture is
a bidirectional adaptation of the gated unit of Hua
et al. (2022). Specifically, let Xi ∈ RL×d be ac-
tivations at the i-th layer where the length is L,
and the model size is d. We use the activation
GELU (Hendrycks and Gimpel, 2016) for σ. The
first stage computes,

X = LayerNorm(Xi) ∈ RL×d

V = σ(WvX) ∈ RL×3d

F = σ(WfX) ∈ RL×d

B = σ(WbFlip(X)) ∈ RL×d

The second stage uses 2 sequential blocks (i.e., a
forward and backward SSM layer) with a multi-
plicative gate.

U1 = Wu1SSM(F) ∈ RL×d

U2 = Wu2SSM(B) ∈ RL×d

U = σ(Wu(U1 ⊗ Flip(U2))) ∈ RL×3d

The third stage uses a feed-forward layer again
with gating, to replace the two dense blocks in the
traditional transformer architecture. We sum this
output O with the original input Xi finally as the
input Xi+1 of the next layer i+ 1.

O = Wo(U⊗V) ∈ RL×d,

Xi+1 = O+Xi ∈ RL×d

The number of parameters per layer in gated
SSM is roughly 13d2 while the number of parame-
ters per layer in the stack is 12d2. We compensate
for this difference by using fewer gated layers.

Different from (Mehta et al., 2022), we find that
the hidden dimension size of SSM layers is critical.
Reducing that hidden dimension results in a notable
decrease of the perplexity(−0.67) in the MLM in
our 11B (short) training setting.

SSM Layer The SSM layer under both architec-
tures is a map over vector sequences, SSM(X) :
RL×d 7→ RL×d. However, we defined SSM over
scalar sequences. Past work, creates d differently
parameterized SSMs for each dimension (Gu et al.,
2021). Experimentally though, we found it just
as practical to use the same parameterization (and
therefore kernel K) for each hidden dimension.
This simplifies model analysis and makes the total
number of SSM parameters negligible.

5 Experimental Setup

Experiments compare the performance of SSM-
based models to attention-based models on several
standard fine-tuning benchmarks. Experiments con-
trol for total parameter-size and amount of pretrain-
ing in terms of the number of tokens. All models
are on the order of magnitude of BERT-Large at
around 350M parameters; all GATED SSM mod-
els use 23 layers and STACK models 24 to match
parameter count. In order to run ablation tests,
we consider three different pretraining scales: 11B
(short), 29B (medium), and 97B (full) tokens. Mod-
els and architectures are roughly similar in training
speed at this length. The 11B (short) training scale
is roughly equivalent to the "24h BERT" setting typ-
ically used in research studies (Izsak et al., 2021).
Full training is closer to the original BERT model
which was trained on 128B tokens.

For all pretraining, we follow the training data
and masking strategy of Izsak et al. (2021). Since
RoBERTa (Liu et al., 2019) shows it does not hurt
accuracy, we use only masked language modeling
and not next-sentence prediction. We preprocess
and mask tokens offline for all models for consis-
tency, with maximal sequence length to be 128. We
use a grid search on perplexity to select configu-
rations of weight decay and learning rate; other
hyperparameters follow Izsak et al. (2021). For
SSM, we use a cosine decay learning rate scheduler,
which starts at 0, warms up to the peak learning
rate, and then decays back (Gu et al., 2021).

Pretraining is done with length 128 token se-
quences. In order to adapt to longer sequences
we apply continued pretraining. To adapt to 512
tokens for the SQuAD dataset, we follow the pro-
tocol of Wettig et al. (2022) and train on longer
sequences of the same pretraining dataset. To adapt
to 4,096 tokens, we follow the Longformer (Belt-
agy et al., 2020) protocol and continue training the
BiGS model on the text of length up to 4,096 tokens
long, for 10k more steps using their proposed train-
ing corpus of longer documents. For 4,096 tokens,
we also use a smaller BiGS model (around 130M)
so that it is comparable in size Longformer-base
and BART-base models. We note that Longformer
(LED) and BART are based on superior underlying
models that are trained significantly longer.

For downstream task fine-tuning, we average
the embeddings of non-padding tokens to create
the sentence representation and add a classification
head. This approach yields superior performance
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Arch / Route MNLI QNLI QQP RTE SST2 MRPC COLA STSB AVG
393k 105k 364k 2.5k 67k 3.7k 8.5k 7k

Short Training / ∼ 11B Tokens

BERT STACK / ATT 82.7 90.1 87.7 76.8 91.5 90.8 58.6 88.6 83.3
STACK / SSM 78.4 83.5 85.6 60.5 91.6 83.9 53.1 81.3 77.2
GATED / ATT 82.2 88.3 87.4 71.7 91.3 88.5 58.8 86.5 81.8

BiGS GATED / SSM 82.6 89.2 87.6 73.8 92.8 88.9 63.2 88.4 83.3

Medium Training / ∼ 29B Tokens

BERT STACK / ATT 85.0 90.9 87.9 80.5 93.0 90.9 60.8 89.2 84.8
STACK / SSM 80.1 86.5 87.2 65.6 92.3 86.5 56.5 83.4 79.8
GATED / ATT 83.5 90.2 87.6 72.0 91.7 88.7 61.6 87.5 82.9

BiGS GATED / SSM 84.5 90.2 88.3 78.6 94.4 89.6 63.9 89.3 84.8

Full Training / ∼ 97B Tokens

BiGS GATED / SSM 86.2 90.9 88.3 79.4 94.6 89.5 67.3 90.1 85.8

Non-Attention Based Pretraining

CNN STACK / CNN ∼75 - - - 92.2 - - - -
ELMo STACK / RNN 68.6 71.2 84.3 53.4 91.5 70.5 44.1 82.3 68.7
FNetL STACK / FNT 78.0 85.0 85.0 69.0 94.0 88.0 - 84.0 -

GLUE Test Result

BERT1 STACK / SSM 86.7/85.9 92.7 72.1 70.1 94.9 88.9 60.5 86.5 79.6
BERT2 STACK / SSM 86.0/85.2 92.6 72.0 78.3 94.5 89.9 60.9 87.5 83.0
BiGS GATED / SSM 86.1/85.0 91.6 71.2 77.6 94.9 88.7 64.4 87.5 83.0

Table 1: GLUE Results. (Top) Comparison of different architectures and routing in a controlled setting (Izsak et al.,
2021). See Figure 2 for details. We fine-tune RTE, MRPC, and STS-B from a MNLI checkpoint following the
convention by (Izsak et al., 2021). We average results of six runs and report accuracy for MNLI, QNLI, RTE, SST-2
and F1 score for QQP, MRPC and Matthew’s correlation for CoLA and Spearman’s correlation for STS-B. All
models are comparable to BERT-Large in size. (Bottom) Reported comparable results for other non-attention-based
pretraining models based on CNNs, LSTMs and FNet (Peters et al., 2018; Tay et al., 2021; Lee-Thorp et al., 2021;
Wang et al., 2018). BERT1 represents the official BERT result (Devlin et al., 2018), and BERT2 represents the
result using an MNLI checkpoint for other NLI tasks (Izsak et al., 2021). We use − to denote those results were not
reported by previous research.

compared to using the [CLS] token as the sen-
tence representation.

Our SSM implementation is based on the Anno-
tated S41 (Rush, 2022), and our pretraining uses
the template from Hugging Face Transformers2

(Wolf et al., 2020). We experimented with variants
of SSMs and found they performed similarly; ex-
periments use S4D (Gu et al., 2022) for simplicity.
Note that for a fair comparison, we keep the size
of the gated architecture comparable to a stacked
architecture and our BERT implementation.

1https://srush.github.io/annotated-s4
2https://github.com/huggingface/transformers

6 Results

6.1 GLUE
Table 1 (Top) shows the main results for different
pretrained models on the GLUE benchmark. In
short and medium training, we note that the STACK

architecture is significantly better with attention
than with SSM-routing. However, with the GATED

architecture, the SSM achieves competitive results.
To confirm this is not simply from a better architec-
ture, we try gating with attention but find it does
not improve. On full training, BiGS continues to
improve in accuracy.

Table 1 (Bottom) compares the BiGS architec-
ture to other reported results on GLUE. First, we
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SQuAD 1.1

BERT (512) 90.9

BERT (128 → 512) 87.3
BiGS (128 → 512) 89.5

Table 2: SQuAD F1 Dev Results. Models are trained by
adapting full 128 token models to 512 tokens (Wettig
et al., 2022).

Length QALT (T/H) CNLI

LED (162M) 1024 26.6/27.2 73.4
LED (162M) 4096 26.6/27.3 71.5
LED (162M) 16384 25.8/25.4 71.5

BART (140M) 256 26.0/25.8 69.8
BART (140M) 512 26.8/27.4 71.6

BiGS (130M) 128 32.3/30.0 68.7
BiGS (130M) 4096 32.8/31.7 71.4

Table 3: SCROLLS Encoder Test set results. Baseline
models are both encoder-decoder models, one based on
Longformer (LED) (Beltagy et al., 2020) and the other
on BART (Lewis et al., 2019). Inputs are truncated at
length.

compare to other non-attention based pretrained
models based on RNNs and CNNs (Peters et al.,
2019; Tay et al., 2021; Lee-Thorp et al., 2021). Re-
sults from these works all show significant degra-
dation in transfer learning with GLUE scores far
below BERT. Next, we compare BiGS to the full
BERT results as reported in past work, both from
the original paper (Devlin et al., 2018) and from
follow-up works with an improved fine-tuning con-
vention (Izsak et al., 2021). We see that the BiGS
model achieves comparable test scores. While the
final GLUE score is nearly identical we do see that
the models perform differently on the underlying
tasks, which we explore more below.

We also apply BiGS to SQuAD (Rajpurkar et al.,
2016). SQuAD requires extending the length of the
model from 128 to 512 tokens through additional
training. We report the F1 score in Table 2. We see
that BiGS outperforms BERT when adapted with
this procedure (Wettig et al., 2022). We note that
both of these results underperform original BERT
SQuAD results.

Figure 3: Complete SSM routing learned in BiGS.
Shows forward and backward kernels K at each layer
(0-22). Values indicate the absolute value of the contri-
bution of each relative position (-10, . . ., 10) cropped
from the full 2 × 128. Min-max scaling of absolute
values is used for visual normalization.

Figure 4: Change in SSM kernel after finetuning. Shows
K after pretraining and after MNLI finetuning for Layer
14, Layer 18, and Layer 17 over all relative positions(-
128, . . . , 128).

6.2 Long-Form Classification

An advantage of SSM-based routing is that mod-
els can extend to longer-ranges without requiring
approximation. To adapt to longer range classi-
fication, we continue pretraining on longer data
(4,096). Table 3 shows results on encoder-only ex-
periments in SCROLLS (Shaham et al., 2022), a
recent long-range language modeling benchmark.
We can compare the model to Longformer Encoder-
Decoder (LED) and BART. On these long-range
tasks, it performs as well or better, taking advan-
tage of the long-range context.

7 Analysis

7.1 Role of SSM

Compared to multi-head attention where routing is
determined by L2 attention coefficients per head
per layer, the BiGS SSM routing is relatively com-
pact. Each layer has only 2L static values in K.
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Figure 5: Role of gating in downstream accuracy. Com-
pares MNLI accuracy with respect to MLM loss. BERT
values from Devlin et al. (2018). Gated SSM shows sim-
ilar pretraining transfer as BERT, whereas Stack SSM
does not.

Figure 3 shows these values in the form of the
forward and backward kernels. These kernels cor-
respond partially to local aggregations such as the
previous word (layer 1) or a subsequent trigram
(layer 6), and partially to long-term future or past
information (layer 14, layer 17).

Figure 4 shows how these kernels change during
finetuning. In particular, during MNLI finetuning,
the model needs to look at more long-distance in-
formation to match between sentences. This results
in most local kernels remaining the same, but long
distance kernels adjusting. The figure shows three
kernels expanding their scope outward.

7.2 Role of Gating

GLUE results show a significant improvement in
downstream accuracy with the GATED model; how-
ever, we actually find that the worse STACK SSM
model has a similar pretraining MLM loss. Figure 5
illustrates the difference of MLM loss and MNLI
accuracy for both GATED and STACK SSM, com-
pared to the MLM loss and expected MNLI values
presented in BERT (Devlin et al., 2018). The figure
shows that for the GATED model downstream accu-
racy tracks MLM loss, while for STACK it does not.
We speculate that multiplicative gating helps the
SSM model recover some of the generalization abil-
ity of attention, particularly for handling long se-
quences. For example, table 6 compares accuracy
of examples binned by length on the QNLI task.
We see that the GATED SSM maintains accuracy
as examples get longer and required dependencies
move further apart.

Figure 6: Role of gating in generalization. Compares
accuracy on QNLI by binned length. Gated models
generalize to similar length sequences as BERT (stack /
att).

Length BiGS BERT

128 8.1E+10 7.9E+10
512 3.2E+11 3.4E+11
1024 6.5E+11 7.2E+11
4096 2.6E+12 4.1E+12

Table 4: FLOP comparison between BiGS and BERT
with respect to input token length. We calculated FLOP
with a batch size of 1 and considered both the forward
and backward passes.

7.3 Efficiency Analysis

A benefit of BiGS is the ability to scale to much
longer sequences without a quadratic increase in
Floating Point Operations (FLOPs). In Table 4,
we compare theoretical FLOPs of BiGS and BERT
for different input token lengths to better under-
stand their relative scalability. At lengths up to 512,
the cost of both models is dominated by the feed-
forward networks, but when growing beyond 1024,
the BiGS approach has a significant FLOP advan-
tage over attention. This increasing efficiency gap
trend continues nonlinearly with token lengths of
1024 and 4096 respectively, implying that BiGS is
better equipped to handle applications with longer
input sequences.

In practice, efficiency is dependent on hard-
ware and implementation. Figure 7 shows an
empirical comparison between two versions of
BERT - HuggingFace BERT (Wolf et al., 2020)
and BERT with FlashAttention (Dao et al., 2022a)
- to BiGS equipped with FlashConv (Dao et al.,
2022c). FlashAttention is highly optimized FP16
implementation of attention while FlashConv is
implemented using FP32 internally for long-range
convolution. These models were tested under iden-
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Figure 7: Efficiency analysis. Compares several opti-
mized implementations: BiGS with FlashConv, BERT,
BERT with FlashAttention in PyTorch 2.0, and a gated
architecture with no routing.

tical conditions on a single NVIDIA RTX A6000
GPU for one forward pass of the large model. The
results show that BiGS outperforms basic attention,
and outperforms highly-optimized FlashAttention
when sequence length passes 3k. When comparing
to a model without any routing, we can see that the
efficiency bottleneck of BiGS lies in the dense lay-
ers, while the SSM adds relatively little overhead,
even past 8k tokens.

7.4 Task Analysis: Syntactic Properties
While the average GLUE results are similar, BiGS
underperforms on some tasks, and overperforms
on syntactic tasks such as CoLA (Warstadt et al.,
2019) (Appendix Figure 9 and 10). We speculate
that these results indicate that SSM-routing may
have different inductive biases than attention. We
follow Goldberg (2019) in adapting two prelimi-
nary experiments with of syntactic tests for masked
language modeling:

Linzen et al. (2016) test a model’s ability to dis-
tinguish agreement in the presence of spurious in-
tervening "agreement attractors". For example, the
sentence "Yet the ratio of men who survive to the
women and children who survive [is] not clear in
this story" has three attractors for the masked work
[is]. Figure 8 shows that BiGS consistently outper-
forms BERT as number of attractors grows.

Marvin and Linzen (2018) develop pairs of man-
ually constructed examples targeting various syntax
phenomena and difficulties. Given a pair of exam-
ples from this stimuli: “No students have ever lived
here" and “Most students have ever lived here",
we feed an adapted version “[MASK] students have

BiGS BERT LSTM

SUBJECT-VERB:
Simple 100.0 100.0 94.0
Sentential complement 85.1 85.6 99.0
Short VP coordination 91.0 86.5 90.0
Long VP coordination 97.5 97.5 61.0
Across prep phrase 88.6 84.8 57.0
Across subj relative clause 88.4 84.9 56.0
Across obj relative clause 89.9 85.1 50.0
Across obj relative (-that) 86.9 81.1 52.0
In obj relative clause 97.2 99.1 84.0
In obj relative (-that) 88.7 81.6 71.0

REFL ANAPHORA:
Simple 97.1 98.9 83.0
In a sentential complement 79.9 86.2 86.0
Across a relative clause 79.1 75.9 55.0

Table 5: Targeted Syntactic Evaluation from Marvin and
Linzen (2018). Numbers of LSTM models are taken
from (Goldberg, 2019).

Figure 8: Syntactic Attractors task from Linzen et al.
(2016). Tests ability of models to match word agreement
in the presence of intervening attractors.

ever lived here" into a model and compare the pre-
dicted scores for the masked position “No” and
“Most” from it. Results are reported in Table 5 and
again show that SSM outperforms BERT on several
agreement phenomena. While more experiments
are needed, it is possible that BiGS leads to an
inductive bias to a more stack-like representation,
since it cannot rely only on dynamic matching.

7.5 Annotated CoLA

The CoLA corpus collection, as described in
(Warstadt et al., 2019), is a vital task within the
GLUE benchmark (Wang et al., 2018) for evalu-
ating the acceptability of language models. This
corpus has been specifically annotated with 13 dif-
ferent syntactic phenomena in order to more ac-
curately quantify the linguistic knowledge of pre-
trained language models (LLMs) (Warstadt and
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Figure 9: CoLA Results in Different Categories as annotated by Warstadt and Bowman (2019). MCC was used to
measure the performance.
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Figure 10: Performance of CoLA w.r.t sentence length
using matthews correlation coefficient(MCC). The red
and navy dashed lines in the graph represent the mean
value obtained from multiple rounds of evaluation.

Bowman, 2019). We utilized the annotated in-
stances from this corpus to conduct a detailed anal-
ysis of the mistakes made by BiGS and BERT mod-
els. Specifically, we used the annotated instances
to break down the errors made by these models
and understand where they struggle with linguistic
knowledge. Results are shown in Figure 9. We
discovered that in 9 out of the 13 categories of
syntactic phenomena, the BiGS model performed
better than the BERT model, and significantly so
in two domains. We hypothesize that the inductive
bias that BiGS learned during training may have
contributed to its superior performance in under-
standing these syntactic phenomena. It is likely
that the specific inductive biases encoded in the
BiGS model enabled it to better comprehend the
nuances of these syntactic phenomena, leading to
its improved performance.

We break down the matthews correlation coef-
ficient (MCC) of the BiGS and BERT model w.r.t
sentence length in Figure 10. BiGS outperforms
BERT on both short and long text.

8 Conclusion

We propose BiGS as a model for pretraining with-
out attention. BiGS makes use of SSM-based rout-
ing and multiplicative gating. Results show that
SSMs alone perform poorly in a stacked architec-
ture, but gating helps them to generalize. As far
as we are aware, this architecture is the first to
replicate BERT results without attention.

This work opens up many interesting questions.
We experimented with adapting to longer text, but
SSM-based models could be pretrained fully on
much longer sequences. Combining SSMs with
reductions in feed-forward costs could give further
optimizations. Finally, we took the steps in explor-
ing the syntactic properties of SSMs, but need fur-
ther probing of how their internal representations
lead to these properties.

9 Limitations

While SSMs are a promising technology for pre-
training, they are not yet a full replacement for
attention. One limitation is that this work only
considers an encoder model and not an encoder-
decoder setup. This makes it challenging to com-
pare to BART and LED in some longer-range eval-
uations. For example, in our preliminary studies in
applying BiGS to long-range question answering
WikiQA (Yang et al., 2015), TriviaQA (Joshi et al.,
2017), we did not see direct benefits of SSM in an
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encoder setting. Others have experimented with
decoder SSM models, but it is not clear how cross-
attention should work with these models. This
work also considers SSMs for bidirectional pre-
training, and not autoregressive modeling. There-
fore, some benefits of SSMs are less apparent, such
as the utilization of RNN generation.

10 Ethical Considerations

Our models are trained using a corpus consisting
of existing collections of text from Wikipedia and
books. Recent research has uncovered potential
societal biases that are embedded within many es-
tablished corpora. While it is beyond the scope of
this paper to delve into these biases in depth, we
acknowledge the potential risk that our pre-trained
models may inherit these biases. In light of this,
we are interested in exploring whether previous re-
search on language bias detection can be applied
to BiGS, as part of future work. Additionally, in
this paper, we have focused solely on the English
corpus, and it would be interesting to investigate
how BiGS can contribute to multi-lingual language
modeling in the future.
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A Appendix

A.1 Pretraining Details

All models are pretrained using a single cloud TPU-
v3. Table 6 shows the hyperparameter configura-
tions that we examine in our pretraining.

BiGS with 512 token length model is trained
with 10,000 steps (53,248 tokens per batch) using
learning rate 4e-5.

To compare with LED (Beltagy et al., 2020) and
BART (Lewis et al., 2019) in the scroll experi-
ment, we first train a BiGS with 12 layers (around
130M parameters in total) and 128 maximal sen-
tence length using 500,000 steps and later extend it
to 4096 token length with 10k more training steps
using learning rate 3e-5.

A.2 Finetuning Details

All models are finetuned using either a single cloud
TPU-v3 or TPU-v2.

A.2.1 GLUE
Table 7 shows hyperparameter configurations used
to finetune GLUE tasks.

A.2.2 Other tasks
Table 8 shows hyperparameter configurations used
to finetune SQuAD and QALT/CNLI tasks.

A.3 SCROLLS Validation Result

We conducted experiments to evaluate the perfor-
mance of BiGS and LED calibrating their perfor-
mance under the setting of long sequences.

From results shown in the Table 9, we can see
that the performance of LED actually degrades
as the sequence length increases, whereas BiGS

Hyperparameter BiGS BERT

Number of Layers 23 24
Hidden size 1024 1024

Intermediate size 3072 4096
Dropout 0.1 0.1

Learning Rate Decay {Cosine, Linear} {Linear}
Weight Decay {0.05, 0.01} {0.01}
Learning Rate {2e-4, 4e-4, 6e-4, 8e-4} {2e-4, 4e-4}

Optimizer AdamW AdamW
Adam ϵ 1e-6 1e-6

Adam β1 0.9 0.9
Adam β2 0.98 0.98

Gradient Clipping 0.0 0.0
Batch Size {760, 1048, 1136} {840}

Warmup Proportion {1%} {2%}

Table 6: Hyperparameters used for pretraining BiGS
and BERT models

Hyperparameter GLUE

Learning Rate {1e-5, 2e-5, 3e-5, 5e-5, 6e-5}
Weight Decay {0.01, 0.1}

Batch Size {16, 32}
Max Epochs {3, 5, 8}

Warmup Proportion {0.1}

Table 7: Hyperparameters used for finetuning our model
on GLUE benchmark tasks.

Hyperparameter SQuAD QALT/CNLI

Learning Rate {4e-5, 6e-5} {1e-5, 3e-5, 5e-5}
Weight Decay {0, 0.01} {0, 0.01}

Batch Size {32} {8, 16, 24}
Max Epochs {2} {5, 8, 10}

Warmup Proportion {0.1} {0.1}

Table 8: Hyperparameters used for finetuning our model
in SQuAD and QALT/CNLI tasks.

demonstrates improved accuracy with longer se-
quence lengths.

While it is true that RoBERTa performs better at
a shorter length, it is also trained for much longer
on more data. With a head-to-head comparison, the
length benefits of BiGS can be shown very clearly.

Length QALT CNLI

RoBERTa (355M) 512 28.3 73.4

LED (162M) 1024 27.9 71.6
LED (162M) 4096 24.0 73.3
LED (162M) 16384 20.3 68.7

BiGS (350M) 128 28.4 70.2
BiGS (350M) 512 29.5 73.1
BiGS (350M) 1024 30.6 74.1
BiGS (350M) 4096 31.4 75.6

Table 9: SCROLLS validation set results. Inputs
are truncated at length. LED experiments are from
SCROLLS official repository. We report an average
over three runs.

69


