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Abstract

Current dialogue systems face diverse user
requests and rapid change domains, making
quickly adapt to scenarios with previous un-
seen slot types become a major challenge.
Recently, researchers have introduced novel
slot detection (NSD) to discover potential new
types. However, dialogue system with NSD
does not bring practical improvements due to
the system still cannot handle novel slots in
subsequent interactions. In this paper, we de-
fine incremental novel slot detection (INSD),
which separates the dialogue system to deal
with novel types as two major phrases: 1)
model discovers unknown slots, 2) training
model to possess the capability to handle new
classes. We provide an effective model to ex-
tract novel slots with set prediction strategy
and propose a query-enhanced approach to
overcome catastrophic forgetting during the
process of INSD. We construct two INSD
datasets to evaluate our method and experi-
mental results show that our approach exhibits
superior performance. We release the data
and the code at https://github.com/
cs-liangchen-work/NovelIE.

1 Introduction

Slot filling (SF), a crucial component of task-
oriented dialogue systems, aims to identify specific
spans in user utterances (Zhang and Wang, 2016;
Shah et al., 2019; Qin et al., 2021; Liang et al.,
2021a; Hudeček et al., 2021; Yan et al., 2022). As
dialogue systems are widely used in daily life, tra-
ditional slot filling needs to be quickly adapted to
scenarios with previous unseen types (Shah et al.,
2019; He et al., 2020; Liu et al., 2020b), which is
known as a novel slot detection (NSD) task (Wu
et al., 2021, 2022).

∗ Work was done under the guidance of Jian Liu et al.
when Liang in Beijing Jiaotong University, Li and Guan pro-
vided some experimental results.

†Corresponding author.

Figure 1: An example of how dialogue systems respond
to the user request containing an unknown slot ’tooth
will out’. Without NSD, system misclassifies slot type
(the right type is ’movie name’) and delivers an incorrect
reply, With NSD, system returns an inability to handle
the request every time. With INSD, system can provide
a satisfying response in subsequent interactions.

However, prior research in NSD only focuses
on identifying new slots (Wu et al., 2021, 2022),
which is too idealized and does not bring practical
improvements to the dialogue system. Consider the
user’s request contained an unknown type of slot
’tooth will out’ in Figure 1, the dialogue system
with novel slot detection just provides a reply that
is not wrong but less than satisfactory, and will de-
liver an inability to handle it all the time. Actually,
dialogue systems need a specialized procedure to
deal with discovered new slot or entity types.

In this paper, we focus on a more practical set-
ting: after the model recognizes new types, the
dialogue system will view them as known and can
return satisfying replies to user requests concerning
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these types in subsequent interactions, as shown
at the bottom of Figure 1. We start with a collec-
tion of annotated examples with some pre-defined
types. Our goal is to identify examples with novel
types (i.e., types not contained in the pre-defined
set), and then, the new types are seen as known,
and we should train model to have the ability to
identify entities of these types, therefore resulting
in incremental learning (Cao et al., 2020; Monaikul
et al., 2021; Yu et al., 2021).

We separate the dialogue system to deal with
novel types as two major phrases: 1) model discov-
ers slots with unknown classes, 2) training model
to possess the capability to handle new classes. We
call this unified process incremental novel slot de-
tection (INSD). For identifying new slots, we em-
ploy the set prediction method to generate a great
number of triples (start, end, type), and subdivide
the non-predefined entity triple into the non-entity
triple and the novel-entity triple to extract novel
spans. Given that the NSD task lacks a clear ob-
jective for fitting due to unseen information of new
classes at the training stage, we further provide
two strategies to make the model better suit this
task, which can improve robustness and encourage
model to generate diverse outputs. For the INSD
task, we construct two datasets based on slot filling
dataset (Coucke et al., 2018; Hemphill et al., 1990).
It is generally challenging to mitigate the catas-
trophic forgetting (McCloskey and Cohen, 1989)
during the process of INSD, inspired by previous
works (Cao et al., 2020; Monaikul et al., 2021; Liu
et al., 2022; Xia et al., 2022), we propose a query-
induced strategy to realize explicitly knowledge
learning from stored data and implicitly knowledge
transferring from old model together.

We evaluate the proposed method on two com-
mon benchmarks and two datasets we constructed.
From the results, our approach exhibits promising
results on INSD and NSD (§ 5). We also perform
ablation studies to assess our method of discover-
ing new classes and solving catastrophic forgetting
(§ 6.1). Finally, we conduct further experiments
to explore the NSD model’s ability to identify in-
domain and novel slots (§ 6.2).

To summarize, the contributions of our work are
three-fold:

• We define incremental novel slot detection
(INSD) aligned with real-world scenarios to
improve the dialogue system‘s ability to deal
with new slot types, and we provide effective

strategies to overcome catastrophic forgetting
during incremental learning.

• We propose a novel slot detection (NSD)
model with set prediction, which demon-
strates broader applicability.

• Results show that our method delivers the best
performance on INSD and NSD tasks.

2 Related Work

Novel Slot Detection. Prior works have exten-
sively studied slot filling (SF) task (Zhang and
Wang, 2016; Bapna et al., 2017; Rastogi et al.,
2017; Shah et al., 2019; Rastogi et al., 2020; Liang
et al., 2021b; Yan et al., 2022) to recognize specific
entities and fill into semantic slots for user utter-
ances. Recently, Wu et al. (2021) define novel slot
detection (NSD) to extract out-of-domain or poten-
tial new entities and propose a two-step pipeline
to detect them, which has attracted much atten-
tion. Subsequent works focus on the end-to-end
paradigm (Liang et al., 2019) to directly obtain
novel entities without intermediate steps. Wu
et al. (2023) design a bi-criteria active learning
framework and Wu et al. (2022) introduce semi-
supervised learning scheme to perform iterative
clustering. In contrast to the previous method, we
propose a generative method based on set predic-
tion to produce new entity triples.

The set prediction is an end-to-end method that
enables model to directly generate the final ex-
pected set, which was proposed in DETR (Carion
et al., 2020) to solve object detection task. Re-
searchers have introduced it to natural language
processing (NLP). Tan et al. (2021) propose a
sequence-to-set network to handle the complexity
of nested relationships in named entity recognition
task. Dongjie and Huang (2022) obtain multimodal
inputs representation by DETR’s decoder.

Incremental Learning. Incremental learning
(Wang et al., 2019; Madotto et al., 2020; Kim
et al., 2023) has been introduced to simulate the
setting of type/class-increasing in real-world sce-
narios, which is mainly researched in information
extraction (IE) (Wei et al., 2022; Zhang and Chen,
2023). Different from assuming data arrived with
definite entity types at each stage (Cao et al., 2020;
Monaikul et al., 2021), we define a new task incre-
mental novel slot detection that type is unknown
and needs to discover in the new data stream.
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Catastrophic forgetting (McCloskey and Cohen,
1989) is a long-standing problem in incremental
learning. Current approaches to overcome this is-
sue can be roughly classified into two groups. The
first is knowledge distillation (KD) (Li and Hoiem,
2017; Monaikul et al., 2021; Yu et al., 2021; Zheng
et al., 2022; Kang et al., 2022), which transfers
the knowledge from the previous model into the
current model. The second is data retrospection
(Cao et al., 2020; Liu et al., 2022; Xia et al., 2022),
which samples old data and stores them in a mem-
ory buffer with a fixed capacity. In this paper, we
propose a query-induced strategy to enhance KD
and data retrospection.

3 Approach

3.1 Problem Definition

Novel slot detection (NSD) is a fresh task in slot
filling (SF). For a given sentence S, a NSD model
aims at extracting potential new entities or slots in
S (Wu et al., 2021). The slot in the NSD dataset D
consists of two type sets: pre-defined type set Tp

and novel type set Tn. Sentences in the training set
only contain Tp, whereas sentences in the test set
include both Tp and Tn.

In realistic scenarios, once the model has discov-
ered new slot classes, these types should be treated
as known. Therefore, we define a new task incre-
mental novel slot detection (INSD) aligned with
real-world scenarios. Following previous work in
incremental learning (Cao et al., 2020; Monaikul
et al., 2021), we adopt the assumption that the entity
class arrived at different time points. But different
from them, novel types will be identified at each
stage and be seen as known in the next stage in our
setting.

For INSD task, we construct the dataset D =
{D1, D2, ..., Dk} with k stage, where D1 is an-
notated and others is unlabeled. Each Di in D
contains a slot type set Tpi = {t1, t2, ...}, where
types in Tp1 are pre-arranged in the initial stage
and Tpi(i > 1) is composed of new types detected
by model Mi−1 (Mi−1 is training at i − 1 stage).
In other words, the slot classes that are predicted
as novel in i− 1 stage will be viewed as in-domain
types in i-th stage. At step i, we first apply the
model Mi−1 to annotate Di with slot types Tpi,
which are new discovered classes at step i − 1.
Then, we train Mi−1 on labeled Di and get Mi. Mi

also has the competence to identify novel classes
contained in next-stage data. The process is shown

at the top of Figure 2.

3.2 Novel Detection with Set Predicted
Network

Next, we describe the proposed NSD model, which
is depicted at the bottom-left of Figure 2. We first
present the details of the model structure, which
consists of two main components: query represen-
tation and learning and bipartite matching. Finally,
we show how to extract novel entities.

Query Representation. Our model locates novel
entities by recognizing the start positions and end
positions based on a group of queries. Consider-
ing the information of the novel entity is entirely
invisible in NSD task, we employ a random ini-
tialization strategy for the representation matrix
of queries and optimize them by the model itself
during training, which is distinct from the joint
encoding approach in the machine reading com-
prehension (MRC) model (Liu et al., 2020a). Let
Qs ∈ Rd×l and Qe ∈ Rd×l stand for the embed-
ding matrix of queries Q = {q1, .., ql} to predict
start position and end position respectively, where
l is the number of queries and d is their dimension.

Learning and Bipartite Matching. For the
given sentence S, we adopt BERT-large (Devlin
et al., 2018) to encode it and get representation H .
By fusing Qs, Qe and H , the model can generate
triples (s.e, t), which is composed of the start posi-
tion s, end position e and slot type t. Specifically,
we first calculate probability distributions of each
token being start index and end index, as follows:

Ps = softmax(Qs ·H) (1)

Pe = softmax(Qe ·H) (2)

Then we integrate the above positional probabil-
ity information into H to get span representation,
which can be regarded as an attention mechanism:

Hspan =
∑

i

((P (i)
s ·H(i)) + (P (i)

e ·H(i))) (3)

where the superscript (i) means the i-th value in
matrix. Finally, we predict the slot class of Hspan,
which comprises pre-defined slot types and label
’O’ (indicates that a span does not belong to in-
domain slot types). We compute the probability
distribution of each class as follows:

Pt = T ·Hspan + b ∈ R1×(j+1) (4)
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Figure 2: The overview of our method. At each stage, NSD model can discover novel slot types and we annotate
next-stage data with these types. Our proposed NSD model is illustrated at the bottom left and the approach of
overcoming catastrophic forgetting is shown at the bottom right.

where T and b are parameters in the linear layer,
and j is the number of pre-defined entity type.

Given that a sentence may contain one or more
entities, we use hungarian algorithm (Kuhn, 1955)
to optimize the matching of triples between the
predicted entity y = (s.e, t) and golden entity ŷ =
(ŝ, ê, t̂).

For training model, we adopt the following loss:

L(y, ŷ) = − log(wsPs(s|ŝ)+
wePe(e|ê) + wtPt(t|t̂))

(5)

where ws, we and wt are the weights for different
tokens and entity types.

Novel Type Prediction. We modify the model’s
loss to predict novel entities. Specifically, the value
in wb and we for the last token ’[SEP]’ and the
value in wt for the label ’O’ are both set to a smaller
value than others. After training the model on the
corrected loss, there are two forms triplet for non-
pre-defined entities: i) (ssep, esep, t): the span is
the last token ’[SEP]’ with any label, ii) (s, e,O):
the label ’O’ with any span. By assigning appro-
priate values for wb, we and wt, we can treat the
second form (s, e,O) as novel entity triple.

We further present two strategies to make the
model better suit the NSD: i) contrastive learn-
ing: we pull the entity embeddings of the same
type together in a mini-batch (Zhang et al., 2021)
to improve model robustness. ii) noise-induced
adversarial learning: we propose adversarial train-
ing with noise injection to alleviate the overfitting

of the model to in-domain types and promote the
model to generate diverse triples. Random values
are added to the query representation Qs and Qe at
the training stage.

3.3 Query Enhanced Incremental Learning
Based on constructed NSD model, we now intro-
duce our approach to mitigate the problem of catas-
trophic forgetting during the process of INSD, sep-
arated by data retrospection and knowledge distil-
lation with query representation enhancement. We
summarize the procedure in Algorithm 1.

Query Enhanced Data Retrospection Data ret-
rospection method manages a constrained memory
buffer B with a capacity of c to store a small num-
ber of old examples. The capacity size c is constant
due to data storage costs. When new data comes,
we will update the memory buffer to release allo-
cated space for accommodating new types. There-
fore, selecting appropriate examples from old data
is crucial for data retrospection. Prototype repre-
sentation has been successfully utilized in samples
filtering (Cao et al., 2020; Zalmout and Li, 2022),
which is a center vector integrating all features
from given dataset. The calculation is as follows:

Hc =
1

N

N∑

n=1

Hn (6)

where N is the number of data, Hn is the embed-
ding vector of the first token ’[CLS]’ in a sentence
and is seen as the sentence representation.
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We believe there are distinctions between slot
classes, attributed to differences in data volume
and learning difficulty. Consequently, we propose
a new prototype learning with a query-induced data
split strategy, rather than uniformly partitioning the
space according to slot types. We first leverage
query to cluster data: the sentences in which novel
entities were successfully identified by query qi are
grouped together as a subset. Then we compute the
prototype representation of the subset and calculate
the distance between the center and each sentence
in subsets. The sentence with a small distance will
be sampled and stored in the buffer B.

In our method, we treat data at each stage equally,
so the memory B is divided evenly according to
the number of stages. At stage i, we discard c/i
data in B and utilize that memory buffer to store
the examples sampled in Di.

Query Enhanced Knowledge Distillation
Knowledge distillation addresses catastrophic
forgetting by transferring the knowledge already
acquired in the previous model. At i-th stage,
Mi−1 acts as a teacher model that possesses the
ability to identify old slot classes, and Mi serves
as a student model. By distilling the knowledge
from Mi−1 to Mi, Mi can largely overcome the
catastrophic forgetting for old types.

The distillation module of previous methods gen-
erally contains encoded sentence representation
and predicted probability distribution (the proba-
bility of the start position, end position, and type
classification in our model). The loss is calculated
as follows:

Lsent = MSE([H]i−1, [H]i) (7)

Lp = KL([P ]i−1, [[P ]i), P ∈ {Ps, Pe, Pt} (8)

where KL represents the KL divergence loss and
MSE denotes the mean squared error function.
[·]i−1 and [·]i are the value computed by model
Mi−1 and Mi, respectively. Considering that the
query plays a crucial role in the extraction of span
and corresponding type, we also distill the query
representation:

Lquery = MSE([q]i−1, [q]i) (9)

Finally, we train the model with the following loss:

Lkd = Lsent + Lp + Lquery (10)

Algorithm 1 Addresses Catastrophic Forgetting
Input: training set D = {D1, D2, ..., Dk} with
k stage, memory buffer B with capacity c, NSD
model M

1: for i = 1,2,...,k do
2: get training data Di ∪ B
3: train model Mi and distill from Mi−1

4: split Di based on query and select c/i data
5: release c/i space and store selected data
6: end for

Dataset Train Dev. Test Slot-Type

Snips 13,084 700 700 39
ATIS 4,478 500 893 44

Table 1: Statistics of Snips and ATIS.

Query Enhancement Integration We integrate
the aforementioned two query enhancement strate-
gies to realize explicitly knowledge learning from
old data and implicitly knowledge transferring from
previous model together. We summarize the proce-
dure in Algorithm 1.

4 Experimental setups

Experimental Setting. We conduct experiments
on two slot filling datasets: Snips (Coucke et al.,
2018) and ATIS (Hemphill et al., 1990). Snips is
annotated with 13,084 sentences and has 39 slot
types. ATIS provides 4,478 training examples with
44 slot types. The statistics of the datasets are
shown in Table 1.

For NSD task, we follow the data setup in Wu
et al. (2021). We employ the remove processing
strategy that randomly selects several classes as
unknown and the sentences containing unknown
slots are deleted from the training set. For metrics,
we apply the span-level precision (P), recall (R),
and f1-scores (F1).

For INSD task, we construct two multi-stage
datasets based on Snips and ATIS. We divide the
official training set into k subsets {D1, D2, ..., Dk}
and assign slot types {Tp1, Tp2, ..., Tpk} for each
stage. We process the Di as follows: 1) directly
remove the sentences including types in Tp· (·>i),
2) label the slot values belonging to Tp· (·<i) with
’O’, and the corresponding text tokens are replaced
with ’MASK’, 3) Di (i >1) is unannotated and
needs NSD model to discover and label novel slots.
We exploit four metrics to assess model perfor-
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Figure 3: The results of the INSD model at each stage on the test set of Snips (first row) and ATIS (second row)
with four evaluation metrics. ’max’ refers to the upper bound, which trains model with all available data. ’base’
means the lower bound without incremental learning strategy. For i-th stage, ’known types’ is the types in stage 1~i.

Dataset Model 5% 10% 15%

IND NSD IND NSD IND NSD

Snips
GDA-min (Wu et al., 2021) 93.14 29.73 85.28 14.28 90.07 31.96
GDA-different (Wu et al., 2021) 93.10 31.67 86.22 15.06 90.18 32.19
Our method 93.57 39.49 91.52 35.19 91.30 40.72

ATIS
GDA-min (Wu et al., 2021) 90.14 10.17 93.57 23.18 93.92 50.92
GDA-different (Wu et al., 2021) 90.68 10.27 94.01 22.98 93.88 43.78
Our method 94.84 39.20 93.04 38.53 93.37 61.71

Table 2: Model performance (f1-score) on two benchmarks. ’IND’ and ’NSD’ denote pre-defined and novel entity
types respectively. ’·%’ is the proportion of potential new classes.

mance: micro-averaged f1 and macro-averaged f1
for current known types, and micro-averaged f1
and macro-averaged f1 for all types.

Implementations. We employ BERT (Devlin
et al., 2018) as contextualized encoder to imple-
ment our model. For constructed multi-stage INSD
dataset, the k is set to 5 in Snips and 3 in ATIS. The
model is trained for 30 epochs with a learning rate
of 1e-5 and a batch size of 8. The query number
is selected in {20, 40, 60, 80} and the weight to
generate novel slot span is chosen from {1e-1, 1e-3,
1e-5}. We set the capacity of memory as 100.

Baselines. For INSD task, we compare our ap-
proach to the knowledge distillation model KL
(Monaikul et al., 2021) and the data retrospection
model KCN (Cao et al., 2020). For NSD task,
we compare the proposed method to the pipeline
model GDA (Wu et al., 2021) with two distance

strategies GDA-min and GDA-different.

5 Overall Results

In this section, we present the main results of incre-
mental novel slot detection (INSD) framework and
novel slot detection (NSD) model.

Model Performance of INSD We visualize the
results of our proposed approach and baselines dur-
ing the incremental learning process in Figure 3.
It can be observed that our method demonstrates
the best performance compared with baseline ap-
proaches for all metrics and datasets, achieving
22.73% macro-f1 and 41.75% micro-f1 on Snips
and 26.37% macro-f1 and 72.53% micro-f1 on
ATIS respectively. Such results indicate that our
method shows the best ability to overcome catas-
trophic forgetting for the INSD task. From the fig-
ure, we also see that the data retrospection method
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(KCN) brings much higher f1 improvements than
the knowledge distillation approach (KL), which
suggests that the explicit data-storing strategy is
more effective. Our proposed approach introduces
queries to enhance them and can further improve
model performance.

Model Performance of NSD Table 2 presents
the performance of our method as well as base-
lines on two datasets. For extracting novel slots
(NSD), we can see that our model outperforms pre-
vious methods by a large margin for all datasets
and scenarios. For example, our method beats
GDA-different by gaining improvements of 7.82%,
20.13%, and 8.52% in terms of F1-scores in differ-
ent settings on Snips. For identifying in-domain
slot (IND), our model also obtains comparable re-
sults compared with baselines, but it exhibits in-
ferior performance in some settings such as 15%
sampling on ATIS. By comprehensively analyzing,
we can find that our proposed model demonstrates
better capability in discovering novel types of slots
than known slots.

6 Discussion

We conduct further experiments to investigate the
proposed INSD framework and NSD model, sepa-
rated by ablation study and the learning ability of
the NSD model.

6.1 Ablation Experiment

Ablation Study of INSD We perform ablation
experiments to investigate the proposed INSD
method. The results of 3-th and 5-th stage are
depicted in table 3. As can be seen, our query
enhancement approach can lead to better perfor-
mance, attaining 1% and 6% increases in terms of
F1 separately in knowledge distillation and data
storage. Results demonstrate that query represen-
tation is important in novel slot extraction and in-
dicate that first clustering the data via queries and
then calculating the prototype representation can
select beneficial samples.

Ablation Study of NSD We conduct an ablation
study to explore the impact of contractive learning
(CL) and noise-induced adversarial learning (NL)
on our NSD model. The results are presented in
Table 4. As expected, CL and NL can both yield
greater F1 scores than the base model. Overall,
the NL method is more effective because noise can
contribute to generating diverse outputs. In addi-

Setting Stage 3 Stage 5

P R F1 P R F1

Full model 58.30 51.53 54.71 54.41 33.87 41.75
Base model 26.74 21.46 23.81 11.38 5.83 7.71
w KL 42.04 31.99 36.33 37.18 8.16 13.38
w KL(Q) 40.67 33.69 36.85 45.77 8.51 14.36
w DataStore 54.12 44.51 48.85 44.96 27.34 34.01
w DataStore(Q) 56.57 52.64 54.53 51.34 33.29 40.39

Table 3: Ablation study of INDS model on Snips dataset.
We report the micro-averaged P, R, and F1-score for
current known types at the 3-th and 5-th stage. ’Base’
means the model without incremental learning strategy.
’(Q)’ refers to a method with query enhancement.

Dataset Setting 5% 10% 15% ∆avg

Snips

Base model 34.25 31.16 33.55
w CL 35.24 29.23 35.79 0.4 ↑
w NL 36.63 33.16 39.41 3.4 ↑

Full model 39.49 35.19 40.72 5.5 ↑

ATIS

Base model 37.85 35.93 58.20
w CL 38.11 35.19 59.28 0.2 ↑
w NL 38.38 35.14 59.82 0.4 ↑

Full model 39.20 38.53 61.71 2.5 ↑

Table 4: Ablation study of our NDS model on two
datasets. ’Base model’ stands for the base set predic-
tion model without ’CL’ (contrastive learning) and ’NL’
(noise-induced adversarial learning).

tion, unlike typical NLP tasks, NSD task lacks a
clear objective for fitting and is trained with slot
filling (SF) task, which makes it essential to intro-
duce noise during training stage. By employing
both CL and NL, the model demonstrates a much
higher improvement in F1-score, surpassing the
sum of the gains obtained by each method individu-
ally. A reasonable explanation is that our proposed
CL can enhance model robustness by encouraging
entity embeddings of the same type to be close,
which mitigates the negative impact of noise when
training model.

The Impact of Weight Parameters and Query
Number We study the effect of weight and query
number on model performance. For simplicity, we
set fixed entity type weight wt for the label ’O’ and
assign the same value for the last position weight
ws and we. Figure 4 depicts the results. We can
conclude that: 1) Our model exhibits high sensitiv-
ity to the weight and query number. 2) As the count
of novel entities increases (5%→10%→15%), the
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Figure 4: The impact of the count of query and the value of weight.

model requires a greater number of queries and
reduced weight values, which both encourage our
model to generate a larger quantity of novel entity
triplets (s, e, t). Specifically, the increasing number
of queries allows the model to learn various query
representations for different novel slot types, while
decreasing the weight values can result in a higher
count of (s, e,O) triplets (the label ’O’ with any
span) and a lower count of (ssep, esep, t) triplets
(the span is the last token ’[SEP]’ with any label).

6.2 Learning Ability of NSD Model
The Ability to Discover Novel Entity We want
to explore the NSD model’s inclination in identi-
fying novel slot classes, are newly discovered and
pre-defined types similar or dissimilar? To answer
this, we first randomly select a subset of classes
as in-domain and then choose novel classes from
the remains based on label semantics similarity and
entity representation similarity. We conduct ex-
periments in two settings ’Sim’ and ’Disim’. The
results are shown in Table 5. We can observe that
the previous model GDA tends to discover novel
types that differ from pre-defined types, whereas
our model delivers superior performance in all set-
tings. Results reveal the broader applicability of
our model.

Learning Ability of Queries We investigate the
ability of queries to identify various types of spans,
containing non-entity, novel entity, and in-domain
entity. The proportion of new and pre-defined enti-
ties extracted by each query is plotted in Figure 5,

Model SimL SimM DisimL DisimM

GDA-min 5.70 16.41 15.38 20.50
GDA-diff 5.71 16.38 15.41 20.63

Our Method 20.52 21.58 16.76 24.11

Table 5: F1 scores of different novel slot class setup.
’Sim’ and ’Disim’ represent whether the novel types are
similar to pre-defined types. ’L’ (little) and ’M’ (many)
stand for the number of novel types.

Figure 5: Visualization of the proportion of new and
pre-defined slots identified by each query.

where the queries that only recognize the non-entity
span were not drawn and we only present the re-
sult in 5% and 15% scenarios on Snips. From the
figure, we can see that the count of queries for non-
entity greatly outnumbers the queries for the entity,
such as 7 entity queries and 73 non-entity queries
in the 15% sampling setting, primarily due to the
higher number of non-entity spans. Interestingly, it
can be observed that each entity query possesses
the capability to recognize both potential new and
pre-defined entities in our model.
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7 Conclusion

In this paper, we introduce a new task incremental
novel slot detection (INSD) and establish a bench-
mark with two datasets and four metrics. Moreover,
we propose a query-induced strategy to alleviate
the problem of catastrophic forgetting during in-
cremental learning and provide an effective model
to identify novel slots. Our proposed approach
achieves state-of-the-art performance in all datasets
and scenarios.

8 Limitations

Although the proposed method exhibits superior
performance in overcoming catastrophic forgetting
and identifying novel slots, the extracted entity
quantity decreases as the stages advance, and sev-
eral classes cannot even be recognized. However,
for incremental novel slot detection task, it is cru-
cial to discover as many unseen classes as possi-
ble. Another limitation is that our model to detect
new slots shows high sensitivity to the weight and
query number, which means that researchers need
to spend time to carefully tune the parameters for
different datasets.

9 Acknowledgements

This work was supported by the Fundamen-
tal Research Funds for the Central Universities
2023JBMC058. It was also supported by the
National Natural Science Foundation of China
(No.62106016, 61976015, 61976016, 61876198
and 61370130), and the Open Projects Program of
the State Key Laboratory of Multimodal Artificial
Intelligence Systems.

References

Ankur Bapna, Gokhan Tur, Dilek Hakkani-Tur, and
Larry Heck. 2017. Towards zero-shot frame se-
mantic parsing for domain scaling. arXiv preprint
arXiv:1707.02363.

Pengfei Cao, Yubo Chen, Jun Zhao, and Taifeng Wang.
2020. Incremental event detection via knowledge
consolidation networks. In EMNLP.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part I 16.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Zhang Dongjie and Longtao Huang. 2022. Multimodal
knowledge learning for named entity disambiguation.
In EMNLP.

Keqing He, Jinchao Zhang, Yuanmeng Yan, Weiran
Xu, Cheng Niu, and Jie Zhou. 2020. Contrastive
zero-shot learning for cross-domain slot filling with
adversarial attack. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics.

Charles T Hemphill, John J Godfrey, and George R
Doddington. 1990. The atis spoken language sys-
tems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27, 1990.
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