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Abstract

Multi-turn response selection aims to retrieve
a response for a dialogue context from a can-
didate pool and negative sampling is the key
to its retrieval performance. However, previ-
ous methods of negative samples tend to yield
false negatives due to the one-to-many property
in open-domain dialogue, which is detrimental
to the optimization process. To deal with the
problem, we propose a sequential variational
ladder auto-encoder to capture the diverse one-
to-many transition pattern of multiple charac-
teristics in open-domain dialogue. The learned
transition logic thus assists in identifying po-
tential positives in disguise. Meanwhile, we
propose a TRIGGER framework to adjust neg-
ative sampling in the training process such that
the scope of false negatives dynamically up-
dates according to the model capacity. Exten-
sive experiments on two benchmarks verify the
effectiveness of our approach.

1 Introduction

Recently, retrieval-based dialogue draws rising in-
terest from the NLP community (Liu et al., 2022;
Lee et al., 2022; Tao et al., 2023; Feng et al., 2023),
since it is a promising way towards intelligent
human-machine dialogue. Moreover, the technolo-
gies in building it show great potential in various
applications such as tasked-oriented dialogue assis-
tant (Shu et al., 2022), conversational recommenda-
tion (Li et al., 2018) or the recently released interac-
tive large language model (OpenAI, 2022). In this
study, we focus on the core of a retrieval dialogue
system, i.e., the multi-turn response selection task,
which aims to retrieve the best response (golden
response) from a pre-defined candidate pool given
a dialogue context.
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*Corresponding author: Rui Yan (ruiyan@ruc.edu.cn).

For improving the discriminating power of a re-
trieval dialogue system, the key is the construc-
tion of the candidate pool, or the selection of the
negative examples. Since the trivial solution, i.e.,
randomly sampling utterances from the entire train-
ing set, results in too simple and informative neg-
atives (Li et al., 2019), a large body of previous
works (Lin et al., 2020; Su et al., 2020; Penha and
Hauff, 2020) discuss how to excavate hard nega-
tives that are lexically or semantically similar to
the golden response and therefore hard to differen-
tiate. However, due to the inherent one-to-many
property of open-domain dialogue, sometimes hard
negatives are in fact positive in disguise, or false
negatives (Gupta et al., 2021; Lee et al., 2022)
and are detrimental to the convergence of retrieval
model (Xiong et al., 2020; Zhou et al., 2022).

To verify this point, we perform a pilot study
(Section 2) to find that previous negative sampling
methods do yield a portion of false negatives and
the ratio is higher than random sampling. It is
easy to understand since previous methods tend to
overlook and thus have little control over the false
negative issue, except that Gupta et al. (2021) try to
filter out the false negatives in a heuristic manner.
Nevertheless, heuristically filtering out negatives
that are similar to the golden response is far from
enough, and mitigating the false negative issue is a
non-trivial problem:

A major challenge is that a randomly sampled
utterance could also be more or less appropriate,
although it may differ from the golden response
in many aspects. Owing to the one-to-many na-
ture (Zhao and Kawahara, 2021; Towle and Zhou,
2022), there usually exists more than one possi-
ble dialogue flow, with each flow reflecting differ-
ent transitions in dialogue topic, user emotion and
many other characteristics. To recognize and miti-
gate false negatives, it is required that we capture
the diverse potential transition logic of multiple
characteristics in open-domain dialogue, which is
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difficult to acquire (Xu et al., 2021).
Another challenge lies in the balance between

excavating hard negatives and removing false nega-
tives (Cai et al., 2022; Yang et al., 2022). Specif-
ically, we may largely avoid false negatives by al-
ways selecting naive negative examples that are
obviously inappropriate, which is however uninfor-
mative and useless. In other words, the dividing
line between the false negatives and the hard neg-
atives is bounded to change dynamically in the
training process according to the retrieval model
capacity. Though there exist some works employ-
ing curriculum learning (Su et al., 2020; Penha and
Hauff, 2020), their adjustment of negative sampling
is performed in an empirical way independent of
the model capacity.

In this research, to cope with the first challenge,
we propose to decompose the characteristics in
multi-turn conversation into multiple dimensions
and represent each with a latent label respectively.
To achieve this, we design a sequential variational
ladder auto-encoder (SVLAE) to model the tran-
sition logic of multiple characteristics and dis-
entangle each other. For the second challenge,
we update the negative sampling dynamically in
the training process in pace with the optimiza-
tion of the retrieval model. Specifically, we pro-
pose a TRIGGER (TRansItion loGic auGmentEd
Retrieval) framework, which consists of T-step and
R-step and optimizes the negative sampling process
and retrieval model in two steps iteratively.

To summarize, our contributions are three-fold:
(1) We devise a sequential variational ladder

auto-encoder to model the multiple orthogonal char-
acteristics in a compositional and disentangled way.

(2) We propose a TRIGGER framework that
combines the updating of negative sampling to-
gether with the optimization of a retrieval model
such that the criterion for negative sampling dy-
namically changes to pace with the capacity of the
retrieval model.

(3) Extensive experiments on two benchmarks
verify that when combined, our method signifi-
cantly improves the existing retrieval models by
a large margin and achieves a new state-of-the-art.

2 Pilot Study On False Negatives

In this pilot study, we conduct a human evaluation
to investigate false negatives hidden in the candi-
date pool, where the negative samples in the candi-
date pool are constructed by random sampling or

Model False Negative Ratio

Random 3.29
Semi (Li et al., 2019) 7.16
CIR (Penha and Hauff, 2020) 7.03
Grey (Lin et al., 2020) 7.42
HCL (Su et al., 2020) 6.95
Mask-and-fill (Gupta et al., 2021) 5.63

Table 1: The false negative ratio (%) of selected negative
candidates on Douban dataset.

Model
False Negative

Preventing
Negative
Updating

Semi (Li et al., 2019) ✗ ✗

CIR(Penha and Hauff, 2020) ✗ ✔

HCL(Su et al., 2020) ✗ ✔

Grey(Lin et al., 2020) ✗ ✗

Mask-and-fill(Gupta et al., 2021) ✔ ✗

Ours ✔ ✔

Table 2: Comparison with other negative sampling meth-
ods

four previous methods. Specifically, we ask five
in-house annotators to independently scan through
negative responses excavated from previous neg-
ative sampling methods and mark out the appro-
priate and acceptable ones. Negatives marked by
more than half of the annotators are identified to
be false negatives. The experiment is performed on
200 dialogue context sampled from Douban (Wu
et al., 2017) and for every context we sample 5
negatives from each sampling method.

The experiment results are shown in Table 1.
We can see that compared with random sampling,
HCL (Su et al., 2020), CIR (Penha and Hauff,
2020), Grey (Lin et al., 2020) and Semi (Li et al.,
2019) have substantially more false negatives. Al-
though mask-and-fill (Gupta et al., 2021) partially
solves the problem thanks to its semantic limitation
mechanism, it still has a higher mislabel ratio than
random sampling.

3 Related Work

The task of multi-turn response selection aims at
selecting a response to match the human input from
a large candidate pool (Lowe et al., 2015; Yan et al.,
2016; Zhou et al., 2016; Wu et al., 2017; Zhou et al.,
2018; Tao et al., 2019a; Jia et al., 2020). Close re-
lated to conversational recommendation (Li et al.,
2018) and interactive large language model (Ope-
nAI, 2022), it has extensive application in the com-
mercial area. With the recent huge success of
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PLMs (Devlin et al., 2018; Liu et al., 2019), post-
training PLMs with diverse self-supervised tasks
become a popular trend and achieve impressive per-
formance (Xu et al., 2020; Gu et al., 2020; Whang
et al., 2021; Han et al., 2021; Fu et al., 2023).

Apart from designing new architecture or new
self-supervision task, another branch of work put
emphasis on negative sampling. Namely, since
the quality of negative candidates has a great influ-
ence on the retrieval model, a large body of work
curate hard negative candidate by searching within
the corpus (Su et al., 2020), synthesizing from lan-
guage model (Gupta et al., 2021) or a combination
of both (Lin et al., 2020). However, most previous
methods pay little attention to preventing false neg-
atives or updating the negative sampling to adapt
with the optimization of the retrieval model, albeit
the semantic limitation in Gupta et al. (2021) and
the curriculum learning in Penha and Hauff (2020)
and Su et al. (2020). The comparison of our meth-
ods against previous ones is shown in Table 2.

4 Methodology

Problem Formulation. Given a dialogue con-
text c = (u1, u2,⋯, uN) with ui denoting the i-th
utterance and N is the number of turns, the ob-
jective of a retrieval model D(⋅∣c,R) is to find
the golden response r

+ from a candidate pool
R = {r+, r−1 , . . . , r−n} where {r−1 , . . . , r−n} are n
negative samples. To enable a retrieval model to
differentiable multiple candidates and pick out the
r
+, the core is the meticulous construction of the

candidate pool R.

Overview. The proposed approach has two
stages: (1) transition logic estimation and (2) dy-
namic negative updating. In the first stage, we
train a transition model to capture the transition
logic of multi-level characteristics in a conversa-
tion. The transition model is used for detecting
characteristics in multiple facets to decide whether
a candidate utterance is a potential false negative.
However, with the growing model capacity, the
criteria for potential false negatives should change
accordingly. So in the second stage, we introduce
a policy network to determine the negative sam-
pling criteria regarding multi-facet characteristics
according to the feedback from the retrieval model.
In this way, the negative sampling process paces
with the evolution of the retrieval model. At the test
stage, the transition model and the policy network
are discarded so it causes no extra latency.
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Figure 1: The generation (left) and inference (right) of
SVLAE architecture with L = 2.

4.1 Transition Logic Estimation

To represent and learn the transition logic, we de-
scribe each utterance in a dialogue as generated by
both a discrete latent label y and a continuous latent
feature z following Kingma and Welling (2013).
Because the transition logic is influenced by multi-
ple (orthogonal) factors including but not limited
to the dialogue topic, dialogue acts, or speaker’s
emotion, it would be unwieldy to enumerate each
combination of these factors with a single y, which
would lead to the hypothesis space of y scaling ex-
ponentially with the number of factors considered.
1 Instead, inspired from Zhao et al. (2022) and
Falck et al. (2021), we propose a Sequential Vari-
ational Ladder Auto-Encoder (SVLAE) to model
the multiple characteristics in a disentangled and
compositional way. The generation and inference
in our SVLAE architecture are shown in Figure 1
and elaborated as below.

Generation Specifically, we use L latent labels
y
1∶L and latent features z1∶L to describe the char-

acteristics of an utterance in L different facets. In
our probabilistic framework, to generate a multi-
turn dialogue with N utterances, we first sample N
latent labels for every facet l ∈ {1, 2, . . . L}, and
then sample corresponding z

l from a mixture of

1For example, if we consider L facets with K
l the number

of possible values for the l-th facet, a “single partition” model
needs to encode K

1 × K
2 × . . . × K

l possibilities with a
single y.
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Gaussian2:

p(yl1∶N) = p(yl1) N

∏
i=2

pθ(yli ∣ yl<i)
p(zl1∶N) = N

∏
i=1

p(zli ∣ yli)
=

N

∏
i=1

N (zl ∣ µθ(yl),Σθ(yl))
(1)

With all L latent features z1∶L, the corresponding
i-th utterance ui is generated by:

z̃
l
i = fθ([zli; z̃l+1i ]), l = 1, 2, . . . , L − 1

p(ui ∣ z1∶Li ) = p(ui ∣ z̃1i ) = ∣ui∣
∏
t=1

dθ(wt ∣ w<t, z̃
1),
(2)

In implementation, p(yl1) is a uniform distri-
bution over K

l possible values. pθ, µθ(yl) and
Σθ(yl) are multi-layer perceptrons. The sequence
modeling pθ(yli ∣ y

l
<i) and the utterance genera-

tion dθ(wt ∣ w<t, z̃
1) are both implemented with

light-weight transformer.
More details about the neural parameterization

could be found in appendix ??.

Inference For the recognition of latent labels
y
1∶L and latent continuous variables z

1∶L for ut-
terance3

u, we propose to factorize the variational
posterior q(z1∶L, y1∶L ∣ u) as

q(z1∶L, y1∶L ∣ u) = qϕ(z1∶L ∣ y1∶L, u) L

∏
l=1

qϕ(yl ∣ u)
(3)

In this way, the inference for each facet is con-
ducted independently, encouraging the capturing
of multi-facet disentangled characteristics.

In implementation, qϕ(yl ∣ u) is parameter-
ized by a 1-layer GRU and a multi-layer percep-
tion. Regarding the inference of z

1∶L, we draw
inspiration from Tenney et al. (2019); Niu et al.
(2022). These studies find that the representation
after lower BERT layers usually encodes basic syn-
tactic information while higher layers usually en-
code high-level semantic information. In light of
this, we prepend a special [CLS] token to each ut-
terance u and employ the encoding of the [CLS]

2We use superscript to denote the facet and the subscript
to denote the utterance turn in the rest of the paper.

3we omit the subscript in this paragraph to avoid the clutter
of notation

token after each layers to discover multiple diverse
features about u:

z
l ∼ N (µϕ(vl

,π
l
W

l),Σϕ(vl
,π

l
W

l))
v
l+1 = fϕ([hl+1[CLS];πl

W
l]) (4)

where πl ∈ RK
l

is the distribution of yl calculated
by qϕ(yl ∣ u) and h

l[CLS] is the representation of
[CLS] token after l layers.

Optimization For optimizing the SVLAE, we
exploit the evidence lower bound objective (ELBO)
to jointly optimize the generation parameter θ and
inference parameter ϕ.

N

∑
i=1

Ez1∶Li ∼q log p(ui ∣ z1∶Li )
− Ey1∶Li ∼qKL(q(z1∶Li ∣ y1∶Li , ui)∥ L

∏
l=1

p(zli ∣ yli))
−

L

∑
l=1

KL(q(yli ∣ ui)∥p(yli)),
(5)

where KL denotes the Kullback-Leibler divergence.
After the training process, the transition model is
fixed and used for inferring the latent label of all
utterances in the training corpus.

4.2 Dynamical Negative Updating
We assume that utterances sharing more latent la-
bels with r

+ are more likely to be false negatives
and thus should be excluded from R at the begin-
ning. But with the training process proceeding,
the retrieval model gradually acquires the ability
to discern the subtle differences in multiple facets
and the exclusion criterion should also update. To
achieve this, we develop a TRIGGER framework
that updates the negative sampling in pace with the
retrieval model in two iterative steps:

T-step At T-step, we introduce a policy network
for predicting the characteristics of the utterance
that is most suitable to be negative samples given
the current model capacity. Then the policy net-
work receives a reward from the retrieval model to
update its parameter.

Specifically, the policy network P takes the pre-
dicted latent label of the golden response pθ(y1∶LN+1)
as input and predicts the latent label distribu-
tion of the suitably difficult negatives, denoted
as π(y1∶L). Then we sample the latent labels
ỹ1 ∼ π(y1), ỹ2 ∼ π(y2), . . . , ỹn ∼ π(yn) and
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Dataset
Ubuntu (Lowe et al., 2015) Douban (Wu et al., 2016)

Train Validation Test Train Validation Test

# context-response pairs 1M 500K 500K 1M 50K 6670
# candidates per context 2 10 10 2 10 10
Avg #turns per context 10.13 10.11 9.80 6.69 6.75 6.45
Avg #words per turn 13.86 17.14 17.18 15.58 14.71 16.56

Table 3: Statistics of two datasets used in our experiments.

construct a set S(ỹ1, ỹ2, . . . , ỹL) consisting of all
utterances that are predicted to have exactly the
same latent label ỹ1, ỹ2, . . . , ỹL. We sample neg-
ative r

− from the set S(ỹ1, ỹ2, . . . , ỹL), and op-
timize the policy network P with policy gradi-
ent (Sutton et al., 2000):

Er−∼S(ỹ1,ỹ2,...,ỹn),ỹi∼π(yi)D(r̃− ∣ c, r+) (6)

Intuitively, the reward for the policy network
D(r̃− ∣ c, r+) is the probability that the retrieval
model regards the sampled r

− as a better candi-
date than r

+. In implementation, the policy net-
work is a lightweight bi-directional transformer.
More parameterization details could be found in
Appendix ??.

R-step At R-step, the retrieval model D is trained
to discriminate the golden response r

+ apart from
the negatives excavated by the policy network. In
detail, after the T-step is finished, the parameter
of the policy network is fixed and we reconstruct
the set S(ỹ1, ỹ2, . . . , ỹL) with the updated policy
network. Note that it is possible that the safe set is
an empty set. If this is the case, we re-sample y

1∶L

from the sampling policy π(y1∶L). The objective
of the retrieval model is thus:

max
D

Er̃−∈C−D(r+ ∣ c, {r−} ∪ r
+). (7)

Compared with the original training objective, the
new one in Eq. 7 restricts the scope of negatives to
the set S(ỹ1, ỹ2, . . . , ỹL), thus mitigating the false
negatives and rendering the selection of negatives
pace with the optimization of the retrieval model.

A high-level algorithm for our proposed frame-
work is shown in Algorithm 1.

5 Experiment

5.1 Datasets
We conduct experiments on two benchmarks:
Ubuntu Corpus V1, and Douban Corpus. The statis-
tics of these three datasets are shown in Table 3.

Algorithm 1 The proposed TRIGGER framework.
1: Input: A retrieval model D, training corpus, maximum

training step for the transition model and retrieval model
M1 and M2.

2: for m ← 1 to M1 do
3: Sample a mini-batch (c, r) from the training corpus.
4: Recognize the latent labels and latent features with the

inference model ϕ.
5: Generate the conversation with generation model θ.
6: Optimize the SVLAE with the objective in Eq. 5.
7: end for
8: for m ← 1 to M2 do
9: {An new episode begins.}

10: Sample a mini-batch of (c, r) training corpus.
11: Compute the latent label distribution of the suit-

ably difficult negatives π(y1∶L) and construct the set
S(ỹ1, ỹ2, . . . , ỹL)

12: Sample {r−} from the set to compose R.
13: if m is odd then
14: {T-step}
15: Optimize the policy network P with Eq. 6
16: else
17: {R-step}
18: Optimize the retrieval model D with Eq. 7
19: end if
20: {An episode ends.}
21: end for
22: Return: the retrieval model D.

Ubuntu Corpus V1 (Lowe et al., 2015) is a
multi-turn response selection dataset in English
collected from chatting logs, mainly about seeking
technical support for problems in using the Ubuntu
system. We use the copy shared by (Xu et al.,
2016), which replaces all the numbers, URLs and
paths with special placeholders.

Douban Corpus (Wu et al., 2016) is an open-
domain Chinese dialogue dataset from the Douban
website, which is a popular social networking ser-
vice. Note that for the test set of Douban corpus,
one context could have more than one correct re-
sponse as the golden response is manually labeled.

5.2 Evaluation Metrics
Following previous works (Tao et al., 2019b; Xu
et al., 2020), we use recall as our evaluation met-
rics. The recall metric R10@k means the correct
response is within the top-k candidates scored by
the retrieval model out of 10 candidates in total.

7654



Model
Ubuntu Douban

R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2

BERT (Devlin et al., 2018) 80.8 89.7 97.5 59.1 63.3 45.4 28.0 47.0
+Semi (Li et al., 2019) 81.0 89.8 97.5 60.3 63.8 46.0 28.2 47.9
+CIR (Penha and Hauff, 2020) 81.2 89.9 97.6 60.7 64.2 46.4 28.5 49.1
+Gray (Lin et al., 2020) 81.5 90.1 97.5 61.5 64.8 47.1 29.1 50.7
+HCL (Su et al., 2020) 81.5 90.2 97.6 61.7 65.9 48.0 30.4 51.0
+MF (Gupta et al., 2021) 81.6 90.0 97.5 61.9 66.0 48.1 30.5 51.3
+TRIGGER (Ours) 81.9† 90.4 97.5 62.9† 67.8† 50.2† 32.5† 52.1†

SA-BERT (Gu et al., 2020) 85.5 92.8 98.3 61.9 65.9 49.6 31.3 48.1
+Semi (Li et al., 2019) 85.8 93.1 98.9 62.3 66.4 50.0 31.7 49.0
+CIR (Penha and Hauff, 2020) 86.0 93.5 99.0 62.4 66.6 50.3 31.8 49.7
+Gray (Lin et al., 2020) 86.1 93.4 99.1 62.8 67.0 50.3 32.0 50.3
+HCL (Su et al., 2020) 86.7 94.0 99.2 63.9 68.1 51.4 33.0 53.1
+MF (Gupta et al., 2021) 86.9 93.7 98.9 63.6 68.4 52.0 33.5 52.9
+TRIGGER (Ours) 87.1† 93.8 98.7 64.1 69.5† 52.9† 34.3† 53.7†

BERT-FP (Han et al., 2021) 91.1 96.2 99.4 64.4 68.0 51.2 32.4 54.2
+Semi (Li et al., 2019) 91.2 96.2 99.3 65.8 68.7 53.6 34.3 54.7
+CIR (Penha and Hauff, 2020) 91.2 96.4 99.3 66.5 70.6 54.8 35.5 55.0
+Gray (Lin et al., 2020) 91.3 96.3 99.4 66.7 70.5 55.0 36.3 54.8
+HCL (Su et al., 2020) 91.2 96.3 99.4 67.1 70.9 55.3 36.4 55.7
+MF (Gupta et al., 2021) 91.3 96.4 99.3 67.2 71.4 55.4 36.2 56.7
+TRIGGER (Ours) 91.7† 96.6 99.4 67.9† 72.4† 56.5† 36.7 59.5†

Table 4: Evaluation results on the test sets of the Ubuntu and Douban. Numbers in bold are best results. † denotes
that the improvement over the most competitive baseline is statistically significant (t-test, p-value <0.05)

We use R10@1, R10@2 and R10@5 in our experi-
ment. As mentioned above, Douban Corpus con-
tains more than one positive response from the
candidates: we also measure MAP (mean aver-
age precision), MRR (mean reciprocal rank) and
P@1 precision at one.

5.3 Implementation Details
Our method is implemented by Pytorch and per-
formed on 2×24 GiB GeForce RTX 3090. The
code is implemented with Hugging Face4 and
the code is available at https://github.com/
TingchenFu/EMNLP23-LogicRetrieval.

For hyper-parameter selection in the transition
model, retrieval model, and policy network, we
sweep the learning rate among [5e−6, 1e−5, 2e−
5, 4e − 5, 5e − 5] and sweep the batch size among[4, 8, 16, 32] for each dataset. We only keep the
last 15 turns of a dialogue context and the max-
imum length of a context-candidate pair is 256.
The gradient is clipped to 2.0 to avoid the gra-
dient explosion. All models are learned with
Adam (Kingma and Ba, 2015) optimizer with β1 =
0.9 and β2 = 0.999. An early stop on the validation
set is adopted as a regularization strategy. We re-
port the averaged performance over three repetitive
experiments for our method.

For transition model, pθ(yli ∣ y
l
<i) is imple-

mented as a transformer. Similar to word embed-
ding, we obtain the embedding of yl1, y

l
2, . . . , y

l
N

4
https://www.huggingface.co

by looking up a randomly initialized and learnable
embedding matrix, and then the embeddings are
modeled by a uni-directional 3-layer transformer.

Similarly, dθ(wt ∣ w<t, z̃
1) is implemented as

a 6-layer uni-directional transformer. The z̃
1 is

mapped to the same dimension as the hidden repre-
sentation of the transformer with a learnable matrix
before prepending as a special token to the word
embedding of u.

For inference the latent labels given an utter-
ance, qϕ(yl ∣ u) is composed of a 1-layer GRU
and a multi-layer perceptron. The former encodes
an utterance u into a dense vector u while the lat-
ter maps the dense vector to a K

l-way categorical
distribution.

The policy network is a bi-directional trans-
former together with L dense matrices Wp

1∶L. The
matrices map pθ(y1∶LN+1) into L vectors in the same
dimension before concatenating them together as
an embedding sequence and input into the trans-
former. The hidden representation after the last
layer of transformer is then mapped back to the
dimension K

1
,K

2
, . . . ,K

L,

5.4 Retrieval Models

As a negative sampling approach, our proposed
TRIGGER framework is orthogonal to the retrieval
models and theoretically our approach can be com-
bined with any dialogue retrieval model seamlessly.
To validate the universality of our approach, we per-
form experiments on the following base retrieval
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model:
BERT (Devlin et al., 2018) is the vanilla BERT

model fine-tuned on the response selection task
with no post-training. SA-BERT (Gu et al., 2020)
enables the BERT model to be aware of differ-
ent speakers in the concatenated context sequence
by applying speaker position embedding. BERT-
FP (Han et al., 2021) uses fine-grained post-
training to help the Bert model distinguish the
golden response and negatives from the same dia-
logue session.

5.5 Baselines

To verify the effectiveness of our approach, we
draw a comparison with the following baseline
method on negative sampling methods: Semi (Li
et al., 2019) re-scores negative samples at differ-
ent epochs to construct new negatives for training.
CIR (Penha and Hauff, 2020) exploits curriculum
learning and transits from easy instances to difficult
ones gradually. Gray (Lin et al., 2020) trains an-
other generation model to synthesize new negatives.
HCL (Su et al., 2020) proposes an instance-level
curriculum and a corpus-level curriculum with a
pacing function to progressively strengthen the ca-
pacity of a model. Mask-and-fill (Gupta et al.,
2021) propose a mask-and-fill approach that simul-
taneously considers the original dialogue context
as well as a randomly picked one to synthesize
negative examples.

5.6 Experiment Results

The quantitative results are shown in Table 4, We
can observe that our method significantly improves
the original base retrieval models on most met-
rics, showing the universality and robustness of
our method. When combined with BERT-FP, our
method achieves the new state-of-the-art for most
metrics, with an absolute improvement of 0.6%
and 4.3% on R10@1 for Ubuntu benchmark and
Douban benchmark respectively.

6 Analysis

Apart from the overall performance, we are partic-
ularly curious about and make further analysis to
understand the following questions: Q1: How does
each component and mechanism contribute to the
overall performance? Q2: How does the lexical
similarity between the context and the response in-
fluence the performance of our method? Q3: How
is the robustness of our method under adversarial
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Figure 2: Retrieval Performance vs. lexical similarity
on Ubuntu.
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Figure 3: Retrieval Performance vs. lexical similarity
on Douban.

or noisy input? Q4: How can we understand and
interpret the learned transition logic?

6.1 The Impact of Each Component

Answer to Q1 To study how each component
works, we conduct an ablation study mainly con-
sidering the following variants: -transition: The
transition-aware hard negatives are replaced with
randomly sampled negatives; -update: The T-step
is removed the transition-aware hard negatives are
fixed during the training process; -feature: The la-
tent features z

1∶L are removed from the SVLAE
architecture. -label: The latent labels y1∶L are re-
moved from the SVLAE architecture.

The experiment results are shown in Table 5.
From the table, we could observe that: (1) There
is an evident degradation when the meticulously
excavated negatives are replaced with randomly
sampled ones This suggests that our negative sam-
pling methods are crucial to the retrieval perfor-
mance, and that simply increasing the number of
negative examples may not be sufficient. (2) The
updating of the sampling policy in T-step plays an
important role as its removal of it causes an ob-
vious drop. This result justifies the necessity of
updating hard negatives dynamically. (3) Both the
latent labels y1∶L and latent features z1∶L contribute
to the model performance. This is likely because
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Models
Ubuntu Douban

R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2

BERT-FP 91.1 96.2 99.4 64.4 68.0 51.2 32.4 54.2
+TRIGGER (Ours) 91.7 96.6 99.4 67.9 72.4 56.5 36.7 59.5

-transition 90.9 95.9 99.2 64.5 68.2 51.5 32.6 54.8
-update 91.2 96.3 99.3 65.9 70.4 53.8 34.9 56.3
-label 91.5 96.4 99.4 67.3 72.0 55.9 36.1 58.3
-feature 91.4 96.3 99.4 67.0 71.6 54.2 35.5 57.4

Table 5: Results of ablation study on two benchmarks.

Rank Transition Probability

1 233→115 14.25%
2 265→211 12.90%
3 211→265 10.45%
4 274→210 2.20%
5 110→274 2.22%

Table 6: The top-5 2-gram transition pairs in Ubuntu
and their transition probability.

Rank Latent Label Implication

1 233 Short instructions about paste operation.
2 115 Reference to a URL.
3 211 Audio and sound configuration in Ubuntu.
4 265 Sound system breakdown.
5 110 Brief yes/no answer.

Table 7: The implications of top-5 latent label at facet
L in Ubuntu.

they provide complementary information that can
be used to learn the transition logic.

6.2 The Impact of Lexical Similarity

Answer to Q2. To have a better understanding of
the impact of lexical similarity, we bin the test set
of Ubuntu and Douban into different bins according
to the similarity between the context and the golden
response5. The improvement on BERT-FP (Han
et al., 2021) is shown in Figure 2 and Figure 3. We
could see that our method is helpful and substan-
tially improve the retrieval performance on most
bins. The improvement is obvious, especially in the
harder scenario where the context and the golden
response are less similar. We attribute the gains
to the transition logic, which exempts the retrieval
model from the interference of false negatives.

6.3 Performance under Adversarial Attack

Answer to Q3: Reducing false negatives can ef-
fectively mitigate the noise in supervision signal
and therefore stabilize the training process (Zhou

5measured in uni-gram F1

et al., 2022). In addition, it might render the model
more robust to adversarial input or noisy input in
real-world applications. To verify this point, in-
spired by Jia and Liang (2017); Yuan et al. (2019);
Whang et al. (2021), we alter the candidate pool
of each case by substituting all the negative candi-
dates with the utterances in the dialogue context,
which is a more challenging setting than previous
scenarios (Whang et al., 2021). The experiment re-
sults on Ubuntu and Douban are shown in Figure 2
and Figure 3 respectively.

According to the experiment results, all three
base models deteriorate severely under our attack.
It also reveals that relying on superficial cues is
in fact a common phenomenon in PLM-based re-
trieval models, not limited to BERT-FP (Han et al.,
2021). In comparison, we could see that the three
models are much more robust when combined with
our proposed TRIGGER strategy.

6.4 Case Study

Answer to Q4: In this section, we aim at interpret-
ing what is learned by the transition model in an
intuitive way. As a simplification, we only con-
sider the “2-gram” transition of latent labels at the
L-th facet (The most abstract one). Specifically,
we first recognize the latent label at facet L for all
utterances in the corpus with our transition model.
Next, we investigate the statistics of latent labels
pairs (yLi , yLi+1) appeared in the transition sequence[yL1 , yL2 , . . . , yLN] across the entire corpus.

The most frequent “2-gram” transitions in
Ubuntu, as well as their transition probability (The
percentage that the first state is succeeded by the
second one, other than the frequency of the “2-
gram”), is shown in Table 6. Besides, we review
the 5 most frequent latent labels in facet L. By ob-
serving randomly sampled 100 utterances with the
corresponding latent label from the Ubuntu corpus,
we manually induce their implications as shown in
Table 7.
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Models
Ubuntu Douban

R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2

BERT(Devlin et al., 2018) 2.0 4.0 17.0 22.3 25.0 8.7 3.2 6.5
BERT+TRIGGER 13.4† 20.2† 48.1† 37.6† 42.0† 23.5† 13.7† 21.1†

BERT-FP (Han et al., 2021) 52.5 57.4 69.2 32.5 36.8 21.9 12.9 17.3
BERT-FP+TRIGGER 76.2† 81.9† 90.1† 38.8† 43.0† 25.4† 16.2† 23.5†

Table 8: Evaluation results on Ubuntu and Douban under attack. † denotes that the improvement over the original
model is statistically significant (t-test, p-value <0.05).

7 Conclusion

In this study, we target at the false negative issue
in dialogue retrieval. We recognize that previous
negative sampling methods lead to more false neg-
atives than random sampling, which is detrimental
to model optimization. So we propose a TRIGGER
framework in which we model the inherent tran-
sition logic in open-domain dialogue in multiple
characteristics with our SVLAE architecture and
combine the negative sampling process with the
optimization of the retrieval model. In this way,
the dividing line between the hard negatives and
false negatives is updated dynamically. Extensive
experiments verify the efficacy of our approach.
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Limitations

All technologies built upon the large-scale PLM
more or less inherit their potential harms (Ben-
der et al., 2021). Besides, we acknowledge some
specific limitations within our methods: We only
verify the effectiveness of our method on several
recent PLM-based methods, but not on early meth-
ods without PLM, like SMN (Wu et al., 2017) or
ESIM (Chen and Wang, 2019). But since our ap-
proach is orthogonal to the base retrieval model,
we are promising that our proposal could be easily
adapted to these methods.

Ethical Considerations

This paper will not pose any ethical problems. First,
multi-turn response selection is an old task in natu-
ral language processing, and several papers about
this task are published at EMNLP conferences. Sec-
ond, all the datasets used in this paper have been
used in previous papers. Our method should only
be used to boost the performance of the retrieval
dialogue system or other research use but not for
any malicious purpose.
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