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Abstract

With the growing capabilities of large language
models, prompting them has become the dom-
inant way to access them. This has motivated
the development of strategies for automatically
selecting effective language prompts. In this
paper, we introduce PFLAT (prompt flatness),
a new metric to quantify the expected utility
of a language prompt. This metric is inspired
by flatness regularization in statistical learning
that quantifies the robustness of the model to-
wards its parameter perturbations. We provide
theoretical foundations for this metric and its
relationship with other prompt selection met-
rics, providing a comprehensive understand-
ing of existing methods. Empirically, we show
that combining PFLAT with existing metrics
improves both performance and sample effi-
ciency. Our metric outperforms the previous
prompt selection metrics with an average in-
crease of 10% in Pearson correlation across 6
classification benchmarks, and the prompt se-
lected by our metric gains 5% higher accuracy
than previous metrics across the benchmarks.1

1 Introduction

Manually “engineering” prompts for large lan-
guage models (LLMs) have been shown to lead
to tremendous performance gains and have been a
subject of intense study in recent years (Schick and
Schütze, 2021a; Reynolds and McDonell, 2021;
Mishra et al., 2022). However, the task of prompt
engineering can be challenging due to the difficulty
in determining the effectiveness of a prompt solely
based on its raw text form. Consequently, this pro-
cess is typically carried out manually, which can be
laborious and time-intensive. In particular, LLMs
may produce vastly different predictive distribu-
tions for two seemingly comparable prompts, de-
spite their semantic similarity (Mishra et al., 2022).

♡ Equal contribution.
1The code is accessible here: https://github.com/

shadowkiller33/flatness.
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Figure 1: We show that prompt flatness is an effective
indicator of a prompt’s performance on an LLM. For ex-
ample, if two prompts p1, p2 incurs the same loss on an
LLM parameterized by θ0, i.e., L(p1, θ0) = L(p2, θ0),
we find that the one with a flatter loss landscape of LLM
parameters (p1, in this visualization) is better.

This phenomenon results in an unexpectedly high
level of variability. (Jiang et al., 2020; Perez et al.,
2021; Elazar et al., 2021).

In response to such difficulties, recent works
propose metrics for automatic prompt selection.
Notably, Sorensen et al. (2022) introduces Mutual
Information (MI) to quantify the shared informa-
tion between prediction and inputs. Further, Chen
et al. (2022) introduces Sensitivity (SEN) to quan-
tify model receptiveness to textual perturbations of
the input prompts. Despite such metrics’ empirical
effectiveness, the underlying principles that enable
them are not well understood.

This motivates the following questions: (RQ1)
What makes the existing methods for prompt se-
lection effective? (RQ2) How are these existing
methods connected? (RQ3) Are there any new
metrics complementary to the existing ones?

To address the questions above, we study exist-
ing methods from an optimization perspective. The
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objective L(p,D, θ0) quantifies the performance
of an LLM (parameterized by θ0) on labeled data
D and a prompt p appended to the dataset inputs.
Prompt selection is in effect an optimization on
L(p,D, θ0) as a function of different choices of
p. The challenge is that, in practice, there are few
labeled data D (Perez et al., 2021), which would
make L(.) an unreliable measure for selecting ef-
fective prompts. We show that the existing prompt
selection metrics (MI and SEN) (Sorensen et al.,
2022; Chen et al., 2022) approximate the objec-
tive function L, and therefore, act as its surrogates.
This addresses (RQ1) and (RQ2) above.

Additionally, to address (RQ3) we borrow ideas
from statistical learning on flatness-aware optimiza-
tion (Hochreiter and Schmidhuber, 1994; Keskar
et al., 2017). We introduce Prompt Flatness
(PFLAT), a metric that quantifies L’s sensitivity to
small perturbations in LLMs parameters, when con-
ditioned on a prompt (see Figure 1 for intuitions).
Our results indicate that prompts with higher flat-
ness generally lead to better accuracy.

Our formal derivations also show that PFLAT is
distinct from and complementary to prior metrics
such as MI and SEN. Our empirical results (§3)
on six classification benchmarks and four different
model sizes also confirm our theoretical intuition.
For example, combining PFLAT and MI improves
the downstream performance by 6% accuracy over
the prompts selected by MI only. Similarly, com-
bining PFLAT and SEN improves the downstream
performance by 9% accuracy over prompt selected
by SEN only. Additionally, using PFLAT substan-
tially improves sample efficiency, an important fea-
ture of low-resource scenarios.

In summary, our contributions are: (a) We pro-
pose a formal optimization framework that unifies
several existing prompt selection metrics such as
MI and SEN. (b) Enabled by our formalism, we
introduce PFLAT, a metric for selecting prompts
that is more robust to LLMs’ parametric perturba-
tions. (c) We conduct comprehensive experiments
and the results demonstrate the effectiveness of our
method for prompt selection.

2 Prompt Selection via Flatness

We start by introducing the necessary background
and the notational convention (§2.1), then introduce
our proposed metric, PFLAT (§2.2), followed by a
discussion of its relation to other existing prompt
selection metrics (§2.3).

2.1 Background and Setup

Notation. We cast prompt selection into an op-
timization problem. We are provided with a pre-
trained language model f with parameters θ ∈ Rm

which maps each input natural language instance
x to fθ(x) ∈ [0, 1]|V |, a distribution over the la-
bel set V . We are also given input-output pairs
D = {(x,y)}, where y is a one-hot label.

Prompt selection. Given a language model f ,
we seek to minimize the following empirical risk,
also called prompt loss in this paper:

L(p,D, θ) =
1

|D|
∑

(x,y)∈D
ℓ(fθ(p ◦ x),y),

where p ◦ x is the string combination of a prompt
p to input x, and ℓ is an appropriate loss such as
cross-entropy that quantifies the gap between gold
label y and predicted distribution fθ(p ◦ x).

In the classic machine learning literature, it is
customary to minimize empirical risk L(p,D, θ)
with respect to the parameters of the underlying
model θ. However, the recent developments in
LLMs (Radford et al., 2019; Brown et al., 2020)
have resulted in an alternative that involves opti-
mization concerning the choice of prompt p:

p̂ = argmin
p∈P

L(p,D, θ), (1)

given a collection of natural language prompts P
that are “engineered” by domain experts (Schick
and Schütze, 2021b,a; Mishra et al., 2022)

2.2 Prompt Selection via Flatness

Our work draws inspiration from classic machine
learning, where studies have demonstrated that us-
ing loss flatness in model selection leads to im-
proved performance and generalization (Foret
et al., 2020; Baldassi et al., 2020; Zheng et al.,
2021; Stutz et al., 2021; Andriushchenko and Flam-
marion, 2022). In this prior literature, the optimiza-
tion is performed with respect to model parameters
θ. Conversely, in the modern NLP literature, the pa-
rameters of LLMs are set once they are pre-trained,
and further optimization is achieved through input
prompts As a result, it remains to be seen whether
the findings from classic machine learning litera-
ture will translate to prompting LLMs.

Robust prompt selection objective. We start
with the formal definition of flatness. Specifically,
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the goal is to select parameters that are robust to
parameter perturbations:

L̄(p,D, θ) = max
∥ϵ∥<r

L(p,D, θ + ϵ), (2)

p̂ = argmin
p∈P

L̄(p,D, θ), (3)

where ϵ is a small perturbation added to model pa-
rameters θ. The inner optimization quantifies the
worst-case loss upon a small perturbation of the
model parameter from its default value, where the
perturbations are contained within a small algebraic
ball, ∥ϵ∥ < r. The overall objective is a minimax
optimization (Zheng et al., 2021; Stutz et al., 2021;
Baldassi et al., 2020) i.e., selecting the best prompt
p with the smallest worst loss under small perturba-
tions. Note that this is a strict generalization of the
standard prompt selection objective in Equation 1.

Flatness definition. Since Equation 2 is a non-
trivial saddle-point optimization problem, previous
work (Zhao et al., 2022; Zhang et al., 2023b) has
approximated it with the gradient norm of loss func-
tion:

L̄(p,D, θ) ≈ L(p,D, θ) + αF(p,D, θ) (4)

F(p,D, θ) ≜ ∥∇θL(p,D, θ)∥2 , (5)

where F(p,D, θ) is the accurate analytical defini-
tion of flatness the loss function L(.). Intuitively,
it quantifies how resilient it is against small pertur-
bations in parameter space θ.

The calculation of F requires (1) gradient com-
putation of the loss L and (2) ground-truth labels
which may not be available. To circumvent these
challenges, we introduce an approximation of F .

An efficient surrogate for flatness. Here pro-
vide an approximate definition of flatness (F in
Equation 5) that does not depend on instance la-
bels. Our new metric, PFLAT quantifies the amount
of changes in LLM confidence values upon pertur-
bations in its parameters:

PFLAT(p,DX , θ) =

1

|DX |
∑

x∈DX

Eϵ1,ϵ2

[
g(ϵ1)− g(ϵ2)

]
, (6)

where g(ϵ) ≜ ℓ
(
fθ(p ◦x), fθ+ϵ(p ◦x)

)
and ϵ1, ϵ2

are sampled from a Gaussian distribution N (0, σ2)
with its variance σ2 determining the perturbation
magnitude. Furthermore, DX = {x} refers to the

input instances only (no labels). Intuitively, higher
PFLAT means higher sensitivity towards perturba-
tion in model parameter, indicating that the given
input prompt, instances, and the model parame-
ters have formed a sharper minimum. The formal
connection between PFLAT and F is deferred to
Appendix B.

Although the precise computation of PFLAT de-
mands numerous Gaussian samples, practically, ap-
proximating it with few samples suffice for a rea-
sonable PFLATestimate. We’ll demonstrate this in
the experiments (§4).

Putting it together. Incorporating our PFLAT

metric (Equation 6) in robust prompt selection ob-
jective (Equation 4) we get the following:

L̄(p,D, θ) ≈ L(p,D, θ)+α·PFLAT(p,D, θ), (7)

where α is a scalar hyperparameter. In our exper-
iments, we select the prompt with the smallest L̄
and show that such prompts have better quality than
those selected only by MI or SEN. For emphasis,
this equation shows that for robust prompt selec-
tion according to L̄, it is not enough to use PFLAT

alone. It should be used in conjunction to L or
its approximations (discussed in the next section).
We show this point empirically in Section 3. The
only reason that our metric is not fully zero-shot
is that the hyper-parameter α has to be selected
according to a few examples of a held-out set.

2.3 Relation to Prior Prompt Metrics

We show that prompt selection through existing
methods such as MI (Sorensen et al., 2022) and
SEN (Chen et al., 2022) is approximately equivalent
to minimizing prompt loss L(p,D, θ), as shown in
Equation 5. Therefore, they can be viewed as
surrogates to L(.). Formally, we provide the gap
between prompt loss and its surrogates (e.g., MI
and SEN) which is determined by the difference
(e.g., KL divergence) between a model’s predic-
tions and the ground-truth labels.

Mutual Information. Sorensen et al. (2022) pro-
pose to pick prompts that maximize the mutual
information between model input and the predic-
tion.

Proposition 1. Mutual information MI(p,D, θ) is
a surrogate loss for prompt loss L(p,D, θ) with a
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gap quantitatively defined as follows:

MI(p,D, θ)− L(p,D, θ)

= c+
1

|D|
∑

(x,y)∈D
KL(fθ(x ◦ p)||y),

where c is a constant c = H(fθ(x ◦ p)) that does
not depend on prompt p. KL refers to KL diver-
gence.

Sensitivity. Give a prompt p, Chen et al. (2022)
utilizes the sensitivity of model prediction towards
the textual perturbation in p.

Proposition 2. Sensitivity SEN(p,D, θ) is a sur-
rogate loss for prompt loss L(p,D, θ) with a gap
defined as follows:

SEN(p,D, θ)− L(p,D, θ)

=
1

|D|
∑

(x,y)∈D
Ep′

[
ℓ01(fθ(x ◦ p′), y)

]
,

where p′ and ℓ01 refer to the perturbed prompt and
0-1 loss, and Ep′ is an expectation (average) over
different choices of perturbed prompts p′

The detailed analyses are deferred to Ap-
pendix A. These derivations show that selecting
prompts based on MI and Sen is approximately se-
lecting the prompts with the smallest prompt loss,
which shows their connections and explains why
they are effective for prompt selection.

Complementarity to PFLAT. A corollary of
Proposition 1,2 is that prompt-selection metrics
such as MI (Sorensen et al., 2022) and SEN (Chen
et al., 2022) are surrogates for prompt loss, which
are complementary to PFLAT, for the purpose of ro-
bust prompt selection (Equation 2). To see this, it is
enough to go back to Equation 7, which shows how
robust prompt selection decomposes into PFLAT

and L. Finally, as we see, L is approximated by
SEN and MI, which concludes the argument.

3 Experiments

We conduct extensive experiments to assess the
effectiveness of prompt selection metrics.

Experimental setup. We experiment with a vari-
ety of classification benchmarks: AGNews (Zhang
et al., 2015), CB (De Marneffe et al., 2019), DBpe-
dia (Zhang et al., 2015), SST-2 (Socher et al., 2013),
RTE (Dagan et al., 2005), and TREC (Voorhees

and Tice, 2000). We choose four different GPT-2:
base, medium, large, and xl sizes.2

Held-out set for α hyperparameter. For each
dataset, we create a small dev-set by randomly
selecting 8 labeled sentences per class to tune the
value of α.

Implementation. We prepare 20 human-written
instructions by the authors (included in Ap-
pendix F) appended by random demonstrations for
each task. The number of demonstrations is set as 5,
which matches the settings in Sorensen et al. (2022)
for a fair comparison. We use MI, SEN, PFLAT,
and their combinations for comparison. The results
are averaged on three random seeds. We esti-
mate PFLAT (Equation 6) via 5 random Gaussian
perturbations of LLM parameters with variance σ2

set to 1e-4. Later, we offer an assessment of the
influence of this estimation (§4.4).

Evaluation metrics. We use two metric families:
Correlation with accuracy: The first category mea-
sures the alignment between prompt selection met-
rics (including our proposed metric) and the down-
stream accuracy of each prompt. This evaluation
contrasts the relative quality of prompts based on
their accuracy with their prompt-selection accu-
racy. Specifically, for each prompt, we compute
the prompt selection metric score (MI, MI + PFLAT,
which uses only task inputs) and the prompt’s ac-
curacy on the test set. Given a collection of such
paired numbers, we compute their correlation. A
high correlation indicates that this prompt-selection
metric can serve as a “surrogate” (proxy) for select-
ing the most accurate prompt, bypassing the direct
maximization of accuracy which often demands
extra held-out labeled data.
Ranking evaluation: Since correlations are sensi-
tive and brittle to outliers (Anscombe, 1973), we
further use different metrics for best-performance
prompt retrieval. Specifically, we use NDCG@1
(Järvelin, 2000), NDCG@3, and Rate. NDCG is
a common metric for ranking quality in informa-
tion retrieval. Here, we take prompts’ performance
as their quality score for NDCG. We denote the
prompt selected by metric (e.g., highest MI or low-
est SEN) as p̂, and Rate is defined as follows:

Rate =
Performance(p̂)

Performance(po)
, (8)

2The models are accessible at https://huggingface.
co/gpt2.
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Figure 2: Results of correlation evaluation across six datasets and their average (AVG). First row: SEN vs
SEN+PFLAT and MI vs MI+PFLAT show that flatness brings consistent improvements over existing metrics.
Bottom left: From PFLAT vs MI+PFLAT, flatness does not perform well when applied alone, as expected. Bottom
right: MI+SEN vs MIcomparison shows that combining SEN and MI brings limited improvement.

where po refers to the prompt that achieves the best
performance on the task. Intuitively, Rate reflects
the performance of the selected prompt compared
to the best prompt, and it is a real-valued number
between 0 and 1. A larger Rate corresponds to a
better selected prompt p̂.

Flatness is complementary to MI and SEN. The
correlation results are in Figure 2 (detailed num-
bers in Appendix C). Figure 2 (first row) shows
that correlations are higher for MI+PFLAT and
SEN+PFLAT than for metrics without PFLAT. In
other words, combining existing (MI or SEN) with
flatness results in a more effective prompt selection
metric that correlates better with test accuracy.

We find similar results in the ranking evaluation
illustrated in Figure 3 (full results in Appendix D).
In all benchmarks, metrics incorporating flatness
generally surpass those without it, highlighting
the importance of utilizing prompt flatness in the
prompt selection process.

Flatness alone does not help. As shown in Fig-
ure 2, SEN+PFLAT, MI+PFLAT or MI generally
outperforms PFLAT, these results show the impor-
tance of combining prompt loss. Without prompt

loss, prompt flatness on itself is insufficient to re-
flect prompt quality. Such results also stress the
importance of combining prompt loss and flatness.

4 Further Analysis

4.1 Continuous Prompt Selection

In addition to text form (discrete) prompt, we also
test out the effectiveness of flatness for continu-
ous prompt optimization (also known as ‘prefix-
tuning’). Like the earlier result, introducing flat-
ness to prefix-tuning also improves model perfor-
mance.

Method SST-2 AGNews SNLI

w/o Flatness 92.5 (0.1) 86.4 (0.2) 72.5 (0.2)
w/ Flatness 93.1 (0.1) 87.3 (0.1) 73.3 (0.2)

Table 1: Performance for prefix tuning with flatness
and w/o flatness in a mean (standard-deviation) form.
It is observed that leveraging flatness in continuous
prompt tuning brings improvements to performance.
Stronger numbers for each dataset are marked bold.
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Figure 3: Rate(reflecting the ability to select better prompts) computed for prompt selection across six datasets and
their average performance, using GPT2-base model. We can see that combining flatness with existing metrics
(MI+PFLAT or SEN+PFLAT) is consistently better than not using PFLAT.
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Figure 4: Rate (reflecting the ability to select better prompts) evaluation computed prompt selection across four
model sizes, evaluated on the AGNews dataset. Combining prompt loss and flatness (MI+PFLAT or SEN+PFLAT) is
consistently better than MI/Sen alone across different model types. More detailed results are deferred to Appendix D.

Experimental setup. We following prefix-tuning
setup of Li and Liang (2021) and consider three
text classification benchmarks in our experiments:
SST-2 (Socher et al., 2013), AGNews (Zhang et al.,
2015), and SNLI (Bowman et al., 2015). We
use the GPT2-medium as the model and set pre-
fix length to 10 tokens for all prefix-tuning experi-
ments. We train 30 epochs for SST-2 and 25 epochs
for AGNews and SNLI, as suggested in Yang and
Liu (2021).

Implementation of flatness-aware prefix-tuning.
To introduce flatness into prefix tuning, we leverage
sharpness-aware optimizer SAM (Foret et al., 2020)
for model optimization. We use Adam (Kingma
and Ba, 2015) as our optimizer in the counterpart
without flatness. Specifically, both cases use the
same learning rate 5e-5.

Results. As shown in Table 1, prefix-tuning with
flatness achieves better performance than without
flatness. Such results show that flatter continu-
ous prompts bring better performance, which
matches our conclusions on discrete prompts.

4.2 Influence of Model Size

We investigate the effects of model size in our
methods. As shown in Figure 4, as the model
size increases the gap between the two metrics
(e.g., MI vs MI+PFLAT) measured in terms of Rate
generally increases, indicating an increasing gain
from adding PFLAT to existing prompt selection
for larger models.

4.3 Impact on Sample Efficiency

If there is enough labeled data, a reasonable ap-
proach for prompt selection is based on the ac-
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curacy of the prompt on a labeled development
set (we name this baseline method “acc”). Thus,
a natural question concerning practicality arises:
how does our method compare to prompt selection
based on the accuracy of limited labeled exam-
ples? To perform the comparison, we select N
labeled data from the AGNews dataset and evalu-
ate Rate (Equation 8) for both “acc” baseline and
our method (MI/SEN + PFLAT).

Based on the results in Figure 5, we observe
that with little data available, our methods select a
far better prompt than the “acc” baseline, allowing
performance gains in low-data scenarios. This can
be attributed to the fact that when the dataset is
small, there may be a significant distribution shift
between the development and test sets. However,
our methods, MI/Sen/PFLAT, provide signals be-
yond labeled data and thus more resilient to such
distribution shifts. Unsurprisingly, when data size
grows, the gap between our method and the “dev”
baseline decreases since the distribution shift issue
is mitigated by increasing the size of the dev set.
In conclusion, our metrics are more advantageous
than development set accuracy for prompt selection
in low-resource scenarios.
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Dev-set Acc-based Selection vs. Our methods 
 on AGNews
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SEN+pFLAT
ACC

Figure 5: For development sets with varying sizes
n = 16, 32, · · · , 512, the devset-acc based method
(green line) selects prompts based on the accuracy of
prompts on n devset samples. On the other hand, our
metric (MI+PFLAT and SEN+PFLAT) also use n sam-
ples and achieve better performance under low-resource
scenarios (n < 500).

4.4 Estimation of PFLAT

In our implementation of PFLAT (Equation 7),
there are two factors that affect PFLAT: the sam-
pling number N and the perturbation size σ2. We
explore their effects in this part.

As noted earlier, we compute prompt flatness by
sampling ϵ from a standard Gaussian distribution
N (0, σ2). Since the computational cost of this
estimate is proportional to the sample size N , the
choice of N is crucial for our efficiency. Figure 7
shows the results of an experiment showing the
trade-off between N and estimation quality. The
results indicate that N ≈ 5 is sufficient to provide
reliable estimates for PFLAT.

Likewise, we investigate the impact of σ2 on the
estimate. The results in Figure 6 (a, b) indicate
that the optimal perturbation size is around 1e-4.
When the perturbation size increases after 1e-4,
the estimation error also increases.

5 Related Work

Prompt selection and engineering. Perfor-
mance of LLMs is highly sensitive to their
prompt prefix, including the ordering of demon-
strations (Lu et al., 2022) or framing of the in-
structions (Mishra et al., 2022). This has moti-
vated work prompt selection, such as the ones dis-
cussed in this work (Chen et al., 2022; Sorensen
et al., 2022). Beyond quantifying prompts’ ef-
fectiveness, the literature has explored alternative
ways to address LLMs’ brittleness, such as chain-
of-thoughts prompting (Kojima et al., 2022), LLM
self-consistency (Wang et al., 2022a) and complex-
ity (Fu et al., 2022). Our optimization-based frame-
work does not cover these classes of prompt engi-
neering, which we hope future work will address.

Algorithmic prompt generation. Several prior
works focus on generating effective prompts to
solve a given task via an LLM. Examples are
RLPrompt (Deng et al., 2022), GrIPs (Prasad
et al., 2023), and Tempera (Zhang et al., 2023a).
While these works primarily focused on generating
prompts with high performance for prompt-tuning,
our goal is to identify effective prompts for a pool of
candidate prompts that is beneficial for in-context
learning. In particular, within the context of Ap-
pendix E, a comparative analysis is conducted to
examine the in-context learning performance of
prompts generated by these approaches. The re-
sults reveal that prompts deemed suitable for fine-
tuning exhibit sub-optimal performance in terms of
in-context learning.

Besides, the ability to generate prompts in-
evitably involves model tuning via setups like Re-
inforcement Learning which incurs an additional
computational cost. More importantly, the qual-

7801



(a) (b)

10 5 10 4 10 3 10 2 10 1

Perturbation size

89

90

91

92

93

94

95

96

Ra
te

Performance of SEN + pFLAT as perturbation size varies
AGNews
SST-2
RTE
TREC
CB
DBPedia

10 5 10 4 10 3 10 2 10 1

Perturbation size

90

91

92

93

94

95

96

97

Ra
te

Performance of MI + pFLAT as perturbation size varies
AGNews
SST-2
RTE
TREC
CB
DBPedia

Figure 6: (a) Rate of SEN+PFLAT as perturbation size varies. The optimal ϵ is around 1e-5, as ϵ enlarges, the
performance of SEN+PFLAT continues to degrade. (b) Rate of MI+PFLAT as perturbation size varies. The trend in
MI+PFLAT is similar to (b).
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Figure 7: The trade-off between performance and sam-
pling number N in PFLAT’s computation procedure. We
can observe that the proper N is around 5.

ity of the generated prompts depends on the task’s
domain. When confronted with Out-of-Domain
(OOD) tasks, these approaches tend to generate
nonsensical prompts.

Continuous prompts. Beyond language (dis-
crete) prompts, we show that our results also apply
to continuous prompts. In contrast to manually
creating discrete prompts, one can optimize contin-
uous prompts in embedding space, yielding better
results (Lester et al., 2021; Li and Liang, 2021;
Zhang et al., 2022; Gu et al., 2022; Lang et al.,
2022; He et al., 2022). Despite higher accuracy,
continuous prompt optimization is only applica-
ble to LLMs that are publicly accessible. Besides,
there is no evidence that continuous prompts are
interpretable (Khashabi et al., 2022), making it

challenging to transfer insights from prompts that
work well for one task to another.

Flatness-aware language modeling Previous
works (Liu et al., 2023; Mehta et al., 2021) showed
that flatness-aware optimization can enhance the
generalization of LLM during pre-training, even if
the training loss is the same. Na et al (Na et al.,
2022) demonstrated that flatness-aware training in-
creases the compression rate. Wang et al(Wang
et al., 2022b) showed the advantages of flatness in
training encoder-only models.

Model calibration and robustness analysis.
Model calibration focuses on adjusting LLMs’
predictions to reflect human uncertainty (Holtz-
man et al., 2021; Zhao et al., 2021; Jiang et al.,
2022). Calibration is related to our work as a well-
calibrated LLM’s confidence could be used for
prompt selection. However, calibration algorithms
have remained domain/task-specific so far, restrict-
ing their applicability to the problem discussed in
this paper.

6 Conclusion

We developed a theoretical framework for prompt
selection techniques that merges prompt loss and
flatness, enabling the integration of previous stud-
ies to elucidate their distinctions and efficacy.
Through extensive experimentation, we demon-
strated the effectiveness of our proposed flatness-
based metric when used in conjunction with ex-
isting ones. Our research offers valuable insights
and directions for future investigations in effective
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prompt engineering.

Limitation

The limitations of this study can be outlined as fol-
lows: (1) Our paper assesses the methods based
on classification tasks, but they can potentially be
applied to generation tasks in the future. (2) Our
framework presumes that the provided collection
of candidate prompts is all coherent and fluent for
the intended task, despite the possibility of yielding
varying results. (3) Our approach is not entirely
zero-shot, since it still requires a small labeled de-
velopment set for adjusting the α parameter.

Ethical Considerations

To the best of our knowledge, the paper does not
pose any immediate ethical concerns.
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A Sen and MI are approximations (surrogates) of prompt loss

In this section, we demonstrate that Sen (Sorensen et al., 2022) and MI (Chen et al., 2022) of prompt p on
dataset D are essentially surrogates for the prompt loss L on D.

Mutual Information Sorensen et al. (2022) hypothesizes that a prompt pi with higher mutual infor-
mation (MI) will align a language model to a task better. In prompt selection, MI select the prompt
p̂ = argmaxp {I (fθ(D ◦ p);Y)} and MI can be estimated as:

MI(D, p; θ) = I (fθ(D, p);Y)

= H(Y)−H (fθ(D, p))
(9)

where H refers to entropy, and each term is estimated in expectation using N draws x ∼ DX :

H(Y) = H


 1

N

∑

x∈DX

fθ(x ◦ p)


 (10)

H (Y | fθ(D, p)) =
1

N

∑

x∈DX

H(fθ(x ◦ p))

According to the Weak Law of Large Numbers (and assume that test samples x ∈ D are independently
drawn from an unknown distribution PD), it is easy to obtain that

lim
|D|→∞

P (|H(Y)−H(E)| ≥ ϵ) = 0 (11)

Where E refers to the expectation Ex∈PDP (Y |x ◦ p; θ), and it is a fixed distribution once f and PD are
determined. As shown by Equation 11, H(Y) converges to a constant as the test sample number increases.
Now we focus on the second term of MI(D, p), as shown in Equation 9. We also re-write it as follows:

H (Y | fθ(D, p)) =
1

|D|
∑

x∈DX

H(fθ(x ◦ p))

=
1

|D|
∑

x∈DX

[ℓce(y, fθ(x ◦ p))

−KL(fθ(x ◦ p)||y)]

= L(p,D, θ)− 1

|D|
∑

x∈DX

KL(fθ(x ◦ p)||y)

where ℓce refers to cross-entropy and KL is the KL divergence. The equation above illustrates a relation
between the second term of MI and prompt loss. The gap between MI and prompt loss is the average KL
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divergence. Overall, MI can be formulated as follows:

MI(D, p) = H(E)− L(p,D, θ) (12)

+
1

|D|
∑

x∈DX

KL(fθ(x ◦ p)||y) (13)

Equation 12 shows that maximizing mutual information is equivalent to minimizing prompt loss to a
certain degree, indicating that MI serves as a surrogate for prompt loss.

Sensitivity Sensitivity (Sen) reflects how much the model output changes given small perturbations
of the input. Sen first creates a perturbed prompt set P given a prompt p, by changing demo order σ
and adding perturbation ϵ to the prompt instruction I . We direct readers to the original paper (Chen
et al., 2022) for details of how such prompt sets can be created. Sensitivity on one single test sample x is
formally denoted as follows:

SEN(x, p) =
∑

p′∈P
1
[
fθ(x ◦ p) ̸= fθ(x ◦ p′)

]
(14)

Naturally, we can extend this sample-level metric to the dataset level. Given test samples D, the SEN of
prompt p is defined as follows:

SEN(D, p) =
1

N

∑

x∈DX

SEN(x, p) (15)

We can re-write the formula for Sen as follows:

SEN(D, p) =
1

N

∑

x∈DX

SEN(x, p)

=
1

|D|
∑

x∈DX

Ep′ℓ01(fθ(x ◦ p′), fθ(x ◦ p))

= L(p,D, θ)− 1

|D|
∑

x∈DX

Ep′ℓ01(fθ(x ◦ p′), y)

Note that L(p,D) is a 0-1 loss instead of cross-entropy loss as shown in MI’s derivation. The equation
above shows that SEN can be regarded as a surrogate for the prompt loss L. Therefore, minimizing SEN

is partially equal to minimizing prompt loss, explaining why a low-sensitivity prompt achieves better
performance, as empirically verified by Chen et al. (2022).

Generally, the gap between prompt loss L and two surrogates (MI and SEN) is determined by the
distance (i.e., KL divergence) between the model’s prediction fθ(x◦p) distribution and ground-truth label.
When fθ(x) is identical to round-truth label, MI and SEN become perfect surrogates for prompt loss L.

B On the approximation gap of flatness and F
This section details the approximation gap of flatness PFLAT towards F . Firstly, we recall the definition
of PFLAT and F .

PFLAT(p,D, θ) =
1

|D|
∑

x∈DX

Eϵ[ℓ(fθ(p ◦ x), fθ+ϵ1(p ◦ x))

− ℓ(fθ(p ◦ x), fθ+ϵ2(p ◦ x))]

=
1

|D|
∑

x∈DX

Eϵ ∥ℓ(fθ(p ◦ x), fθ+ϵ(p ◦ x)∥2

(16)

Also, we re-write F(p,D, θ) as follows:

F(p,D, θ) = ∥∇θL(p,D, θ)∥2 (17)

=
1

|D|
∑

x,y∈D
∇θ ∥ℓ(fθ(p ◦ x), y∥2 (18)
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Thus, the approximation gap can be obtained through Equation 16 and Equation 17. When the model’s
confidence is identical to ground-truth labels, PFLAT is a precise approximator of F .
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C Results on correlation

Here are the full results of correlation comparisons in our paper, as shown in Table 2.

Model Methods AGNews CB DBpedia SST-2 RTE

Pr Spr Pr Spr Pr Spr Pr Spr Pr Spr

GPT2-base

MI 21.9 22.5 3.5 4.5 30.1 25.1 19.2 16.8 20.6 23.5
Sen 8.6 7.6 14.3 13.4 -10.6 -14.2 5.6 3.4 -9.9 -13.9

PFLAT 21.4 19.8 -9.1 -8.1 21.3 22.0 18.3 20.2 20.2 20.4
MI+Sen 22.0 16.4 17.1 18.1 26.0 23.7 20.1 21.2 24.9 23.8

MI+PFLAT 26.3 25.7 20.5 20.7 24.1 25.6 23.4 21.7 15.4 17.5
Sen+PFLAT 28.6 29.3 28.1 26.7 29.4 28.1 23.6 24.5 27.2 25.3

GPT2-medium

MI 27.5 26.4 26.7 23.0 28.9 26.9 27.1 25.0 22.5 16.2
Sen -11.2 3.5 -4.5 -7.7 -8.6 -10.8 10.1 5.4 -8.4 -10.3

PFLAT 23.8 26.0 21.6 22.5 20.6 23.4 23.8 23.3 20.2 17.7
MI+Sen 24.7 22.8 18.7 20.4 23.7 27.0 27.7 26.5 11.2 13.0

MI+PFLAT 29.0 30.1 22.9 20.5 29.9 31.9 27.0 28.7 25.7 20.6
Sen+PFLAT 28.1 29.0 23.6 26.6 33.1 31.8 32.3 32.7 24.0 17.3

GPT2-large

MI 23.4 21.0 20.9 20.9 24.2 27.2 20.2 21.3 22.8 18.6
Sen 11.0 5.6 -6.0 -4.3 -5.9 -8.9 -6.7 5.8 11.0 22.1

PFLAT 20.0 20.7 19.4 22.4 21.7 22.5 20.1 18.3 22.1 20.2
MI+Sen 25.0 21.3 24.1 24.6 23.0 27.0 25.3 24.0 19.4 21.5

MI+PFLAT 25.4 26.7 25.4 29.3 26.3 27.6 30.1 28.9 35.3 30.9
Sen+PFLAT 29.5 28.8 28.0 28.5 24.9 28.4 31.3 30.4 19.3 20.9

GPT2-xl

MI 22.7 24.3 18.9 20.1 24.7 22.0 15.3 16.8 14.7 21.2
Sen 5.6 9.9 -3.8 -5.0 -8.4 -13.8 10.1 2.4 -4.3 -10.1

PFLAT 10.6 6.2 20.1 18.1 23.7 23.4 14.2 12.0 24.2 26.9
MI+Sen 20.5 19.2 18.2 21.0 21.9 22.0 20.1 19.7 18.0 20.4

MI+PFLAT 21.4 20.5 22.3 19.8 25.1 26.9 22.3 20.9 16.4 18.1
Sen+PFLAT 25.3 21.8 24.3 25.7 25.3 22.3 24.1 20.0 25.3 25.5

Table 2: Pearson (Pr) and Spearman (Spr) correlation between prompts’ performance and the metrics of various
method. Overall, flatness-based metrics obtain higher correlations. Red means the best performance.
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D Results on Prompt Retrieval

Here are the full results of prompt retrieval performance in our paper, as shown in Table 3 and Table 4.

Model Methods SST-2 RTE TREC

N@1 N@3 Rate N@1 N@3 Rate N@1 N@3 Rate

GPT2-base

MI 54.1 55.0 83.7 56.1 51.5 87.8 53.6 54.8 83.9
MI+PFLAT 56.6 59.4 90.8 48.2 49.4 92.1 55.8 56.7 91.2

Sen 52.2 53.6 83.1 55.5 51.3 86.5 53.8 55.0 83.4
Sen+PFLAT 49.2 59.9 92.7 69.1 57.8 92.4 54.7 56.0 93.3

GPT2-medium

MI 43.2 48.7 81.9 43.5 48.7 85.9 52.9 57.6 86.0
MI+PFLAT 51.6 52.2 91.8 56.6 56.2 92.8 58.0 60.1 94.0

Sen 45.1 49.0 82.7 44.6 55.2 88.7 54.0 56.0 86.4
Sen+PFLAT 54.1 57.9 90.3 57.1 57.9 93.3 57.4 57.9 95.2

GPT2-large

MI 47.5 44.9 81.0 36.6 40.6 90.2 56.1 54.6 88.7
MI+PFLAT 51.2 56.8 90.4 64.1 42.3 96.0 58.1 54.2 93.4

Sen 50.2 51.7 77.5 51.1 47.5 86.5 49.9 53.2 87.9
Sen+PFLAT 56.4 59.0 91.7 60.9 56.3 97.6 57.0 56.8 94.9

GPT2-xl

MI 52.1 51.2 86.1 22.7 28.4 87.7 54.6 55.0 85.6
MI+PFLAT 52.0 53.5 95.5 44.6 42.6 97.9 51.4 53.0 95.3

Sen 47.7 53.1 87.5 23.6 26.8 86.4 52.8 53.4 85.0
Sen+PFLAT 57.3 54.2 95.0 32.9 36.5 96.2 56.6 53.4 95.0

Table 3: Results of high-performance prompts retrieval, we can see that metric combined prompt loss and flatness
achieve better performance. Specifically, N@1 represents NDCG@1. Red means the best performance.

Model Methods AGNews CB DBpedia

N@1 N@3 Rate N@1 N@3 Rate N@1 N@3 Rate

GPT2-base

MI 49.2 50.4 86.8 31.5 42.6 88.2 39.9 47.8 86.6
Sen 46.5 56.8 85.4 34.3 50.0 85.6 35.9 46.3 86.7

MI+PFLAT 52.1 48.9 91.9 43.1 44.3 94.6 39.9 52.8 94.2
Sen+PFLAT 52.3 54.0 92.8 34.8 45.4 95.1 50.1 48.4 94.8

GPT2-medium

MI 46.8 50.4 88.2 57.8 48.5 86.2 51.3 50.0 86.6
Sen 44.3 56.8 85.9 64.4 60.6 86.0 53.3 52.0 87.1

MI+PFLAT 51.9 58.9 93.9 53.7 47.0 95.7 51.3 58.4 95.2
Sen+PFLAT 50.8 54.0 94.8 63.7 52.0 94.5 56.0 55.0 95.6

GPT2-large

MI 53.2 51.2 87.3 34.1 44.8 85.9 53.3 55.3 87.0
Sen 46.9 50.6 84.0 28.8 40.1 83.1 33.8 43.1 84.8

MI+PFLAT 47.0 45.9 95.2 37.1 50.1 96.3 50.9 49.1 96.3
Sen+PFLAT 52.1 53.8 94.7 24.1 46.2 95.9 39.6 54.8 97.1

GPT2-xl

MI 44.5 60.8 88.6 51.4 62.3 86.1 55.7 53.0 85.7
Sen 48.1 57.0 87.8 48.8 53.0 83.1 44.1 52.9 84.1

MI+PFLAT 48.9 46.3 97.4 53.6 69.2 96.4 58.7 49.7 96.0
Sen+PFLAT 53.0 57.1 96.0 54.8 54.1 96.0 47.7 58.4 96.2

Table 4: Results of high-performance prompts retrieval on AGNews, CB, and DBpedia. we can see that metric
combined prompt loss and flatness achieve better performance. Red means the best performance.
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E Comparison to Automatic Prompt Generation Algorithms

Here we compare PFLAT to automatic prompt-generation, namely RLPrompt (Deng et al., 2022), Tempera
(Zhang et al., 2023a), and GrIPs (Prasad et al., 2023). The primary objective of these algorithms is to
automatically generate prompts that would be apt for prompt tuning. By contrast, our study aims to
scrutinize and identify a prompt that would be advantageous for ICL. In this section, we present empirical
results based on prompts produced by off-the-shelf models of RLPrompt, Tempera, GrIPs. Then we
compare the performance of the prompts obtained via various approaches, including RLPrompt, Tempera,
GrIPs, and our method (Sen+PFLAT), as depicted in Table 5. The results illustrate that the prompt selected
by our method exhibits superior ICL performance. Besides, we show some examples of RLPrompt,
Tempera, and GrIPs in Table 6,Table 7,Table 8.

Model Methods SST-2 RTE TREC

1-shot 4-shot 8-shot 1-shot 4-shot 8-shot 1-shot 4-shot 8-shot

GPT2-xl

RLPrompt 54.1 56.0 60.7 52.1 54.5 57.8 25.6 27.8 30.9
Tempera 55.0 59.4 61.8 52.2 58.4 59.1 24.8 28.7 31.2

GrIPs 52.2 58.6 60.1 51.5 53.3 56.5 23.8 25.0 27.9
Sen+PFLAT 58.9 63.9 65.7 55.6 58.9 61.9 29.7 32.1 34.7

Table 5: In-context learning performance of prompts from different methods. We can observe that the prompt
selected by our method achieves better in-context learning performance.

Examples of prompt generated by RLPrompt, Tempera, and GrIPs
• [RLPrompt]: Sentiment of the sentence is negative or positive.

• [Tempera]: Given text, given text, Classify whether it is good or bad.

• [GrIPs]: Your task as "positive" or "negative".

Table 6: Instructions from RLPrompt, Tempera, and GrIPs for SST-2 task

Examples of prompt generated by RLPrompt, Tempera, and GrIPs
• [RLPrompt]: premise follow that hypo yes or no?

• [Tempera]: Given premise, does it follow hypothesis?

• [GrIPs]: Does the information support premise?

Table 7: Instructions from RLPrompt, Tempera, and GrIPs for RTE task

Examples of prompt generated by RLPrompt, Tempera, and GrIPs
• [RLPrompt]: The topic of the question is

• [Tempera]: Given the info, what’s the topic

• [GrIPs]: Topic of the sentence

Table 8: Instructions from RLPrompt, Tempera, and GrIPs for TREC task
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F Instructions

Here we include the pool of natural language prompts (instructions) used in each task. We list instructions
for SST-2 in Table 9, RTE in Table 10, TREC in Table 11, AGNews in Table 12, CB in Table 13 and
DBPedia in Table 14.

SST-2 Instructions
• Suppose we have the following premise, Can we infer that hypothesis? Yes, no, or maybe?

• Based on the previous premise, is it true for the hypothesis?

• See on the following information, is the claim right?

• Given that premise, does it follow that hypothesis? Yes, no, or maybe?

• Given the premise, are we justified in saying that hypothesis? Yes, no, or maybe?

• Based on the text, question: hypothesis is True, False, or Neither?

• Keeping in mind the above text, consider: hypothesis is always, sometimes, or never correct?

• Given premise. Is it guaranteed true that hypothesis? Yes, no, or maybe?

• Given that premise. Therefore, it must be true that hypothesis? Yes, no, or maybe?

• Assume it is true that premise. Therefore, hypothesis is guaranteed, possible, or impossible?

• Using only the following description and what you know about the world, hypothesis is definitely correct, incorrect, or
inconclusive?

• Take the following as truth. Then the hypothesis is true, false, or inconclusive?

• Can we derive that hypothesis if we have the following premise? Yes, no, or perhaps?

• Can we arrive at that conclusion if we possess the following information? Possibly, no, or both?

• Does that premise flow from the given premise? Yes, no, or perhaps?

• Does that information support the claim?

• Is the assertion accurate in light of such information?

• Considering the text, which of the following statements is True, False, or Both?

• Think about the question: Is hypothesis always, occasionally, or never correct?

• Can we derive that conclusion if we have the following information? Yes, no, or possibly?

Table 9: Instructions for SST-2 task
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RTE Instructions
• Using only the above description and what you know about the world, is hypothesis definitely correct? Yes or no?

• Given premise, Is it guaranteed true that hypothesis? Yes or no?

• Suppose premise, Can we infer that hypothesis? Yes or no?

• Given premise Should we assume that hypothesis is true? Yes or no?

• Given that premise, Does it follow that hypothesis Yes or no?

• Given premise. Is it guaranteed true that hypothesis? Yes, no, or maybe?

• Given that premise. Therefore, it must be true that hypothesis? Yes, no, or maybe?

• Assume it is true that premise. Therefore, hypothesis is guaranteed, possible, or impossible?

• Using only the following description and what you know about the world, hypothesis is definitely correct, incorrect, or
inconclusive?

• Take the following as truth. Then the hypothesis is true, false, or inconclusive?

• Can we derive that hypothesis if we have the following premise? Yes, no, or perhaps?

• Can we arrive at that conclusion if we possess the following information? Possibly, no, or both?

• Does that premise flow from the given premise? Yes, no, or perhaps?

• Does that information support the claim?

• Is the assertion accurate in light of such information?

• Considering the text, which of the following statements is True, False, or Both?

• Think about the question: Is hypothesis always, occasionally, or never correct?

• Can we derive that conclusion if we have the following information? Yes, no, or possibly?

• Suppose we have the following premise, Can we infer that hypothesis? Yes, no, or maybe?

• Based on the previous premise, is it true for the hypothesis?

Table 10: Instructions for RTE task
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TREC Instructions
• What kind of label best describes this question below?

• What is this a piece of question regarding for?

• What is the category of the following question?

• Which is the most relevant topic of the following question?

• Give the topic of the given question.

• Read the question below, provide its focused topic.

• Is this a piece of question regarding ABBR, ENTY, DESC, HUM, LOC, or NUM?

• Which section of a newspaper would this question likely appear in?

• What label would you use to characterize this question item?

• What term can best sums up this question?

• Which category most accurately sums up this question item?

• What label would you use to characterize this question?

• Is this question related to ABBR, ENTY, DESC, HUM, LOC, or NUM?

• Does this question story have anything to do with ABBR, ENTY, DESC, HUM, LOC, or NUM?

• Read the question below and explain its specific subject.

• Please read the following material and explain its main point.

• Provide your thoughts on the content below after reading it.

• Describe the question’s subject as follows.

• For what purpose does this question item exist?

• Are there any ABBR, ENTY, DESC, HUM, LOC, or NUM related stories in this question?

Table 11: Instructions for TREC task
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AGNews Instructions
• What label best describes this news article?

• What is this a piece of news regarding for?

• What is the category of the following news?

• Which is the most relevant topic of the following news?

• Give the topic of the given text.

• Read the text below, provide its focused topic.

• Is this a piece of news regarding world, sport, business,or science?

• Which section of a newspaper would this article likely appear in?

• What label would you use to characterize this news item?

• What term best sums up this news report?

• Which category most accurately sums up this news item?

• What label would you use to characterize this news story?

• Is this news related to the world, sports, business, or science?

• Does this news story have anything to do with the world, sports, business, or science?

• Read the paragraph below and explain its specific subject.

• Please read the following material and explain its main point.

• Provide your thoughts on the content below after reading it.

• Describe the text’s subject as follows.

• For what purpose does this news item exist?

• Are there any world-related, sports, business, or science-related stories in this news?

Table 12: Instructions for AGNews task
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CB Instructions
• Suppose we have the following premise, Can we infer that hypothesis? Yes, no, or maybe?

• Based on the previous premise, is it true for the hypothesis?

• See on the following information, is the claim right?

• Given that premise, does it follow that hypothesis? Yes, no, or maybe?

• Given the premise, are we justified in saying that hypothesis? Yes, no, or maybe?

• Based on the text, question: hypothesis is True, False, or Neither?

• Keeping in mind the above text, consider: hypothesis is always, sometimes, or never correct?

• Given premise. Is it guaranteed true that hypothesis? Yes, no, or maybe?

• Given that premise. Therefore, it must be true that hypothesis? Yes, no, or maybe?

• Assume it is true that premise. Therefore, hypothesis is guaranteed, possible, or impossible?

• Using only the following description and what you know about the world, hypothesis is definitely correct, incorrect, or
inconclusive?

• Take the following as truth. Then the hypothesis is true, false, or inconclusive?

• Can we derive that hypothesis if we have the following premise? Yes, no, or perhaps?

• Can we arrive at that conclusion if we possess the following information? Possibly, no, or both?

• Does that premise flow from the given premise? Yes, no, or perhaps?

• Does that information support the claim?

• Is the assertion accurate in light of such information?

• Considering the text, which of the following statements is True, False, or Both?

• Think about the question: Is hypothesis always, occasionally, or never correct?

• Can we derive that conclusion if we have the following information? Yes, no, or possibly?

Table 13: Instructions for CB task
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DBPedia Instructions
• What label best describes this paragraph?

• What is this paragraph regarding for?

• What is the category of the following paragraph?

• Which is the most relevant topic of the following paragraph?

• Give the topic of the given text.

• Read the text below, provide its focused topic.

• Is this paragraph regarding company, educational institution, artist, athlete, office holder, mean of transportation, building,
natural place, village, animal, plant, album, film or written work?

• What label would you use to characterize this paragraph?

• What term best sums up this paragraph?

• Which category most accurately sums up this paragraph?

• What label would you use to characterize this paragraph?

• Is this paragraph related to company, educational institution, artist, athlete, office holder, mean of transportation, building,
natural place, village, animal, plant, album, film or written work?

• Does this news story have anything to do with company, educational institution, artist, athlete, office holder, mean of
transportation, building, natural place, village, animal, plant, album, film or written work?

• Read the paragraph below and explain its specific subject.

• Please read the following material and explain its main point.

• Describe the text’s subject as follows.

• Are there any company, educational institution, artist, athlete, office holder, mean of transportation, building, natural
place, village, animal, plant, album, film or written work content in this paragraph?

• Given a list of categories: company, educational institution, artist, athlete, office holder, mean of transportation, building,
natural place, village, animal, plant, album, film or written work, what category does the paragraph belong to?

• Pick one category for the following text. The options are - company, educational institution, artist, athlete, office holder,
mean of transportation, building, natural place, village, animal, plant, album, film or written work.

• Given a choice of categories company, educational institution, artist, athlete, office holder, mean of transportation,
building, natural place, village, animal, plant, album, film or written work, the text refers to which one?

Table 14: Instructions for DBPedia task
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