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Abstract

Conversational question answering (CQA) is a
more complicated task than traditional single-
turn machine reading comprehension (MRC).
Different from large language models (LLMs)
like ChatGPT, the models of CQA need to
extract answers from given contents to answer
follow-up questions according to conversation
history. In this paper, we propose a novel
architecture, i.e., Gated Recurrent Memory
Reader (GRMR), which integrates traditional
extractive MRC models into a generalized
sequence-to-sequence framework. After the
passage is encoded, the decoder will generate
the extractive answers turn by turn. Different
from previous models that concatenate the
previous questions and answers as context
superficially and redundantly, our model can
use less storage space and consider historical
memory deeply and selectively. Experiments
on the Conversational Question Answering
(CoQA) dataset show that our model achieves
comparable results to most models with the
least space occupancy.

1 Introduction

Recently, large language models (LLMs) like
ChatGPT (OpenAI, 2022) and GPT-4 (OpenAI,
2023) have revolutionized the question-answering
and conversation domains, pushing them to
new heights. Different from ChatGPT-style
conversations, the task of conversational question
answering (CQA) requires models to answer
follow-up questions using extracted answers based
on given passages and conversation history. It can
be regarded as an expansion of traditional single-
turn machine reading comprehension (MRC) to
multi-turn conversations. However, the follow-
up questions usually have more complicated
phenomena, such as co-reference, ellipsis and so
on. It is necessary to consider historical memory
in a conversation. To enable machines to answer
such questions, many CQA datasets, such as CoQA

Passage: 
My doorbell rings. 
On the step, I find 
the elderly Chinese 
lady, small and 
slight, holding the 
hand of a little boy. 
In her other hand, 
she holds a paper 
carrier bag ……

Who is at 
the door?

the elderly 
Chinese lady

Is she carrying 
something?

What?

Yes a paper 
carrier bag

… …

Figure 1: An example from CoQA.

(Reddy et al., 2018), QuAC (Choi et al., 2018)
and QBLink (Elgohary et al., 2018), are proposed.
Generally, a dialogue contains a long passage and
some short questions about this passage. The
current question may rely on previous questions or
answers. Here is an example from CoQA dataset in
Figure 1. Only if we know the conversation history
can we understand that the third question "What?"
represents "What is she carrying?".

However, most previous approaches view this
task as a traditional single-turn MRC task by
concatenating previous questions or answers
as conversation history superficially, such as
BiDAF++ (Yatskar, 2018), DrQA+PGNet (Reddy
et al., 2018), SDNet (Zhu et al., 2018) and so
on. They can not grasp and understand the
representation of history profoundly. And multiple
historical questions and answers in one sentence
may confuse the model.

Besides, these methods occupy a lot of storage
space or precious and limited graphics memory
because of duplicated questions and passages.
Although, FlowQA (Huang et al., 2018) proposes
a flow mechanism without concatenating previous
questions, the hidden states of the passage are still
duplicated many times to obtain the question-aware
passage for each question. Meanwhile, it can not
utilize dialogue history selectively.

To address these issues, we propose our new
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architecture, i.e., Gated Recurrent Memory Reader
(GRMR). It integrates traditional MRC models
into a generalized sequence-to-squence (seq2seq)
(Sutskever et al., 2014) framework to generate
extractive answers. For one thing, the deeper
representation of historical conversation can be
utilized selectively by our recurrent structure
and gated mechanism. For another thing, our
model uses original questions and passages without
redundancy, which saves lots of storage and
memory. Experiments on the Conversational
Question Answering (CoQA) dataset show that our
model achieves comparable results to most models
with the least space.

2 Related Work

In the field of generative conversations, large
language models have become the prevailing
approach. These models (OpenAI, 2022, 2023;
Zhang and Yang, 2023b) are typically pretrained
using vast amounts of unsupervised text data
and subsequently fine-tuned using supervised
instruction data. This supervised instruction data
is often obtained through human annotations or
distilled from existing large-scale models (Zhang
and Yang, 2023a).

In the field of extractive conversations, the
answers are typically extracted directly from
the original passages by the model. This task
is often seen as an extension of single-turn
machine reading comprehension to multi-turn
conversations. Prior to the era of pretraining,
attention mechanisms were commonly employed
in various subdomains of question answering, such
as BiDAF (Seo et al., 2017) and Rception (Zhang
and Wang, 2020) in classic single-turn machine
reading comprehension, BiDAF++ (Yatskar, 2018)
in conversational machine reading comprehension,
and other methods based on multi-modal or
structured knowledge question answering (Zhang,
2020; Zhang and Yang, 2021b).

Subsequently, pre-trained models based on
Transformer (Vaswani et al., 2017) like ELMo
(Peters et al., 2018) or BERT (Devlin et al.,
2018) are employed in a wide range of natural
language processing tasks (Zhang and Yang, 2021a;
Zhang et al., 2023). In question answering tasks,
these pre-trained models are either combined with
designed attention structures through embedding-
style (Zhu et al., 2018; Zhang, 2019) or directly
fine-tuned using concatenated historical dialogues.

However, regardless of the method used, the
previous dialogue history needs to be encoded and
interacted with in each turn of the conversation. It
is not possible to save the previous dialogue states
and directly use them.

3 Approaches

3.1 Task Formulation

In this section, we will illustrate our model from
encoder to decoder. The task of the CQA can
be formulated as follows. Suppose we are given
a conversation, which contains a passage with n
tokens P = {wP

t }nt=1 and multi-turn questions
with s question answering turns Q = {Qr}sr=1.
The r-th questions with m tokens is Qr =
{wQ

r,t}mt=1. And the model requires to give the
corresponding answer Ar. A conversation in the
dataset can be considered as a tuple (P,Q,A).

3.2 Gated Recurrent Memory Reader

As shown in Figure 2, we use a generalized
seq2seq framework to solve the task of CQA.
As we know, the traditional seq2seq structure is
used for many tasks, such as machine translation,
semantic parsing, and so on. Given a sentence, the
encoder will transform the input to the intermediate
representation, which is used by the decoder to
generate a new sentence word by word.

Similar to the seq2seq framework, our model
also consists two modules: passage encoder and
question decoder. the passage encoder module
is designed to generate the hidden representation
according to the passage. And question decoder
module is for generating extractive answers turn by
turn according to the result of the encoder.

There are also many differences between our
model and seq2seq. First, the basic unit of
our model is sentences rather than words. The
intermediate representation (generated by the
passage encoder) of our model contains the hidden
states of all tokens in the passage. The input and
the output of the decoder is also sentences. And the
parallelism of our model is between conversations
rather than sentences in a batch. Second, the output
length of the question decoder depends on the turns
of questions in a conversation. There is no start
flag “⟨GO⟩" or end flag “⟨EOS⟩" in the decoder.
Third, the output of the decoder, i.e., the answer, is
not fed to the input of the next turn. Because the
hidden states of the answer is in the memory of our
model.
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Our model can be formulated in Eq. 1.
The decoder takes the result of the encoder
P̄ = fenc(P), and generates extractive answers
according to questions.

Pθ(A|P,Q) =
s∏

j=1

Pθmodel
(Aj |Q≤j ,P)

=
s∏

j=1

Pθdecoder(Aj |Q≤j , P̄)

(1)

where Q≤j = {Q1,Q2, · · ·Qj}, j ∈ {1, 2, · · · s}.
And P,Q,A is the embedding result of P,Q,A,
respectively. For one conversation with s question
answering turns, P ∈ R1×n×h, Q ∈ Rs×m×h and
A ∈ Rs×m×h, where h denotes the dimension of
the embedding.

3.3 Passage Encoder Module

This module aims to encode the words of the
passage into latent semantic representation, which
will be used in the question decoder module.
First, we obtain the embedding of the passage
eGLV
t by the pre-trained Glove (Pennington et al.,

2014). The part-of-speech (POS) and named
entity recognition (NER) tags of each word
are also transformed to the embedding vectors
ePOS
t and eNER

t , respectively. They are learned
during training. Then we concatenate them
to a vector and feed it into the bi-directional
recurrent neural network (RNN) to generate an
intermediate representation of the passage ePt =
BiRNN(ePt−1, [e

GLV
t ; ePOS

t ; eNER
t ]).

3.4 Question Decoder Module

This module is the core of our model. We take a
turn of one conversation as an example to illustrate
this module. And “turn" in our model is similar to
“step" in RNN.
Question Input Layer Suppose the current
question is the r-th question, we encode the
embedding of the question {eQr,i}mt=1 into {cQr,i}mi=1

with a bi-directional RNN. We can obtain a vector
of the question by weighted sum of tokens in Eq.
2. And wi represents different trainable weights in
this section.

cqsumr =

m∑

i=1

aQr,ic
Q
r,i, aQr,i ∝ exp(wT

1 c
Q
r,i) (2)

Gated Memory Layer (Passage) In this layer,
we use a gated mechanism to leverage the

information between the origin passage eP and the
memory of the passage cPr−1, inspired by memory
network(Kumar et al., 2016). The memory cPr−1

is obtained from the previous question turn. The
r-th history-aware passage cPr can be obtained as
follows:

csumr = [cpsumr−1 ; cqsumr ]

gr = σ(wT
2 tanh(w

T
3 c

sum
r ))

cPr = grc
P
r−1 + (1− gr)e

P

(3)

where cpsumr−1 is also obtained from the previous
question turn. They will be interpreted in the next
layer.

Specially, for the first question turn of the
conversation, we directly use the intermediate
representation, which is generated by the passage
encoder, i.e., cPr = eP .
Interaction Layer The passage and the r-th
question will interact in this layer. First, we obtain
the exact match feature êmatch

r,t , which indicate
whether the token wP

t appears in the question Qr =
{wQ

r,t}mt=1 in the form of prototype, lowercase and
lemma. Then another match feature ẽmatch

r,t can be
obtained by attention mechanism:

c̃match
r,t =

m∑

i=1

ai,tr eQr,i, ai,tr ∝ exp(eQr,i
T
ePt ) (4)

We concatenate the information above for the
passage and fed them to a bi-directional RNN to
generate the question-aware passage representation
c̄Pr,t = BiRNN(c̄Pr,t−1, [c

P
r,t; ê

match
r,t ; ẽmatch

r,t ]).
Then another attention is used to fuse the question
and the passage as follows:

hattr,t =
m∑

i=1

ai,tr cQr,i, ai,tr ∝ exp(cQr,i
T
c̄Pr,t) (5)

After that, we refine the representation of the
passage by a bi-directional RNN, i.e., c̃Pr,t =

BiRNN(c̃Pr,t−1, [c̄
P
r,t;h

att
r,t ]). Meanwhile, self-

attention is also used to enhance the representation
in Eq. 6. Then a bi-directional RNN integrates the
representation above and generate the new cPr,t in
Eq. 7, which will be used by next turn in Eq. 3.

hselfr,t =

n∑

t=1

ãi,tr c̃Pr,t, (6)

ãi,tr ∝ exp([hattr,t ; c
P
r,t; c̃

P
r,t; c̄

P
r,t]

T
[hattr,t ; c

P
r,t; c̃

P
r,t; c̄

P
r,t])

cPr,t = BiRNN(cPr,t−1, [h
self
r,t ;hattr,t ; c̃

P
r,t]) (7)
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Passage Encoder

Question Decoder

Embedding Passage text

Embedding

2-rd Question Text
Intermediate

Passage 
Gated Memory

Attention

Self-Attention

RNN

RNN RNN

RNN

Question 
Gated Memory

Question Input

RNN

Answer Layer

2-rd question1-st 3-rd …

Figure 2: Overview of our model. (Best see in colors)
(The red solid line refers to the memory flow of the

passage. The red dashed line refers to the memory flow
of the questions.)

Lastly, we can get the representation of the
passage cpsumr by weighted sum of tokens like Eq.
2. It will be used both on gated memory layer in
the next turn (in Eq. 3) and on gated memory layer
for the current question (in Eq. 8). And the answer
layer also uses the representation.
Gated Memory Layer (Question) As shown
in Eq. 8, another gated memory is used to
leverage the information of the current question
ĉqsumr and the previous question memory hqsumr−1 ,
where ĉqsumr is processed by a RNN cell, i.e.,
ĉqsumr = RNNcell(hqsumr−1 , cqsumr ). Specialy, for
the first question turn, we use the representation of
the current question as the question memory, i.e.,
hqsumr = cqsumr . Then hqsumr will be used in the
answer layer and the next turn.

qsumr = [cpsumr ; cqsumr ]

gr = σ(wT
4 tanh(w

T
5 q

sum
r ))

hqsumr = gr ĉ
qsum
r + (1− gr)h

qsum
r−1

(8)

Answer Layer This layer is the top layer of
the question decoder module. Following pointer
network (Vinyals et al., 2015) and DrQA (Chen
et al., 2017), we use the bilinear function f(x, y) =
xWy to compute the probabilities of each token
being start and end.

pst ∝ exp(fs(c
P
r,t, c

qsum
r )) (9)

As shown in Eq. 9, we can obtain the start
probability of each token pst in passage. And the
end probability pet also can be obtained like this

Model F1
Seq2seq 27.5
PGNet 45.4
DrQA 54.7
SDNet (w/o BERT lock weights) 64.2
DrQA+PGNet 66.2
GRMR 66.3
FlowQA (with ELMo) 76.2
SDNet (with BERT) 77.7
MC2 (with BERT) 81.3

Table 1: The performance on the CoQA dev set.

Configuration F1 ∆ F1
GRMR 66.3 -
w/o gated memory (question) 66.1 -0.2
w/o gated mechanism (passage) 64.2 -2.1
w/o gated memory (passage) 61.8 -4.5
w/o gated memory (all) 58.8 -7.5

Table 2: Ablation studies on the CoQA dev set.

by another bilinear function. We then concatenate
the sentence-level representation of the passage
and fed it to the linear classification ar =
wT
6 [c

psum
r ;hqsumr ] for unanswerable questions.

4 Experiments

4.1 Dataset and Metric

We use the CoQA (Reddy et al., 2018) as our
evaluation dataset. It is a large-scale conversational
question answering dataset notated by people. It
contains 127k questions with answers, obtained
from 8k conversations about text passages from
seven diverse domains. The text passages in the
dataset are collected from seven diverse domains.
And we use the F1 as the metric as the official
evaluation.

4.2 Implementation Details

We use the Adamax (Kingma and Ba, 2014) as our
optimizer. The initial learning rate is 0.004, and
is halved after 10 epochs. To prevent overfitting,
we set dropout to 0.4. The dimension of word
embedding is 300, which is fixed during training.
And the embedding dimension of POS and NER
are set to 12 and 8, separately. we use LSTM as
our recurrent neural network. The hidden size of
LSTM is 128 throughout our model.
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0-ctx 1-ctx 2-ctx 3-ctx
train(KB) 47854 183853 188960 193675
multiple 1x 3.84x 3.95x 4.05x
dev(KB) 8878 13008 13379 13723
multiple 1x 1.47x 1.51x 1.55x

Table 3: Space occupancy on the CoQA.
(N-ctx refers to using previous N QA pairs)

4.3 Result

As shown in Table 1, we compare our method
with other baseline models: PGNet(Seq2Seq with
copy mechanism)(See et al., 2017), DrQA (Chen
et al., 2017), DrQA+PGNet (Reddy et al., 2018),
BiDAF++ (Yatskar, 2018), FlowQA (Huang et al.,
2018), SDNet (Zhu et al., 2018) and MC2 (Zhang,
2019). GRMR achieves comparable results to most
models on the dev set, except FlowQA and SDNet.
These two models all use the contextualized
embedding, ELMo (Peters et al., 2018) or BERT
(Devlin et al., 2018). However, our model still
outperforms SDNet without BERT weights.

We also conduct ablation studies for our model
in Table 2. We can find both the gated mechanism
in memory and gated memory are crucial to our
architecture. The score drops a lot without all gated
memories. Different from the passage, the effect
of the gated mechanism in question memory is
not included, because our model can only use the
current question without gate.

Lastly, we compare the storage space occupancy
between our model and others on the CoQA dataset
in Table 3. Our model takes up the least space
with 0-ctx. Other models usually append 2 or 3
historical conversation turns to the current question.
For the words in the training dataset, we can
observe that the space they used is about four times
larger than ours. And the difference will be larger
when words are converted to vectors.

5 Conclusion

We propose a novel structure, GRMR, for
conversational question answering. Traditional
extractive MRC models are integrated into
a generalized sequence-to-sequence framework.
Gated mechanism and recurrent memory enable
the model to consider the latent semantics of
conversation history selectively and deeply with
less space. The experiments show that this is
a successful attempt to integrate extraction and
generation in conversational question answering.
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