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Abstract

Despite the impressive growth of the abilities of
multilingual language models, such as XLM-R
and mT5, it has been shown that they still face
difficulties when tackling typologically-distant
languages, particularly in the low-resource set-
ting. One obstacle for effective cross-lingual
transfer is variability in word-order patterns.
It can be potentially mitigated via source- or
target-side word reordering, and numerous ap-
proaches to reordering have been proposed.
However, they rely on language-specific rules,
work on the level of POS tags, or only target the
main clause, leaving subordinate clauses intact.
To address these limitations, we present a new
powerful reordering method, defined in terms
of Universal Dependencies, that is able to learn
fine-grained word-order patterns conditioned
on the syntactic context from a small amount of
annotated data and can be applied at all levels of
the syntactic tree. We conduct experiments on
a diverse set of tasks and show that our method
consistently outperforms strong baselines over
different language pairs and model architec-
tures. This performance advantage holds true
in both zero-shot and few-shot scenarios.1

1 Introduction

Recent multilingual pre-trained language models
(LMs), such as mBERT (Devlin et al., 2019), XLM-
RoBERTa (Conneau et al., 2020), mBART (Liu
et al., 2020b), and mT5 (Xue et al., 2021), have
shown impressive cross-lingual ability, enabling
effective transfer in a wide range of cross-lingual
natural language processing tasks. However, even
the most advanced LLMs are not effective when
dealing with less-represented languages, as shown
by recent studies (Ruder et al., 2023; Asai et al.,
2023; Ahuja et al., 2023). Furthermore, annotating
sufficient training data in these languages is not a

1Code available at https://github.com/
OfirArviv/ud-based-word-reordering

feasible task, and as a result speakers of underrep-
resented languages are unable to reap the benefits
of modern NLP capabilities (Joshi et al., 2020).

Numerous studies have shown that a key chal-
lenge for cross-lingual transfer is the divergence
in word order between different languages, which
often causes a significant drop in performance (Ra-
sooli and Collins, 2017; Wang and Eisner, 2018;
Ahmad et al., 2019; Liu et al., 2020a; Ji et al., 2021;
Nikolaev and Pado, 2022; Samardžić et al., 2022).2

This is unsurprising, given the complex and inter-
dependent nature of word-order (e.g., verb-final
languages tend to have postpositions instead of
prepositions and place relative clauses before nom-
inal phrases that they modify, while SVO and VSO
languages prefer prepositions and postposed rel-
ative clauses, see Dryer 1992) and the way it is
coupled with the presentation of novel information
in sentences (Hawkins, 1992). This is especially
true for the majority of underrepresented languages,
which demonstrate distinct word order preferences
from English and other well-resourced languages.

Motivated by this, we present a reordering
method applicable to any language pair, which can
be efficiently trained even on a small amount of
data, is applicable at all levels of the syntactic tree,
and is powerful enough to boost the performance
of modern multilingual LMs. The method, defined
in terms of Universal Dependencies (UD), is based
on pairwise constraints regulating the linear order
of subtrees that share a common parent, which we
term POCs for “pairwise ordering constraints”.

We estimate these constraints based on the prob-
ability that the two subtree labels will appear in
one order or the other when their parent has a given
label. Thus, in terms of UD, we expect, e.g., lan-
guages that use pre-nominal adjectival modification

2From a slightly different perspective, this topic has also
been actively studied in the machine translation literature (cf.
Steinberger, 1994; Chang and Toutanova, 2007; Murthy et al.,
2019).
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to assign a high probability to amods’ preceding
their headword, while languages with post-nominal
adjectival modification are expected to have a high
probability for the other direction.

The estimated POCs are fed as constraints to
an SMT solver3 to produce a general reordering
algorithm that can affect reordering of all types
of syntactic structures. In addition to being effec-
tive, POCs are interpretable and provide a detailed
characterization of typical word order patterns in
different languages, allowing interpretability as to
the effect of word order on cross-lingual transfer.

We evaluate our method on three cross-lingual
tasks – dependency parsing, task-oriented semantic
parsing, and relation classification – in the zero-
shot setting. Such setting is practically useful (see,
e.g., Ammar et al. 2016; Schuster et al. 2019; Wang
et al. 2019; Xu and Koehn 2021 for successful ex-
amples of employing ZS learning cross-lingually)
and minimizes the risk of introducing confounds
into the analysis.

We further evaluate our method in the scarce-
data scenario on the semantic parsing task. This
scenario is more realistic as in many cases it is fea-
sible to annotate small amounts of data in specific
languages (Ruder et al., 2023).

Experiments show that our method consistently
presents a noticeable performance gain compared
to the baselines over different language pairs and
model architectures, both in the zero-shot and few-
shot scenario. This suggests that despite recent
advances, stronger multilingual models still faces
difficulties in handling cross-lingual word order di-
vergences, and that reordering algorithms, such as
ours, can provide a much needed boost in perfor-
mance in low-resource languages.

Additionally, we investigate the relative ef-
fectiveness of our reordering algorithm on two
types of neural architectures: encoder-decoder
(seq2seq) vs. a classification head stacked on top
of a pretrained encoder. Our findings show that
the encoder-decoder architecture underperforms in
cross-lingual transfer and benefits more strongly
from reordering, suggesting that it may struggle
with projecting patterns over word-order diver-
gences.

The structure of the paper is as follows: Sec-
tion 2 surveys related work. The proposed ap-
proach is introduced in Section 3. Section 4 de-

3An extension of the SAT solver that can, among other
things, include mathematical predicates such as + and < in
its constraints and assign integer values to variables.

scribes the setup for our zero-shot and few-shot
experiments, the results of which are presented
in Section 5. Section 6 investigates the compara-
tive performance of encoder-based and sequence-
to-sequence models, and Section 7 concludes the
paper.

2 Related Work

A major challenge for cross-lingual transfer stems
from word-order differences between the source
and target language. This challenge has been the
subject of many previous works (e.g., Ahmad et al.,
2019; Nikolaev and Pado, 2022), and numerous
approaches to overcome it have been proposed.

One of the major approaches of this type is re-
ordering, i.e. rearranging the word order in the
source sentences to make them more similar to
the target ones or vice versa. Early approaches,
mainly in phrase-based statistical machine trans-
lation, relied on hand-written rules (Collins et al.,
2005), while later attempts were made to extract
reordering rules automatically using parallel cor-
pora by minimizing the number of crossing word-
alignments (Genzel, 2010; Hitschler et al., 2016).

More recent works focusing on reordering relied
on statistics of various linguistic properties such as
POS-tags (Wang and Eisner, 2016, 2018; Liu et al.,
2020a) and syntactic relations (Rasooli and Collins,
2019). Such statistics can be taken from typologi-
cal datasets such as WALS (Meng et al., 2019) or
extracted from large corpora (Aufrant et al., 2016).

Other works proposed to make architectural
changes in the models. Thus, Zhang et al. (2017a)
incorporated distortion models into attention-based
NMT systems, while Chen et al. (2019) pro-
posed learning reordering embeddings as part of
Transformer-based translation systems. More re-
cently, Ji et al. (2021) trained a reordering module
as a component of a parsing model to improve
cross-lingual structured prediction. Meng et al.
(2019) suggested changes to the inference mech-
anism of graph parsers by incorporating target-
language-specific constraintsin inference.

Our work is in line with the proposed solutions
to source-sentence reordering, namely treebank re-
ordering, which aim to rearrange the word order of
source sentences by linearly permuting the nodes of
their dependency-parse trees. Aufrant et al. (2016)
and Wang and Eisner (2018) suggested permut-
ing existing dependency treebanks to make their
surface POS-sequence statistics close to those of

719



the target language, in order to improve the per-
formance of delexicalized dependency parsers in
the zero-shot scenario. While some improvements
were reported, these approaches rely on short POS
n-grams and do not capture many important pat-
terns.4 Liu et al. (2020a) proposed a similar method
but used a POS-based language model, trained on
a target-language corpus, to guide their algorithm.
This provided them with the ability to capture more
complex statistics, but utilizing black-box learned
models renders their method difficult to interpret.

Rasooli and Collins (2019) proposed a reorder-
ing algorithm based on UD, specifically, the domi-
nant dependency direction in the target language,
leveraging the rich syntactic information the anno-
tation provides. Their method however, leverages
only a small part of UD richness, compared to our
method.

We note that previous work on treebank re-
ordering usually only evaluated their methods on
UD parsing, using delexicalized models or simple
manually aligned cross-lingual word embeddings,
which limited the scope of the analysis. In this pa-
per, we experiment with two additional tasks that
are not reducible to syntactic parsing: relation clas-
sification and semantic parsing. We further extend
previous work by using modern multilingual LMs
and experimenting with different architectures.

3 Approach

Given a sentence s = s1, s2, ..., sn in source lan-
guage Ls, we aim to permute the words in it to
mimic the word order of a target language Lt. Sim-
ilarly to previous works (Wang and Eisner, 2018;
Liu et al., 2020a), we make the assumption that a
contiguous subsequence that forms a constituent in
the original sentence should remain a contiguous
subsequence after reordering, while the inner order
of words in it may change. This prevents subtrees
from losing their semantic coherence and is also
vital when dealing with tasks such as relation ex-
traction (RE), where some of the subequence must
stay intact in order for the annotation to remain
valid. Concretely, instead of permuting the words
of sentence s, we permute the subtrees of its UD
parse tree, thus keeping the subsequences of s, as

4Aufrant et al. (2016) further experimented with manually
crafting permutations rules using typological data on POS
sequences from WALS. This approach is less demanding in
terms of data but is more labor intensive and does not lead to
better performance.

defined by the parse-tree structure, intact.5

We define a set of language-specific constraints-
based on the notion of Pairwise Ordering Distri-
butions, the tendency of words with specific UD
labels to be linearly ordered before words with
other specific labels, conditioned on the type of
subtree they appear in. To implement a reodering
algorithm we use these constraints as input to an
SMT solver.

3.1 Pairwise Ordering Distributions
Let T (s) be the Universal Dependencies parse tree
of sentence s in language L, and π = (π1, ..., πn)
the set of all UD labels. We denote the pairwise or-
dering distribution (POD) in language L of two UD
nodes with dependency labels πi, πj , in a subtree
with the root label πk with:

Pπk,πi,πj = p; p ∈ [0, 1] (1)

where p is the probability of a node with label πi
to be linearly ordered before a node with label πj ,
in a subtree with a root of label πk. Note that being
linearly ordered before a node with index i, means
having an index of j < i, and that the nodes are
direct children of the subtree root. We include a
copy of the root node in the computation as one of
its own children. Thus we can distinguish between
a node acting as a representative of its subtree and
the same node acting as the head of that subtree.6

3.2 Pairwise Ordering Constraints and
Reordering

Given the pairwise ordering distribution of target
language Lt, denoted as distLt = P , we define a
set of pairwise constraints based on it. Concretely,
for dependency labels πk, πi, πj , we define the fol-
lowing constraint:

πk : (πi < πj) =

{
1, if Pπk,πi,πj > 0.5

0 otherwise
(2)

where πk : (πi < πj) = 1 indicates that a node
n with dependency label πi should be linearly or-
dered before node n′ with dependency label πj if
they are direct children of a node with label πk.

Using these constraints, we recursively reorder
the tokens according to the parse tree T (s) in the
following way. For each subtree Ti ∈ T (s) with

5In principle, UD allows for linearly overlapping subtrees,
but such cases are rare in the existing treebanks.

6An example set of learned POC statistics is given in Ap-
pendix C.
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UD label πj and children n1, n2, ..., nm, with UD
labels n1π , n2π , ..., nmπ :

1. We extract the pairwise constraints that apply
to Ti based on the UD labels of its root and
children.

2. We feed the pairwise constraints to the SMT
solver7 and use it to compute a legal ordering
of the UD labels, i.e. an order that satisfies all
the constraints.

3. If there is such an ordering, we reorder the
nodes in Ti accordingly. Otherwise, we revert
to the original order.

4. We proceed recursively, top-down, for every
subtree in T , until all of T (s) is reordered to
match distLt .

For example, assuming the constraints nsubj →
root, obj → root, and obl → root for the main
clause and obl → case, corresponding to a typi-
cal SOV language, and assuming that the target
language does not have determiners,8 the sentence

Shensubj putroot [the book]obj [oncase the table]obl

will be first reordered as

Shensubj [the book]obj [oncase the table]obl putroot

and then as

Shensubj [the book]obj [the table oncase]obl putroot.

3.3 Estimating the Pairwise Ordering
Constraints

In this section we describe two possible methods
for estimating the POCs of a language, one relying
on the availability of a UD corpus in the target
language and one relying on the Bible Corpus.

Using The UD Treebank. The first method we
use to estimate POCs is by extracting them from
corresponding empirical PODs in a UD treebank.
When there are multiple treebanks per language, we
select one of them as a representative treebank. We
use v2.10 of the Universal Dependencies dataset,
which contains treebanks for over 100 languages.

7We use Python bindings of the open-source SMT solver
Z3 (de Moura and Bjørner, 2008).

8Whose relative position for the sake of the example thus
can be selected arbitrarily.

Estimating POCs without a Treebank. While
the UD treebank is vast, there are still hundreds
of widely spoken languages missing from it. The
coverage of our method can be improved by us-
ing annotation projection (Agić et al., 2016) on a
massively parallel corpus, such as the Bible Cor-
pus (McCarthy et al., 2020). Approximate POCs
can then be extracted from the projected UD trees.
While we do not experiment with this setting in this
work due to resource limitations, we mention it as
a promising future work venue, relying on the work
done by Rasooli and Collins (2019), which used
this approach successfully, to extract UD statistics,
and utilize them in their reordering algorithm on
top of annotation projection.

4 Experimental Setup

We evaluate our reordering algorithm using three
tasks – UD parsing, task-oriented semantic parsing,
and relation extraction – and over 13 different target
languages, with English as the source language.9

For each task and target language, we compare
the performance of a model trained on the vanilla
English dataset against that of a model trained on
a transformed (reordered) version of the dataset,
using the target-language test set in a zero-shot
fashion.

We explore two settings: STANDARD, where we
reorder the English dataset according to the target
language POCs and use it for training, and EN-
SEMBLE, where we train our models on both the
vanilla and the reordered English datasets. The
main motivation for this is that any reordering al-
gorithm is bound to add noise to the data. First,
the underlying multilingual LMs were trained on
the standard word order of English, and feeding
them English sentences in an unnatural word or-
der will likely produce sub-optimal representations.
Secondly, reordering algorithms rely on surface
statistics, which, while rich, are a product of statis-
tical estimation and thus imperfect. Lastly, the use
of hard constrains may not be justified for target
languages with highly flexible word-order10. The

9We use English as the source language because it has the
biggest variety of training sets for different tasks. It has been
shown that for some tasks using a source language with a
less strict word order, such as Russian or Czech, can lead to
improvements (Nikolaev and Pado, 2022), but in practice they
are rather minor and do not outweigh the benefits of having
access to more corpora.

10In the worst-case scenario, given a very flexible order of
a particular pair of syntactic elements in the target language,
with Pπk,πi,πj ≈ 0.51, our method will select only one or-
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ENSEMBLE setting mitigates these issues and im-
proves the “signal to noise ratio” of the approach.

We use the vanilla multilingual models and the
reordering algorithm by Rasooli and Collins (2019)
as baselines. To the best of our knowledge, Ra-
sooli and Collins proposed the most recent pre-
processing reordering algorithm, which also relies
on UD annotation. We re-implement the algorithm
and use it in the same settings as our approach.

Lastly, we evaluate our method in the scarce-data
setting. We additionally train the models fine-tuned
on the vanilla and reordered English datasets on a
small number of examples in the target language
and record their performance. Due to the large
amount of experiments required we conduct this
experiment using only our method in the context of
the semantic-parsing task, which is the most chal-
lenging one in our benchmark (Asai et al., 2023;
Ruder et al., 2023), on the mT5 model, and in the
ENSEMBLE setting.

4.1 Estimating the POCs

We estimate the POCs (§3.2) by extracting the em-
pirical distributions from UD treebanks (see §3.3).
While this requires the availability of an external
data source in the form of a UD treebank in the tar-
get language, we argue that for tasks other than UD
parsing this is a reasonable setting as the UD cor-
pora are available for a wide variety of languages.
Furthermore, we experiment with various treebank
sizes, including ones with as few as 1000 sentences.
Further experimentation with even smaller tree-
banks is deferred to future work. Appendix B lists
the treebanks used and their sizes.

4.2 Evaluation Tasks

In this section, we describe the tasks we use for
evaluation, the models we use for performing the
tasks, and the datasets for training and evaluation.
All datasets, other than the manually annotated UD
corpora, are tokenized and parsed using Trankit
(Nguyen et al., 2021). Some datasets contain sub-
sequences that must stay intact in order for the
annotation to remain valid (e.g., a proper-name
sequence such as The New York Times may have
internal structure but cannot be reordered). In cases
where these subsequences are not part of a single
subtree, we manually alter the tree to make them

dering as the “correct” one. If this ordering contradicts the
original English one, it will be both nearly 50% incorrect and
highly unnatural for the encoder. Ensembling thus ensures
that the effect of estimation errors is bounded.

so. Such cases mostly arise due to parsing errors
and are very rare. The hyper-parameters for all the
models are given in Appendix D.

4.2.1 UD Parsing
Dataset. We use v2.10 of the UD dataset. For
training, we use the UD English-EWT corpus with
the standard splits. For evaluation, we use the PUD
corpora of French, German, Korean, Spanish, Thai
and Hindi, as well as the Persian-Seraji, Arabic-
PADT, and the Irish-TwittIrish treebanks.

We note that our results are not directly compa-
rable to the vanilla baseline because our model has
indirect access to a labeled target dataset, which
is used to estimate the POCs. This issue is less
of a worry in the next tasks, which are not defined
based on UD. We further note that we do not use the
same dataset for extracting the information about
the target language and for testing the method. 11

Model. We use the AllenNLP (Gardner et al.,
2018) implementation of the deep biaffine attention
graph-based model of Dozat and Manning (2016).
We replace the trainable GloVe embeddings and
the BiLSTM encoder with XLM-RoBERTa-large
(Conneau et al., 2020). Finally, we do not use gold
(or any) POS tags. We report the standard labeled
and unlabeled attachment scores (LAS and UAS)
for evaluation, averaged over 5 runs.

4.2.2 Task-oriented Semantic Parsing
Datasets. We use the MTOP (Li et al., 2021)
and Multilingual TOP (Xia and Monti, 2021)
datasets. MTOP covers 6 languages (English, Span-
ish, French, German, Hindi and Thai) across 11
domains. In our experiments, we use the decou-
pled representation of the dataset, which removes
all the text that does not appear in a leaf slot. This
representation is less dependent on the word or-
der constraints and thus poses a higher challenge
to reordering algorithms. The Multilingual TOP
dataset contains examples in English, Italian, and
Japanese and is based on the TOP dataset (Gupta
et al., 2018). Similarly to the MTOP dataset, this
dataset uses the decoupled representation. Both
datasets are formulated as a seq2seq task. We use
the standard splits for training and evaluation.

Models. We use two seq2seq models in our eval-
uation, a pointer-generator network model (Ron-

11Note that Thai has only one published UD treebank, so
for this experiment we split it in two parts, 500 sentences each,
for estimating POCs and testing.
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gali et al., 2020) and mT5 (Xue et al., 2021). The
pointer-generator network was used in previous
works on these datasets (Xia and Monti, 2021;
Li et al., 2021); it includes XLM-RoBERTa-large
(Conneau et al., 2020) as the encoder and an unini-
tialized Transformer as a decoder. In this method,
the target sequence is comprised of ontology to-
kens, such as [IN:SEND_MESSAGE in the MTOP
dataset, and pointer tokens representing tokens
from the source sequence (e.g. ptr0, which repre-
sents the first source-side token). When using mT5,
we use the actual tokens and not the pointer tokens
as mT5 has copy-mechanism built into it, thus en-
abling the model to utilize it. In both models, we
report the standard exact-match (EM) metric, aver-
aged over 10 runs for the pointer-generator model
and 5 runs for mT5.

4.2.3 Relation Classification

Datasets. We use two sets of relation-extraction
datasets: (i) TACRED (Zhang et al., 2017b) (TAC)
and Translated TACRED (Arviv et al., 2021)
(Trans-TAC), and (ii) IndoRE (Nag et al., 2021).
TAC is a relation-extraction dataset with over 100K
examples in English, covering 41 relation types.
The Trans-TAC dataset contains 533 parallel exam-
ples sampled from TAC and translated into Russian
and Korean. We use the TAC English dataset for
training and Trans-TAC for evaluation. As the TAC
train split is too large for efficient training, we only
use the first 30k examples.

IndoRE (Nag et al., 2021) contains 21K sen-
tences in Indian languages (Bengali, Hindi, and
Telugu) plus English, covering 51 relation types.
We use the English portion of the dataset for train-
ing, and the Hindi and Telugu languages for evalu-
ation.12

Model. We use the relation-classification part of
the LUKE model (Yamada et al., 2020).13 The
model uses two special tokens to represent the head
and the tail entities in the text. The text is fed into
an encoder, and the task is solved using a linear
classifier trained on the concatenated representation
of the head and tail entities. For consistency, we
use XLM-RoBERTa-large (Conneau et al., 2020)
as the encoder. We report the micro-F1 and macro-
F1 metrics, averaged over 5 runs.

12The Bengali UD treebank is extremely small (17 sen-
tences), which makes it impossible to extract high-quality
POCs.

13https://github.com/studio-ousia/luke

5 Results and Discussion

The results on the various tasks, namely UD pars-
ing, semantic parsing, and relation classification,
are presented in Tables 1, 2 and 3 respectively. The
few-shot experiment results are in Table 4. Stan-
dard deviations are reported in Appendix E.

In UD parsing, the ENSEMBLE setting presents
noticeable improvements for the languages that are
more typologically distant from English (2.3-4.1
LAS points and 1.8-3.5 UAS points), with the ex-
ception of Arabic, in which the scores slightly drop.
No noticeable effect is observed for structurally
closer languages.

In the STANDARD setting, a smaller increase in
performance is present for most distant languages,
with a decrease in performance for closes ones,
Persian and Arabic. This is in agreement with pre-
vious work that showed that reordering algorithms
are more beneficial when applied to structurally-
divergent language pairs (Wang and Eisner, 2018;
Rasooli and Collins, 2019). The ENSEMBLE ap-
proach, therefore, seems to be essential for a gener-
ally applicable reordering algorithm.

The algorithm by Rasooli and Collins (2019)
(RC19), in both settings, presents smaller increase
in performance for some typologically-distant lan-
guages and no noticeable improvements for others,
while sometimes harming the results. This suggests
that for this task the surface statistics the algorithm
uses are not enough and a more fine-grained ap-
proach in needed.

In the semantic-parsing task, the reordering algo-
rithm presents substantial improvements for all lan-
guages but Italian in the ENSEMBLE setting (2-6.1
increase in exact match), for the RoBERTa based
model. Noticeably, the gains are achieved not only
for typologically-distant languages but also for lan-
guages close to English, such as French. In the
MTOP dataset, the ENSEMBLE setting proves big-
ger gains over the STANDARD for all languages. In
Multilingual-TOP, we surprisingly observe the op-
posite. Given that Japanese in terms of word order
is comparable to Hindi and Italian, to French, we
tend to attribute this result to the peculiarities of
the dataset. This, however, merits further analysis.

When compared to RC19, the proposed algo-
rithm consistently outperforms it, by an average of
about 2 points (in the ENSEMBLE setting).

For mT5 we observe increase in performance, in
the ENSEMBLE setting, of 2.5 and 5 points in Thai
and Hindi, respectively. For the other languages,
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Target Base Ours OursE RC19 RC19E OursE
LAS gain

UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

Arabic 67.5 52.3 65.9 50 66.5 51.2 66.9 53.2 67.6 53.7 -1.1
Spanish 84.7 77.2 83.6 75.8 84.8 77.1 84.4 77.3 84.3 77.2 -0.1
German 86.6 80.6 83.5 77.1 86.7 80.7 85.5 78.3 85.3 78.1 0.1
French 85 79.2 82 76.3 84.9 79.4 84.5 79.9 84.4 79.9 0.2
Persian 66.2 52.3 51 40.1 66.4 52.7 66.4 54.1 53.7 43.1 0.4
Korean 64 46.9 66.6 49.2 65.8 49.2 63.1 46.4 63.1 46.2 2.3
Irish 54.4 38.9 54.4 38.4 58.4 41.5 60 42.4 59 41.6 2.6
Thai 73.8 54.5 75.5 57.7 76 58 73.7 52.7 72.7 51.4 3.5
Hindi 60.4 49.8 61.1 50.9 63.9 53.9 60.7 49.9 61.4 50.9 4.1

Table 1: The results (averaged over 5 models) of the application of the reordering algorithm to cross-lingual
UD parsing. Columns correspond to evaluations settings and score types; rows correspond to evaluation-dataset
languages. The best LAS and UAS scores per language are represented in boldface and underlined, respectively.
Abbreviations: RC19 – the algorithm by Rasooli and Collins; E – the ENSEMBLE setting.

Target Arch Base Ours OursE RC19 RC19E

Hi XLM 36.9 41.5 42.9 39.3 40.4
mT5 22.7 24.8 27.7 21.8 24

Th XLM 13.5 13.8 17.9 15.9 17.3
mT5 31.2 31.8 33.6 31.7 32.8

Fr XLM 52.9 54 59 51.1 55.9
mT5 46.7 43.9 46.3 44.4 46.7

Sp XLM 55.3 55.5 59.6 54.6 57.6
mT5 46.9 43.2 46.2 47 47.9

Ge XLM 53.9 53.7 56.4 51.3 54.7
mT5 39.9 38.4 40.6 37.8 41.4

Ja XLM 5.5 9.7 7.5 8.5 7.9
It XLM 54.4 54.7 54 54 53.2

Table 2: The results (averaged over 10 an 5 models
for XLM and mT5 respectively) of the application of
the reordering algorithm to MTOP and Multilingual-
Top (above and below the horizontal line respectively).
Values are exact-match scores. The best score per lan-
guage is represented in boldface. Abbreviations: XLM –
XLM-RoBERTa; RC19 – the algorithm by Rasooli and
Collins; E – the ENSEMBLE setting. Language abbrevia-
tions: Hi – Hindi, Th – Thai, Fr – French, Sp – Spanish,
Ge – German, Ja – Japanese, It – Italian.

we do not observe a strong impact. We note how-
ever, that in French and Spanish, there is a slight
drop in the score (less then 1 point). When com-
pared to RC19, our method provide larger gains in
Hindi and Thai.

In the few-shot scenario, we observe improved
performances for all languages and sample sizes.
Surprisingly, the improvements hold even when
training on a large sample size of 500, indicating
that the model is not able to easily adapt to the
target word-order.

Lastly, in the relation-classification task, in the
ENSEMBLE setting we observe an increase in per-
formance for all languages (2.3-10.4 increase in the

Micro and Macro F1 points). In the STANDARD set-
ting, there is a drop in performance for Hindi and
Telugu. When compared to RC19, our algorithm
outperforms it in the ENSEMBLE setting, by more
than 5 points for Korean, but only by 0.5 points for
Russian. In Hindi and Telugu, the performance of
both algorithms is close, and RC19 does perform
better in some cases.

6 Comparison between Encoder-with-
Classifier-Head and Seq2Seq Models

Past work has shown that the architecture is an im-
portant predictor of the ability of a given model
to generalize over cross-lingual word-order diver-
gences. For example, Ahmad et al. (2019) showed
that models based on self-attention have a better
overall cross-lingual transferability to distant lan-
guages than those using RNN-based architectures.

One of the dominant trends in recent years in
NLP has been using the sequence-to-sequence for-
mulation to solve an increasing variety of tasks
(Kale and Rastogi, 2020; Lewis et al., 2020). De-
spite that, recent studies (Finegan-Dollak et al.,
2018; Keysers et al., 2019; Herzig and Berant,
2019) demonstrated that such models fail at com-
positional generalization, that is, they do not gen-
eralize to structures that were not seen at training
time. Herzig and Berant (2021) showed that other
model architectures can prove advantageous over
seq2seq architecture in that regard, but their work
was limited to English.

Here, we take the first steps in examining the
cross-lingual transfer capabilities of the seq2seq
encoder-decoder architecture (S2S) vs. a classifica-
tion head stacked over an encoder (E+C), focusing
on their ability to bridge word-order divergences.
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Target Base Ours OursE RC19 RC19E

Mic-F1 Mac-F1 Mic-F1 Mac-F1 Mic-F1 Mac-F1 Mic-F1 Mac-F1 Mic-F1 Mac-F1

Korean 40.3 33.4 41 35.4 50 43.8 48.2 43.1 44.2 38.8
Russian 62.7 58.1 66 61.7 68.1 64.2 61.1 55.8 67.6 63.8

Hindi 78.5 74.1 77.1 72.2 80.9 76.7 80 75.4 80.7 77
Telugu 66.6 58.9 65.5 58.3 69.1 62 70.3 61.8 69.4 62.3

Table 3: The results (averaged over 5 models) of the application of the reordering algorithm to Translated Tacred and
IndoRE (above and below the horizontal line respectively). Columns correspond to evaluations settings and score
types; rows correspond to evaluation-dataset languages. The best Micro-F1 and Macro-F1 scores, per language,
are represented in boldface and underlined, respectively. Abbreviations: Mic-F1 – Micro-F1; Mac-F1 – Macro-F1;
RC19 – the algorithm by Rasooli and Collins; E – the ENSEMBLE setting.

Sample size Hindi Thai French Spanish German
Base OursE Base OursE Base OursE Base OursE Base OursE

100 45.2 48.3 47.6 48.4 62.3 63.1 62.9 64.2 57.8 58.7
300 53.3 56 54.3 55.8 67 67.2 67.7 68.1 61.6 62.9
500 56.9 58.4 58.6 59.7 67.7 68.8 70 71 63.2 65.1

Table 4: The results (averaged over 5 models) of the application of the reordering algorithm to MTOP in the few-shot
scenario, on the mT5 model. Columns correspond to evaluations settings; rows correspond to evaluation-dataset
languages. Values are exact-match scores. E – the ENSEMBLE setting.

6.1 Experimental Setup

We compare the performance of an E+C model
against a S2S one on the task of UD parsing over
various target languages. Similar to §4, we train
each model on the vanilla English dataset and com-
pare it against a model trained on a version of the
dataset reordered using our algorithm. We evaluate
the models using the target-language test set in a
zero-shot setting.

Dataset and POCs Estimates. We use the same
UD dataset and POCs as in §4. For the S2S task,
we linearize the UD parse tree using the method by
Li et al. (2018).

Models. For the E+C model we use the deep
biaffine attention graph-based model with XLM-
RoBERTa-large as the encoder, as in §4.2.1. For
S2S model, we use the standard transformer archi-
tecture with XLM-RoBERTa-large as the encoder
and an uninitialized self-attention stack as the de-
coder. The hyper-parameters for the models are
given in Appendix D.

6.2 Results and Discussion

The results for LAS (averaged over 5 runs), nor-
malized by the base parser performance on the
English test-set, are presented in Table 5 (UAS
follow the same trends. See full scores in Ap-
pendix F). The zero-shot performance of the S2S

model is subpar compared to the E+C one (less

Target Base Ours OursE

E+C S2S E+C S2S E+C S2S

French 85.9 46.6 82.7 42.7 86.12 47.8
German 87.4 54.5 83.6 56.9 87.5 67.8
Hindi 54 20.6 55.2 38.1 58.4 48.7
Korean 50.9 14.2 53.4 13.8 53.4 16.5
Persian 56.7 21.4 54.1 24.5 57.1 27.3
Spanish 83.7 63.4 82.2 59.5 83.6 64.7
Thai 59.9 28 61.1 29.5 63.7 37.9

Table 5: LAS results (averaged over 5 models) of the
application of the reordering algorithm to cross-lingual
UD parsing, normalized by the English test set LAS.
Columns correspond to the evaluations settings, and
model types; rows correspond to evaluation dataset lan-
guage. The best scores for the E+C and S2S settings,
per language, are represented in boldface and under-
lined, respectively. Abbreviations: E – the ENSEMBLE
setting; E+C – classification head stacked over an en-
coder architecture; S2S — seq2seq encoder-decoder
architecture.

then 50%), despite relying on the same underline
multilingual LM. Furthermore, the S2S architecture
benefits more strongly from reordering for distant
languages (more than twice as much), compared to
the E+C one. This suggests that seq-to-sequence
architecture may be less effective in handling cross-
lingual divergences, specifically word-order diver-
gences, and may gain more from methods such as
reordering.
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7 Conclusion

We presented a novel pre-processing reordering ap-
proach that is defined in terms of Universal Depen-
dencies. Experiments on three tasks and numerous
architectures and target languages demonstrate that
this method is able to boost the performances of
modern multilingual LMs both in the zero-shot and
few-shot setting. Our key contributions include
a new method for reordering sentences based on
fine-grained word-order statistics, the Pairwise Or-
dering Distributions, using an SMT solver to con-
vert the learned constraints into a linear ordering,
and a demonstration of the necessity of combin-
ing the reordered dataset with the original one (the
ENSEMBLE setting) in order to consistently boost
performance.

Our results suggest that despite the recent im-
provements in multilingual models, they still face
difficulties in handling cross-lingual word order di-
vergences, and that reordering algorithms, such as
ours, can provide a much needed boost in perfor-
mance in low-resource languages. This result holds
even in the few-shot scenario, when the model is
trained on few hundred examples, underscoring the
difficulty of models to adapt to varying word or-
ders, as well as the need for more typologically
diverse data, additional inductive bias at the train-
ing time, or a pre-processing approach such as ours
to be more effective. Furthermore, our experiments
suggest that seq2seq encoder-decoder architectures
may suffer from these difficulties to a bigger extent
than more traditional modular ones.

Future work will include, firstly, addressing the
limitations of the proposed approach in order to
make it less language-pair dependent and reduce
the computational and storage overhead, and sec-
ondly, leveraging the POCs in order to compute
the word-order distance between languages in a
rich, rigorous corpus-based way,14 and to more pre-
cisely predict when the reordering algorithm will
be beneficial as well as to provide a fine-grained
analysis of the connection between word order and
cross-lingual performance, in line with Nikolaev
et al. (2020).

Limitations

There are several limitation to our work. First, as
shown in the experiment results, for some tasks,
reordering, even with ensembling, is not beneficial

14WALS, for example, only provides a single categorical
label for “dominant word order”.

for closely-related languages. Secondly, as this is a
pre-processing algorithm, it incurs time and com-
putation overhead for tokenization, parsing, and
reordering of the source dataset. Most importantly,
if one wishes to train a model on several word
order patterns, it will be necessary to apply the al-
gorithm repeatedly to create a new dataset for each
pattern, increasing the overall size of the dataset.
Furthermore, extracting the POCs requires external
resources, either UD corpora in the target language
or a multi-parallel corpus for annotation projec-
tion. More technical limitations of the reordering
algorithm are described in Appendix A.
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A Shortcomings of the Reordering
Algorithm

We note a couple of possible shortcomings to this
approach. First, while a pair of constraints can-
not be straightforwardly contradictory (both values
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cannot be set to 1), it can be uninformative (both
values set to 0) when not enough label-ordering
data is presented in the training treebank, which
means that the ordering of the corresponding nodes
is not subject to any constraint.

Moreover, it is possible to encounter loops or
transitivity conflicts when joining different con-
straints, which makes it a priori impossible for the
solver to satisfy them. To alleviate this problem, for
each subtree we aim to reorder, we only consider
the constraints that are relevant to it. For example,
if the subtree does not contain any token with label
nmod, we discard all the constraints which include
this label, such as amod : (nmod < amod). This,
together with the tendency of languages to have
a preferred ordering to their constituent elements,
makes it so that only a small percentage of subtrees
cannot be ordered.

Last, sparsity issues may prevent some con-
straints from being statistically justified, and round-
ing the constraints to a hard 0 or 1 may re-
sult in information loss and thus be detrimen-
tal. For example, if our pairwise distributions are
Pnmod,nmod,amod = 0.51 and Pnmod,amod,nmod =
0.49, deriving a constraint of nmod : (nmod <
amod) may not be warranted. This may also hap-
pens in the case of a highly flexible order of a
particular pair of syntactic elements in the target
language. If this ordering contradicts the origi-
nal English one, it will be both nearly 50% incor-
rect and highly unnatural for the encoder. This is,
however, partially mitigated by the ENSEMBLE$
method. For the purposes of this work we do not
distinguish between POCs according to their sta-
tistical validity and defer this question to future
work.

B Estimating the POCs

We estimate the POCs (§3.2) by extracting the em-
pirical distributions from UD treebanks. The UD
treebanks used are reported in Table 6.

C Example of Learned Distributions

Here are the statistics of the pairwise ordering of
main elements of the matrix clause15 learned on
the Irish-IDT treebank:

• acl vs. advcl

– acl->advcl: 10
– advcl->acl: 4

15Elements that are directly under the root node.

Language UD Treebank Size
French French-GSD 14450
Spanish Spanish-GSD 14187
German German-GSD 13814
Italian Italian-ISDT 13121

Russian Russian-GSD 3850
Irish Irish-IDT 4005

Arabic Arabic-PUD 1000
Korean Korean-GSD 4400

Japanese Japanese-GSD 7050
Thai Thai-PUD 1000

Persian Persian-PerDT 26196
Hindi Hindi-HDTB 13306
Telugu Telugu-MTG 1051

Table 6: The UD treebanks used to estimate the POCs.
Each row corresponds to a language-treebank pair. Tree-
bank size is measured in sentence counts.

Target Base Ours OursE

UAS LAS UAS LAS UAS LAS

French 44.3 39.1 41.1 35.8 45.4 40.1
German 51.2 45.7 53.7 47.7 62.4 56.8
Spanish 59.7 53.1 56.5 49.9 60.6 54.2
Korean 26.4 11.9 26.6 11.6 28.3 13.8
Persian 27.3 17.9 29 20.5 32.4 22.9
Hindi 26.9 17.3 41.1 31.9 50.4 40.8
Thai 35.6 23.5 37.7 24.7 45.5 31.8

Table 7: The results (averaged over 5 models) of the
application of the reordering algorithm to cross-lingual
S2S UD parsing. Columns correspond to evaluations
settings and score types; rows correspond to evaluation-
dataset languages. Abbreviations: RC19 – the algorithm
by Rasooli and Collins; E – the ENSEMBLE setting.

• acl vs. advmod

– advmod->acl: 6
– acl->advmod: 1

• acl vs. amod

– amod->acl: 29
– acl->amod: 1

• acl vs. appos

– appos->acl: 3
– acl->appos: 4

• acl vs. nsubj

– nsubj->acl: 35
– acl->nsubj: 8

• acl vs. obj

– obj->acl: 3

• acl vs. obl

– obl->acl: 14
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Target Base Ours OursE

UAS LAS UAS LAS UAS LAS

French 1 1.1 0.5 0.6 1.6 1.7
German 1.2 1.2 0.4 0.3 0.4 0.3
Spanish 0.7 0.6 0.4 0.4 0.2 0.3
Korean 0.5 0.5 0.7 0.6 0.4 0.5
Persian 0.5 0.4 0.7 0.6 0.4 0.4
Hindi 0.7 0.5 0.6 0.5 0.7 0.7
Thai 0.9 0.7 2.8 2.6 1.2 2.2

Table 8: The standard deviation of the results (aver-
aged over 5 models) of the application of the reordering
algorithm to cross-lingual S2S UD parsing. Columns
correspond to evaluations settings and score types; rows
correspond to evaluation-dataset languages. Abbrevia-
tions: RC19 – the algorithm by Rasooli and Collins; E –
the ENSEMBLE setting.

– acl->obl: 4

• acl vs. root

– root->acl: 144

• advcl vs. advcl

– advcl->advcl: 62

• advcl vs. advmod

– advmod->advcl: 72
– advcl->advmod: 22

• advcl vs. amod

– amod->advcl: 15
– advcl->amod: 5

• advcl vs. appos

– advcl->appos: 2

• advcl vs. nsubj

– advcl->nsubj: 132
– nsubj->advcl: 320

• advcl vs. obj

– obj->advcl: 128
– advcl->obj: 48

• advcl vs. obl

– obl->advcl: 339
– advcl->obl: 189

• advcl vs. root

– root->advcl: 513
– advcl->root: 243

• advmod vs. amod

– advmod->amod: 3
– amod->advmod: 1

• advmod vs. nsubj

– nsubj->advmod: 337
– advmod->nsubj: 83

• advmod vs. obj

– obj->advmod: 71
– advmod->obj: 77

• advmod vs. obl

– obl->advmod: 231
– advmod->obl: 326

• advmod vs. root

– advmod->root: 111
– root->advmod: 486

• amod vs. appos

– amod->appos: 2

• amod vs. nsubj

– nsubj->amod: 13
– amod->nsubj: 41

• amod vs. obj

– obj->amod: 3

• amod vs. obl

– obl->amod: 7
– amod->obl: 11

• amod vs. root

– root->amod: 133
– amod->root: 6

• appos vs. nsubj

– nsubj->appos: 5
– appos->nsubj: 4

• appos vs. obl

– obl->appos: 3

• appos vs. root

– root->appos: 32

• nsubj vs. obj

– nsubj->obj: 469
– obj->nsubj: 2

• nsubj vs. obl

– nsubj->obl: 1699
– obl->nsubj: 314

• nsubj vs. root

– root->nsubj: 2423
– nsubj->root: 60

• obj vs. obl

– obj->obl: 755
– obl->obj: 219

• obj vs. root

– root->obj: 907
– obj->root: 13

• obl vs. root

– root->obl: 2566
– obl->root: 425
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As expected, Irish behaves as a strict head-initial
language: root overwhelmingly precedes all
other constituents, including subordinate clauses,
and modifier subordinate clauses (acl, advcl)
follow nominal clause participants (nsubj, obj,
obl). Adjectival modifiers, however, mostly pre-
cede nominal elements; this may be due to the fact
that some frequent pronominal adjectives, such as
uile ‘all’ and gach ‘every’ do not follow the general
rule and precede the nouns they modify.

The position of adverbial modifiers is not re-
stricted by the grammar, and it may be noted that it
generally follows nominal subjects but as often as
not precedes direct objects, and in 3/5 of cases pre-
cedes obliques, which suggests the general order
root→ nsubj→ advmod/obj→ obl.

D Models Hyperparameters

The hyperparameters of the UD parser are given in
Table 9. For the seq2seq pointer-generator network
model – in Table 10, for mT5 – in Table 11, and for
LUKE relation classification model – in Table 12.

For the UD Seq2Seq parser, we use the same hy-
perparameters as for the seq2seq pointer-generator
network model, with the following exceptions: we
train for only 50 epochs and set the learning rate to
1e–5 for both the encoder and decoder.

E Standard Deviations

The standard deviations of the results of the ex-
periments in UD parsing, semantic parsing, and
relation classification are presented in Tables 14,
13, and 15 respectively.

F UD Seq2Seq Model Performances

The full results (averaged over 5 models) of the
S2S model in UD parsing, are presented in Table 7.
The standard deviations are in Table 8.
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Hyperparameter Value
Dataset
Reader input max tokens 100

Encoder type xlm-roberta-large
train_parameters true

Model
(General) type: biaffine_parser

arc_representation_dim 500
tag_representation_dim 100

dropout 0.1
input_dropout 0.3

Training num_epochs 100
patience 10

grad_norm 5.0
Optimizer type huggingface_adamw

lr 1e-5
weight_decay 0.01

Table 9: Hyperparameters for the biaffine UD parser.

Hyperparameter Value
Dataset
Reader input max tokens 100

Encoder type xlm-roberta-large
train_parameters true

Decoder type stacked_self_attention
num_layers 4

num_attention_heads 8
decoding_dim 1024

target_embedding_dim 1024
feedforward_hidden_dim 512

pointers_copy_mechanisem
(if using pointers)} BilinearAttention

Model
(General) label_smoothing_ratio 0.1

beam_search_beam_size 4
beam_search_max_steps 100

Training num_epochs 100
patience None

grad_norm 5.0
Optimizer type huggingface_adamw

lr encoder: 1e-3
decoder: 1e-5

weight_decay 0.01
learning_rate_scheduler slanted_triangular

gradual_unfreezing true

Table 10: Hyperparameters for the pointer network generator seq2seq model.

Hyperparameter Value
Dataset
Reader input max tokens 100

Model
(General) type: google/mt5-base

label_smoothing_ratio 0.1
beam_search_beam_size 4
beam_search_max_steps 100

Training num_epochs 50
patience None

grad_norm 5.0
Optimizer type huggingface_adamw

lr 1e-5
weight_decay 0.01

Table 11: Hyperparameters for mT5.
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Hyperparameter Value
Encoder type xlm-roberta-large

train_parameters true
Seq2vec Encoder type: bert_pooler

dropout 0.1
Training num_epochs 100

patience 5
grad_norm 5.0

Optimizer type huggingface_adamw
lr 1e-5

weight_decay 0.01

Table 12: Hyperparameters for the LUKE relation classification model.

Target Arch Base Ours OursE RC19 RC19E

Hi XLM 1.5 1.1 1.2 1.1 0.8
mT5 1 0.8 1 1.3 0.9

Th XLM 1.8 1.9 2.7 1.6 2.1
mT5 0.5 1.1 0.8 0.8 0.2

Fr XLM 1.6 1.9 1.3 1.1 0.8
mT5 0.9 0.9 0.5 0.5 1.8

Sp XLM 1.5 1.1 1.2 1.3 0.9
mT5 0.3 0.6 0.9 1 0.3

Ge XLM 0.9 0.4 0.8 1.1 1
mT5 0.4 0.6 0.5 0.6 0.3

Ja XLM 1.7 1.4 2 1 1.1
It XLM 0.4 0.7 1.1 0.5 0.8

Table 13: Standard deviation (averaged over 10 an 5 models for XLM and mT5 respectively) of the results of
the application of the reordering algorithm to MTOP and Multilingual-Top (above and below the horizontal line
respectively). For the mT5 model, we report results only for the MTOP dataset, due to time constraints. Columns
correspond to evaluations settings; rows correspond to evaluation-dataset languages and model types. Values are
exact-match scores. Abbreviations: XLM – XLM-RoBERTa; RC19 – the algorithm by Rasooli and Collins; E – the
ENSEMBLE setting. Language abbreviations: Hi – Hindi, Th – Thai, Fr – French, Sp – Spanish, Ge – German, Ja –
Japanese, It – Italian.

Target Base Ours Ours-E Ras Ras-E

UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

French 0.1 0.1 0.9 1 0.2 0.2 0.2 0.3 0.2 0.2
German 0.3 0.4 0.7 0.6 0.1 0.3 0.3 0.4 0.3 0.2
Hindi 0.9 1.1 0.9 0.7 0.6 0.5 1 1.1 1.1 1.2
Korean 1 0.5 1 0.5 0.8 0.4 1 0.4 1.3 0.5
Persian 0.6 0.7 0.8 0.5 0.8 0.5 1 0.7 0.5 1.1
Spanish 0.1 0.1 0.6 0.5 0.1 0.2 0.2 0.2 0.4 0.4
Thai 1.8 1.4 0.9 0.5 0.3 0.3 1.3 1.6 1.4 3.1
Irish 2.1 1.4 1.2 0.9 1.8 1.4 0.7 0.8 0.2 0.8
Arabic 0.6 0.8 0.7 1 0.5 0.7 0.3 1.1 0.2 0.4

Table 14: Standard deviations (over 5 models) of the results of the application of the reordering algorithm to
cross-lingual UD parsing. Columns correspond to evaluations settings and score types; rows correspond to
evaluation-dataset languages. Abbreviations: Ras – the algorithm by Rasooli and Collins; E – the ENSEMBLE
setting.
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Target Base Ours OursE RC19 RC19E

Mic-F1 Mac-F1 Mic-F1 Mac-F1 Mic-F1 Mac-F1 Mic-F1 Mac-F1 Mic-F1 Mac-F1

Korean 5.3 6.4 3.4 3.6 5.3 5.9 5.4 5.8 8.4 9.1
Russian 3 4 2.5 3.1 3.1 3.5 4.8 6.5 2.2 2.8

Hindi 1.6 2.5 2 2.7 1 1.5 0.8 1.1 1.5 1.6
Telugu 3.8 4.1 3.3 1.7 3.1 2.3 1.8 2.7 4.5 3.8

Table 15: The standard deviations of the results (averaged over 5 models) of the application of the reordering
algorithm to Translated Tacred and IndoRE (above and below the horizontal line respectively). Columns correspond
to evaluations settings and score types; rows correspond to evaluation-dataset languages. Abbreviations: Mic-F1 –
Micro-F1; Mac-F1 – Macro-F1; RC19 – the algorithm by Rasooli and Collins; E – the ENSEMBLE setting.
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Target Sample Size Base OursE

Hi 100 0.9 1
300 0.9 0.9
500 1 1

Th 100 1.4 0.6
300 1.7 0.7
500 1.3 0.9

Fr 100 1 1.2
300 0.7 0.8
300 0.5 0.5

Sp 100 0.2 0.9
300 0.5 0.8
500 0.5 0.6

Ge 100 0.8 1.1
300 0.5 0.8
500 0.8 0.9

Table 16: The standard deviations of the results (aver-
aged over 5 models) of the application of the reordering
algorithm to MTOP in the few-shot scenario. Columns
correspond to evaluations settings; rows correspond to
evaluation-dataset languages. Values are exact-match
scores. Abbreviations: E – the ENSEMBLE setting. Lan-
guage abbreviations: Hi – Hindi, Th – Thai, Fr – French,
Sp – Spanish, Ge – German.
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