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Abstract

We introduce DISSC, a novel, lightweight
method that converts the rhythm, pitch contour
and timbre of a recording to a target speaker in
a textless manner. Unlike DISSC, most voice
conversion (VC) methods focus primarily on
timbre, and ignore people’s unique speaking
style (prosody). The proposed approach uses a
pretrained, self-supervised model for encoding
speech to discrete units, which makes it sim-
ple, effective, and fast to train. All conversion
modules are only trained on reconstruction like
tasks, thus suitable for any-to-many VC with
no paired data. We introduce a suite of quan-
titative and qualitative evaluation metrics for
this setup, and empirically demonstrate that
DISSC significantly outperforms the evaluated
baselines. Code and samples are available at
https://pages.cs.huji.ac.il/adiyoss-lab/dissc/.

1 Introduction

Imagine hearing a famous catchphrase of your
favourite television character spoken in their voice,
but uncharacteristically fast, while atypically em-
phasising the end. This would immediately raise
suspicion that something is “wrong”. As humans
we learn to recognise familiar people and voices,
not only by their voice texture (timbre), but also
by their typical speaking style (Williams, 1965).
Therefore, a true VC method should convert both
voice texture and speaking style (rhythm, F0, etc.).
Figure 1 describes this visually.

Traditional VC methods mainly focused on
changing the timbre of a given speaker while leav-
ing the speaking style unchanged (Stylianou et al.,
1998; Kain and Macon, 1998; Nakashika et al.,
2013; Chou et al., 2019; Huang et al., 2021). Re-
cent methods propose to additionally convert speak-
ing style (Qian et al., 2020; Chen and Duan, 2022;
Qian et al., 2021; Kuhlmann et al., 2022). How-
ever, these mainly use only a single target utterance
which does not fully capture speaker prosody.

Figure 1: Comparing traditional VC to speaking style
conversion. White lines on the spectrograms show the
pitch contour. While VC methods change the spec-
tral features so the new utterance sounds like the new
speaker, they do not change the rhythm and pitch. Con-
versely, SSC matches the faster speaking style, and the
target speaker’s tendency to finish sentences with a pitch
increase. This a real sample converted by DISSC. Due
to variance within speaking style we do not expect the
converted speech to exactly match the target.

Another line of work uses text transcription
supervision and shows the potential benefit to
VC (Kim et al., 2022; Liu et al., 2021). How-
ever, this limits the application to high resource
languages and requires large scale data labelling.

Some recent prosody aware VC methods use
spectrogram representations as input and out-
put (Qu et al., 2022; Chen et al., 2022), rather than
operating in the waveform domain. Thus, they
involve another phase of converting from the spec-
tral domain to the time domain using a vocoder.
Moreover, using discrete self-supervised speech
representations and generating waveforms from
these was demonstrated to provide superior per-
formance on plenty of downstream tasks such as
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speech and audio language modelling (Lakhotia
et al., 2021; Borsos et al., 2022; Qian et al., 2022),
multi-stream processing (Kharitonov et al., 2022b),
speech emotion conversion (Kreuk et al., 2021),
spoken dialogue (Nguyen et al., 2022), speech-to-
speech translation (Lee et al., 2022a,b; Popuri et al.,
2022), and audio generation (Kreuk et al., 2022a,b).

Inspired by this line of work, we propose a sim-
ple and effective method for Speaking Style Con-
version (SSC) based on discrete self-supervised and
partially disentangled speech representations. Cu-
rating samples of different speakers pronouncing
the same utterances is challenging, thus we follow
the setup of unpaired data, similarly to Lee et al.
(2021); Yuan et al. (2021); Kameoka et al. (2018);
Kaneko and Kameoka (2017). We give exact de-
tails of our approach in Section 3. We formalise the
setup of SSC and introduce an extensive evaluation
suite in Section 4. Results suggest the proposed
approach is greatly superior to the evaluated base-
lines (see Section 5), while utilising a simple and
effective method which can be trained on a single
GPU within a couple of hours.
Our contributions: (i) We introduce a novel, sim-
ple, and effective method which uses discrete self-
supervised speech representations to perform text-
less speaking style conversion in the waveform
domain; (ii) We formalise the task of speaking
style conversion and propose diverse evaluation
methods to analyze different speech characteris-
tics; (iii) We empirically demonstrate the efficacy
of the proposed approach using extensive empirical
evaluation on several benchmarks considering both
objective and subjective metrics.

2 Related Work

Unpaired Voice Conversion. Many existing
methods perform VC in the setting of unpaired
utterances (Kameoka et al., 2018; Kaneko and
Kameoka, 2017). Most of them contain a vocoder
which generates the audio (or an intermediate repre-
sentation) from several representations, one meant
to capture speaker information and others to cap-
ture the remaining information (Lin et al., 2021b,a).
They encourage disentanglement through infor-
mation bottlenecks by neural network architec-
ture (Chen et al., 2021; Qian et al., 2019), mutual
information and adversarial losses (Lee et al., 2021;
Yuan et al., 2021), pretrained models (Huang et al.,
2022; Polyak et al., 2021) or combinations of these.

Notably, Polyak et al. (2021) used discrete

HuBERT (Hsu et al., 2021) tokens, pitch repre-
sentation based on YAAPT (Kasi and Zahorian,
2002) and a learned speaker representation to re-
synthesise the audio waveform. They showed
how replacing the speaker representation at infer-
ence time performs VC. Inspired by this model-
ing paradigm, our approach additionally introduces
speaking style modeling and conversion (i.e., pitch
contour and rhythm) thus performing SSC.

Speaking Style Conversion. Various existing
methods aim to change the prosody of a given
utterance. However, many convert it based on a
single target utterance (Qian et al., 2020; Chen
and Duan, 2022) which does not truly capture the
general speaking style of the speaker, and often
creates artifacts when the contents do not match.
Other methods only linearly alter the speaking rate
(Kuhlmann et al., 2022) thus ignoring the change
of rhythm for different content.

Even leading SSC methods are still limited.
Some focus only on rhythm, paying less atten-
tion to pitch changes (Qian et al., 2021; Lee et al.,
2022c). Other approaches require text transcrip-
tions for training (Lee et al., 2022c; Liu et al.,
2021). In contrast, our approach uses HuBERT
units trained in a SSL fashion without using textual
annotations, thus can support lower resource lan-
guages (see Fig. 6 in Appendix A.5). In addition,
two concurrent methods for SSC (Qu et al., 2022;
Chen et al., 2022) were proposed recently. Al-
though showing impressive results, they are based
on spectrogram representations, hence require an
additional vocoding step.

3 Our Approach - DISSC

We operate under the following setup: we perform
any-to-many SSC which means we take any record-
ing and convert it to any of the training set speakers.
Our training set contains only unpaired utterances
- e.g. no training utterance is said by more than
one speaker. The learning process is completely
textless with no form of text supervision.

Our approach uses DIscrete units for Speaking
Style Conversion, and is denoted DISSC. We de-
compose speech to few representations to syn-
thesise speech in the target speaking style. We
consider three components in the decomposi-
tion: phonetic-content, prosodic features (i.e., F0
and duration) and speaker identity, denoted by
zc, (zdur, zF0), zspk respectively. We propose a
cascaded pipeline: (i) extract zc from the raw wave-
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form using a SSL model; (ii) predict the prosodic
features of the target speaker from zc and zspk; (iii)
synthesise the waveform speech from the content,
predicted prosody and target speaker identity. See
Figure 2 for a visual description of DISSC. This
modelling approach means moving from a contin-
uous space to a discrete space, hence resulting in
easier optimisation and better quality generations.

3.1 Speech Input Representation

Phonetic-content representation. To represent
speech phonetic-content we extract a discrete rep-
resentation of the audio signal using a pre-trained
SSL model, namely HuBERT (Hsu et al., 2021).
We use a SSL representation for phonetic-content,
and not text or text based methods, to maintain non-
textual cues like laughter and allow support for di-
verse languages. We discretise this representation
to use as a rhythm proxy (by number of repetitions)
and for ease of modelling. We chose HuBERT for
the phonetic-content units as Polyak et al. (2021)
showed it better disentangles between speech con-
tent and both speaker and prosody compared to
other SSL-based models.

Denote the domain of audio samples by X ⊂ R.
Audio waveforms are therefore represented by a se-
quence of samples x = (x1, . . . , xT ), where each
xt ∈ X for all 1 ≤ t ≤ T . The content encoder Ec

is a HuBERT model pre-trained on the LibriSpeech
corpus (Panayotov et al., 2015). The input to the
content encoder Ec is an audio waveform x, and
the output is a latent representation with lower
temporal resolution z′ = (z

′1
c , . . . , z

′L
c ) where

L = T/n. Since HuBERT outputs continuous
representations, one needs an additional k-means
step in order to quantise these representations into
a discrete unit sequence. This sequence is denoted
by zc = (z1c , . . . , z

L
c ) where zic ∈ {1, . . . ,K} and

K is the vocabulary size. For the rest of the paper,
we refer to these discrete representations as “units”.
We extracted representations from the final layer
of HuBERT and set K = 100. When we wish to
predict the rhythm, we must decompose it from the
sequence, therefore repeated units are omitted (e.g.,
0, 0, 0, 1, 2, 2 → 0, 1, 2) and the number of repeti-
tions correlates to the rhythm. Such sequences are
denoted as “deduped”.

Speaker representation. Our goal is to convert
the speaking style while keeping the content fixed.
To that end, we construct a speaker representation
zspk, and include it as additional conditioning dur-

Figure 2: An overview of DISSC. We use an SSL pre-
trained content encoder Ec to extract discrete units from
the waveform. We independently train a rhythm pre-
dictor Edur and pitch predictor EF0

to reconstruct the
original unit repetitions and pitch contour, respectively.
We input all representations into a pretrained vocoder
G.

ing the prosody prediction and waveform synthesis
phases. To learn zspk we optimise the parameters
of a fixed size look-up-table. Although such mod-
eling limits our ability to generate voices of new
and unseen speakers, it produces higher quality
generations (Polyak et al., 2021).

Prosody representation. As explained in the
content representation section, the number of repe-
titions of units indicates the rhythm of the speaker
in the context. More repetitions means a sound
was produced for a longer time. Therefore when
converting rhythm the sequence is “deduped”, and
when only converting the pitch the full zc is used.

Following Polyak et al. (2021) we encode the
pitch contour of a sample using YAAPT (Kasi and
Zahorian, 2002). We mark this pitch contour zF0 =
(z1F0

, . . . , zLF0
), where ztF0

∈ R≥0. We mark the
per-speaker normalised version as z̃F0 .

3.2 Speaking Style Conversion

Using the above representations we propose to syn-
thesise the speech signal in the target speaking style.
We aim to predict the prosodic features (duration
and F0) based on the phonetic-content units, while
conditioned on the target speaker representation.
We inflate the sequence according to the predicted
durations, and use it, the predicted pitch contour,
and the speaker vector as a conditioning for the
waveform synthesis phase.
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Figure 3: An overview of the EF0
architecture. The

positional encoding is a linear positional embedding
relative to the start and the end of the sequence, added to
the repeated speaker vector. The model jointly predicts
the presence of vocalised units (binary classification)
together with continuous F0 values for the voiced units.

Rhythm prediction. Each HuBERT unit corre-
lates with the phoneme in the given 20 ms. This
means that longer repetitions of the same unit indi-
cate a longer voicing of the sound - i.e. rhythm. In
order to learn to predict, and convert the rhythm we
build a model which learns to predict unit durations,
denoted as Edur. During training of Edur, we input
the deduped phonetic-content units zc and speaker
representation conditioning zspk, with the original
unit durations (before dedup) as supervision.

This simple reconstruction task is formulated as
a regression task with Mean Squared Error (MSE)
loss. As the units do not perfectly correlate to
phonemes, neighbouring units often represent the
same phoneme even after "dedup". This makes
it harder to predict each unit’s length separately.
Therefore, we encourage the model’s nearby errors
to cancel each other out by adding an MSE loss
on the total error of 4 neighbouring units. This
helped with errors all being on the negative end
and creating a shortening bias in our preliminary
test. In addition, we round the regression outputs
to be used as integer repetitions of the unit, how-
ever this can also cause a bias in which predictions
like 1.51, 1.51, . . . , 1.51 and 2.49, 2.49, . . . , 2.49 -
would result in the same total length. To mitigate
this we carryover the remainder after rounding and
sum those differences.

During conversion we replace the speaker vec-
tor with that of the target and wish for the model
to convert the rhythm. To this end our predictor
model must strongly depend on Zspk. In order to
encourage this we introduce two minor adjustments.
HuBERT units hold speaker information and are
not fully disentangled, however, the shorter the
sequence the less information exists (Kharitonov
et al., 2022a). We therefore use a CNN with a small
receptive field. In addition, we introduce train time
masking of units in the sequence, this means that
Edur has access to even less units at train time,
hence they contain less speaker information. Exact
details can be found in Appendix A.3.

Pitch prediction. We train the pitch predictor to
predict the per-speaker normalised pitch contour
z̃F0, from the HuBERT units zc. The pitch values
are normalised to zero mean and standard devia-
tion of one per-speaker on the vocalised sections.
We use these values as labels to a predictor condi-
tioned on content units zc, positional encoding and
a speaker vector zspk. The positional encoding is
added to zspk and denotes the absolute position of
the unit compared to the start and finish of the se-
quence, though preliminary results showed that any
standard positional encoding works. Intuitively,
positional encoding will help learning localised
speaker pitch patterns such as ending sentences in
a pitch drop.

Our pitch predictor is denoted EF0 . An overview
of it is described in Figure 3. It is a CNN which has
two predicted outputs: binary speaking detection,
and a regression head to predict the exact pitch. The
binary speaking classification is trained with BCE
loss on the binarised pitch labels - i.e. zF0 > 0.
The regression head is trained with MSE loss on the
non-zero, vocalised pitch labels. Like the rhythm
predictor this model is trained with a small unit
receptive field and unit masking.

3.3 Speech Synthesis

We follow Polyak et al. (2021); Kreuk et al. (2021)
using a variation of the HiFi-GAN vocoder (Kong
et al., 2020). Like previous work, we adapt
the generator to take as input a sequence of
phonetic-content units, pitch contour and a speaker-
embedding. During training, these are only features
from real samples as the vocoder is trained indepen-
dently for reconstruction. At inference time we use
the unit sequence inflated with predicted durations,
the predicted pitch contour and the target speaker-
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embedding. The above features are concatenated
along the temporal axis and fed into a sequence of
convolutional layers that output a 1-dimensional
audio signal. We match the sample rates of unit
sequence and F0 by means of linear interpolation,
while replicating the speaker embedding.

To sum up, after each of the components de-
scribed in previous sections are trained, the full
pipeline of DISSC is composed of: first extract-
ing content representation, zc, then, predicting the
prosodic features of the target speaker based on
zc and zspk, and lastly, synthesising the waveform
using these new representations.

4 SSC Evaluation Suite

In this section we describe our setup which uses
several datasets and fine-grained offline metrics for
each part of the conversion - timbre, pitch, rhythm.
As no standardised framework for evaluating SSC
currently exists, we hope the proposed metrics, will
help further advance research in this field. A de-
tailed description of training configurations and
hyper-parameters can be found in the Appendix.

4.1 Datasets

Most previous work focus on a single dataset such
as VCTK (Veaux et al., 2017), since few large,
multi-speaker datasets with parallel test sets exist.
However, VCTK has fairly monotonous speech
with less distinct speaking style.

To address this, we use several datasets. First,
we use VCTK as it has many speakers. We leave all
paired utterances (speakers say the same content)
to the test set, to mimic a truly unpaired setup. In
preliminary results, having paired data in training
improved the results notably, but harms the wanted
setup. We follow Qian et al. (2021) in selecting the
two fastest (P231, P239) and two slowest (P245,
P270) speakers by mean log duration.

In addition, we wished to add a more expressive
dataset, yet found that most expressive datasets are
from the emotional speech domain. In order to
adapt them to our use case we take the Emotional
Speech Dataset (ESD) (Zhou et al., 2022), and se-
lect one emotion for each of the 10 speakers. This
means that all recordings of a given speaker are in
a certain emotion thus making it part of their speak-
ing style. Here, we also take the two fastest and
two slowest speakers for rhythm metric evaluation.

After preliminary experiments we found that the
speakers in the above datasets do not always have

clear pitch patterns. This means that the speech is
quite monotonous and that variation across record-
ings was greater than across speakers. To ef-
fectively evaluate pitch conversion we created a
synthetic dataset based on VCTK - denoted as
Syn_VCTK. In this dataset we took 6 speakers
from VCTK, encoded them based on the pipeline
by Polyak et al. (2021). We then altered the pitch
contour by introducing a linear trend of either up,
down or flat for each of the speakers. We then
generated the new synthetic recordings in the same
approach. We encourage readers to listen to these
samples as well as the other datasets in the accom-
panying page to grasp the different speaking styles.

4.2 Metrics

4.2.1 Objective Metrics
We introduce new metrics which aim to capture
the rhythm in a fine-grained manner, and objec-
tively evaluate the pitch contour (even when the
rhythm does not match). We hope these metrics
will contribute to other advances in this field.

Timbre. For regular VC we use the common
Equal Error Rate (EER) of speaker verification us-
ing SpeechBrain’s (Ravanelli et al., 2021) ECAPA-
TDNN (Desplanques et al., 2020) which achieves
0.8% EER on Voxceleb. For each sample, we ran-
domly select n positive and n negative samples.
Positive samples are random utterances of other
speakers converted to the current speaker, and neg-
ative samples are random utterances of the current
speaker converted to a random target speaker.

Content. For phonetic content preservation we
use the standard Word Error Rate (WER) and Char-
acter Error Rate (CER), using Whisper (Radford
et al., 2022) as our Automatic Speech Recognition
(ASR) model.

Rhythm. In order to evaluate the rhythm we wish
to go beyond the length of the recording, which
only indicates the average rhythm and not which
sounds are uttered slowly and which quickly. We
therefore use the text transcriptions of the sam-
ples, and the Montreal Forced Aligner (MFA)
(McAuliffe et al., 2017) to get start and end times
for each word and phoneme in the recording. We
then compare the lengths of the converted speech
and the target speech, thus defining Phoneme
Length Error (PLE), Word Length Error (WLE)
and Total Length Error (TLE). We do not compare
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MODEL
CONTENT RHYTHM&F0 RHYTHM SPEAKER

WER↓ CER↓ EMD↓ TLE↓ WLE↓ PLE↓ EER↓
AutoVC (Qian et al., 2019) 71.3 47.1 17.68 1.214 0.072 0.028 7.5

V
C

T
K

AutoPST (Qian et al., 2021) 40.6 26.7 21.9 1.379 0.123 0.037 24.1
Seq2seq-VC (Liu et al., 2021) 2.9 1.2 20.95 1.214 0.072 0.028 10.9
SR (Polyak et al., 2021) 6.6 3.3 14.0 1.214 0.071 0.025 1.8
DISSC_Rhythm (Ours) 10.9 5.4 10.58 0.832 0.056 0.023 1.7
DISSC_Both (Ours) 13.0 6.9 10.53 0.832 0.056 0.023 1.7

E
SD

AutoVC (Qian et al., 2019) 87.0 59.9 31.82 0.591 0.106 0.048 6.6
AutoPST (Qian et al., 2021) 50.3 31.8 37.2 0.549 0.097 0.043 15.7
SR (Polyak et al., 2021) 14.9 6.0 30.3 0.591 0.097 0.041 2.9
DISSC_Rhythm (Ours) 19.1 7.9 24.8 0.350 0.076 0.037 2.6

Table 1: A comparison of the proposed method against VC and SSC baselines considering content (WER, CER),
Rhythm and F0 (EMD, TLE, WLE, PLE), and speaker identification (EER). Only DISSC improves rhythm metrics
compared to standard VC baseline Speech Resynthesis.

the length of silences as their occurrence can differ
between recordings thus breaking the alignment.

Formally, for each input recording and
matching text, MFA returns a list of tuples
Tw = ((sw1 , ew1 , cw1) . . . (swm , ewm , cwm)) for
word level and another for phoneme level -
Tp = ((sp1 , ep1 , cp1) . . . (spm , epm , cpm)). s{w,p}i
indicates the start time of the sound at index i
in the recording (word or phoneme according
to the level), and e{w,p}i indicates the end
time. c{w,p}i represents the content of the time
segment, i.e the word or phoneme. We filter
only non-silence time segments leaving T̃{w,p} =

((s{w,p}i , e{w,p}i , c{w,p}i) ∀i s.t. c
{w,p}
i ̸=

silence). Thus formally, the errors per sample
compare durations of a reference sample and a
synthesised sample:

PLE(T̃ syn
p , T̃ ref

p ) =

len(T̃p)∑

j=1

|(esynpj − ssynpj )− (erefpj − srefpj )|,

WLE(T̃ syn
w , T̃ ref

w ) =

len(T̃w)∑

j=1

|(esynwj
− ssynwj

)− (erefwj
− srefwj

)|.

(1)

The TLE is just the duration difference between
the entire recordings. All rhythm metrics are in
time units, in this case seconds. In addition, on
rare occasions the number of phonemes for the
same sound by different speakers is different (due
to accents etc.), we ignore these samples for a more
well-defined metric. In addition, when the phonetic

content is harmed dramatically in the conversion,
MFA might fail to align the text. We penalise such
samples by assuming a linear and even split of the
recording to phonemes and words.

Pitch. Popular evaluation methods for F0 similar-
ity include the Voicing Decision Error (VDE) and
F0 frame error (FFE). Intuitively, VDE measures
the portion of frames with voicing decision error,
while FFE measures the percentage of frames that
contain a deviation of more than 20% in pitch value
or have a voicing decision error. Formally,

VDE(v, v̂) =
∑T−1

t=1 1[vt ̸= v̂t]

T
, (2)

FFE(p, p̂,v, v̂) = VDE(v, v̂)

+

∑T−1
t=1 1[|pt − p̂t| > 0.2 · pt]1[vt]1[v̂t]

T
,

(3)

where p, p̂ are the pitch frames from the target and
generated signals, v, v̂ are the respective voicing
decisions, and 1 is the indicator function.

Although these metrics are widely used in
speech synthesis (Wang et al., 2021), these meth-
ods are not well adapted to misaligned samples,
i.e when they are spoken at different rates. These
metrics require the samples to have the same time
length, therefore many implementations linearly
interpolate the generated sample’s pitch contour
to that of the target before computing them. How-
ever, rhythm differences are non-linear (i.e certain
phonemes could be “stretched” more than others)
thus not alleviating the misalignment problem. In-
stead, we suggest using segments obtained from the
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forced-aligner and calculate the FFE while inter-
polating the segments to match the segment sizes.
This measures the match in shape and value of the
pitch contour for each word and phoneme, even if
they are misaligned. We denoted these as P_FFE
for phoneme segments and W_FFE for words.

Rhythm & Pitch. We compute Earth Movers
Distance (EMD) (Rubner et al., 1998) between the
pitch contour of converted and target samples. Es-
sentially we check how much “pitch mass” needs
to be moved between them. This metric considers
errors along the time domain (rhythm) and pitch
contour errors (such as predicting the wrong trend).
Our results show strong correlation to human per-
ception of rhythm and pitch with the above metrics.

This newly proposed evaluation suite is generic
and can transfer to other languages. However, cer-
tain metrics are based on language-specific pre-
trained models (e.g., ASR-based metrics). In such
cases, a multi-lingual ASR can be used. In our
setup, we use the Whisper model (Radford et al.,
2022) which supports ∼ 100 languages. Another
option would be to use the MMS model (Pratap
et al., 2023) which supports more than 1000 lan-
guages for both ASR and forced-alignment.

4.2.2 Human evaluation

To confirm that the proposed objective metrics cor-
relate to human perception, and to evaluate to what
extent the prosody impacts humans’ speaker recog-
nition we conduct a human evaluation study. We
use the common mean opinion score (MOS) to eval-
uate the quality and naturalness of generated and
real samples. Specifically, each sample was scored
from 1-5 on naturalness and quality. We took the
same 40 samples for each method and the original.
Each sample was annotated by at least three raters.

Next, to evaluate the effectiveness of the speak-
ing style conversion, we present the users a sample
from the target speaker and a sample converted by
each method. Users rated each sample from 1-5
(“Very Different”-“Very Similar”) on how likely it
is to be uttered by the same speaker and instructed
to “pay attention to speaking style such as rhythm
and pitch changes, and not only the voice texture".
We evaluated 40 samples per-method, with at least
three raters per-sample. We report the mean score
and 95% confidence intervals for both tests. We
modified the WebMUSHRA1 tool for the tests. A

1https://github.com/audiolabs/webMUSHRA

Figure 4: We compare the human evaluated naturalness
of real reference utterances, Speech Resynthesis (SR),
AutoPST, two versions of DISSC which convert rhythm
only or also F0. We also compare the similarity of how
likely the converted sample is to come from the the same
speaker as the target recording.

detailed description of the subjective tests can be
found in the Appendix.

5 Results

We compare DISSC to several any-to-many (or
many-to-many) baselines. Notably, we evaluate
Speech Resynthesis (SR), and AutoVC (Qian et al.,
2019) which are well known VC methods. In ad-
dition, we compare to AutoPST and BNE-MoL-
seq2seqVC (Liu et al., 2021) which are prominent
prosodic-aware VC (i.e., SSC) methods. We use
the official Github implementations and train the
models on our datasets using the authors recom-
mended configuration. For a fair comparison, all
baselines were evaluated under the any-to-many
setup, i.e., generating only seen speakers. Only
seq2seqVC supports new speakers, because only
that approach was published. However, we evaluate
them on known speakers, with the entire training
set as reference recordings. We show three variants
of our method: DISSC_Rhythm, DISSC_Pitch
and DISSC_Both which predict duration, pitch
contour and both respectively.

Objective results for VCTK and ESD appear in
Table 1. On both datasets DISSC improves the
length errors across all scales: phonemes, words
and utterances. The relative improvement com-
pared to the next best baseline is 56.8% on ESD
TLE. At word level we get 27.6% and 26.7% rela-
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MODEL
CONTENT RHYTHM&F0 RHYTHM F0

WER↓ CER↓ EMD↓ TLE↓ WLE↓ PLE↓ W_FFE↓ P_FFE↓
SR (Polyak et al., 2021) 12.4 6.3 24.23 1.101 0.064 0.024 46.1 43.4
DISSC_Rhythm (Ours) 18.8 9.5 20.78 0.775 0.053 0.023 46.1 43.7
DISSC_Pitch (Ours) 12.5 6.3 13.55 1.101 0.065 0.024 24.5 20.5
DISSC_Both (Ours) 19.6 10.2 10.47 0.775 0.053 0.023 25.3 21.4

Table 2: VC and SSC results on the Syn_VCTK dataset. This ablation measures the impact of rhythm and pitch
conversion over SR considering content (WER, CER), Rhythm and F0 (EMD, TLE, WLE, PLE, W_FFE, P_FFE).

tive improvement on ESD and VCTK respectively.
All other baselines show rhythm errors comparable
or worse than SR which does not convert rhythm.

We can see a minor decrease in content quality
(by WER and CER) of DISSC compared to SR
which does not convert prosody, but still superior to
AutoPST. In addition, seq2seq also has better WER,
at the expense of harming the rhythm conversion.
Potentially, the supervised phoneme recogniser is
too fine, thus does not impose enough of a rhythm
bottleneck. The harm in quality of DISSC may
be due to additional information bottlenecks by
de-duplicating the speech units, and predicting F0.

We additionally provide subjective evaluation
considering both naturalness of the converted sam-
ples and their similarity to the target recording con-
sidering speaking style. These results are shown
in Figure 4. We found that the naturalness of both
DISSC variants was comparable to SR, and not
far from the reference recordings while far outper-
forming AutoPST. In addition, we see a noticeable
increase in speaking style similarity when convert-
ing prosody with DISSC compared to SR. How-
ever, also converting the pitch did not noticeably
improve the results. We believe that this has to do
with the lack of distinct speaking style which peo-
ple can notice, especially from a single recording.

Ablation study. In order to properly evaluate the
ability of DISSC to learn the pitch speaking style,
when such exists, we use the synthetic VCTK data
(as explained in Section 4.1) with known pitch
trends. These results (Table 2) are an ablation study
for each converter of DISSC. They highlight the
control-ability of our approach - when predicting
the rhythm, only length errors improve, likewise
for pitch. We see that when a pitch pattern exists
in the speaking style - DISSC learns it, provid-
ing 88-113% relative increase in the metrics. We
also see that they can be converted jointly without
noticeable drop in pitch and length performance.

Figure 5: DISSC corrects abnormal rhythm patterns
in specific words, compared to AutoPST. Here we take
the utterance “people look, but no one ever finds it” and
stretch the duration of the word “finds” times three.

Irregular rhythm. Lastly, to demonstrate that
DISSC predicts rhythm depending on content, and
not only on average - we create a sample with ab-
normal rhythm patterns. We take an utterance and
artificially stretch one of the words using speech
resynthesis. We then attempt to “convert” the sam-
ple to the original speaker thus checking the ability
to only change the rhythm of the abnormal part.
We compare DISSC and AutoPST in Figure 5, and
see that DISSC manages to mostly correct the ir-
regular rhythm, while hardly changing the other
parts. By contrast, AutoPST only slightly changes
the rhythm. If Ec performs optimally, we are guar-
anteed perfect results, as zc would be identical for
irregular and original after dedup. However, Hu-
BERT may introduce some errors specifically when
considering signal variations (Gat et al., 2022).

6 Conclusion & Future Work

In this work, we propose a simple and effective
method for speaking style conversion based on dis-
crete self supervised speech representations. We
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provide a formal definition to the speaking style
conversion setup while introducing a set of eval-
uation functions to analyse and evaluate different
speech characteristics separately. Results suggest,
the proposed approach is superior to the evaluated
baselines considering both objective and subjective
metrics. We hope these advance the study in the
field, and lead to improved performance.

The current model suffers from slight content
loss when using the deduped units. In addition,
repeated utterances get slightly different units (in
the abnormal rhythm experiment). Therefore, in
future work we aim to improve the robustness and
disentanglement of the speech representation con-
sidering speaker and prosodic information.

Limitations

Our approach can only perform conversion into a
closed set of speakers seen at train time. This is due
to the LUT used to learn speaker representations
and to the use of per-speaker pitch statistics. This
might be hard to overcome as speaker style (rhythm
and pitch changes) can be hard to judge from a
small number of samples. Additionally, we see that
speaking style conversion and especially rhythm
conversion harm the WER and CER slightly. The
additional bottleneck of de-duplication which al-
lows us to convert rhythm comes with the cost of
slight content loss. We hope that future improve-
ment of the hidden representations will help im-
prove or alleviate the tradeoff.

Ethical Statement

The broader impact of this study is, as in any gener-
ative model, the development of a high quality and
natural speech synthesis model. This has special
sensitivity and ethical concerns as such technology
might be used to alter voices and speaking style
in speech recordings, which can be considered as
biometric data and biometric processing. To deal
with that we limit the number of speakers that can
be synthesized with the proposed approach using a
pre-defined voices using a look-up-table. Another
potential risk of the proposed method which is also
one of its limitations is that the generated speech
content is not always perfect, hence might lead to
wrong pronunciations.
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A Appendix

Here we give fine-grained details of computational
costs, hyper-parameters and other implementation
details omitted from the main part for brevity and
readability.

A.1 Dataset details

We use several datasets: (i) VCTK dataset (Veaux
et al., 2017); (ii) ESD (Zhou et al., 2022); (iii) and
the a synthetic VCTK dataset (Syn_VCTK), gen-
erated by us. For VCTK the training data contains
41k samples, and the evaluation set contains 2.5k.
For ESD the training data contains 3k samples,
the validation contains 200, and the test 300. For
Syn_VCTK the training data contains 2.4k samples
and the validation has 142. For ESD we use the of-
ficial train, val, test split. For both VCTK versions
we enforce unpaired data in the train sets, and use
paired data only for evaluation.

A.2 Computational Price

We use a pretrained HuBERT_Base model for input
encoding. This model has 90 million parameters
and takes less than 15 minutes to inference over all
of our datasets. For training times see the original
paper. For the HiFi-GAN vocoder which is trained
once, independently of the speaking style conver-
sion, we use a model with 13.8 million parameters
(for the generator). It takes 4 days on to train on
VCTK using two RTX 6000 GPUs, other datasets
take less than that.

The rhythm predictor Edur has 330 thousand
parameters, and takes about 30 minutes to train
on a single RTX2080 GPU. Likewise, the pitch
predictor Ef0 has 527 thousand parameters, and
also takes about 30 minutes to train on a single
RTX2080 GPU.

A.3 Hyper-Parameters

We encode the HuBERT units and pitch contour
with textlesslib. For the content endocer we use
hubert-base-ls960 and use K-means with 100 clus-
ters for the clustering step. For the pitch contour we
use the default parameters from textless lib which
match the content encoder we used.

For the vocoder we use the official implementa-
tion of speech resynthesis with the configuration
suitable for VCTK, hubert100, using a fixed size
lookup-table. We adapt the model so that it re-
ceives as input the normalised pitch without quanti-
sation. We train it with a batch size of 64 over two
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GPUs for the minimum between 2000 epochs and
400,000 batches.

The rhythm predictor Edur is built of 8 blocks
of Conv1D followed by Batch Normalisation, with
128 hidden units. The speaker embedding and to-
ken embedding are learned with a lookup-table,
both with size 32. The speaker vector is repeated
along the time axis and concatenated with the unit
embedding. Each CNN has a receptive field of 3
and padding of 1 so that the output shape is the
same as the input. For activation we use Leaky
ReLU. We normalise the length for prediction with
the mean and standard deviation of the training
data. Train time masking masks each unit in the
input independently with 20% probability. We train
the model for 30 epochs, with a batch size of 32,
a learning rate of 3e− 4 and Adam optimiser. We
take the model with lowest validation MSE. This
architecture and parameters were fairly standard
values which worked out of the box, no manual or
automated hyper-tuning was done.

The pitch predictor EF0 encodes the speaker
and units in the same way as Edur with a fixed size
lookup-table of size 32. However, here we add to
the speaker embedding a linear positional encod-
ing - this means that indices 0-15 of the speaker
vector get added the unit index relative to the start
and indices 16-31 get added the unit index rela-
tive to the end. In preliminary experiments more
typical sinusoidal positional encoding worked sim-
ilarly but we chose the linear version for simplicity.
The model is comprised of 9 shared Conv1D lay-
ers with kernel size 3, and followed by 2 Conv1D
with kernel sizes 3 and 1 for each head (speaking
classification and F0 regression). We use Leaky
ReLU activation. The labels for training are re-
ceived from the YAAPT algorithm, normalised per-
speaker with the mean and standard deviation of
the vocalised parts of the training set. We do not
normalise the non-vocalised parts. The BCE loss
for binary classification is multiplied by 100 and
added to the pitch MSE loss, to attempt to give both
losses a similar scale. We train the model for 20
epochs with learning rate 3e− 4, batch size of 32
and Adam optimiser. We take the model with the
lowest validation MSE. The results in Table 1, and
Figure 4 are with a similar model, however it does
not use positional encoding. The positional encod-
ing was added afterwards as an improvement. This
architecture and parameters were fairly standard
values which worked out of the box, no manual or

automated hyper-tuning was done.

A.4 Human Evaluation Details
We had over 20 different annotators in our sub-
jective tests, who were all non-paid volunteers.
They are all fluent, though not necessarily native,
in English, and vary in academic background and
connection to the field. For privacy reasons the
questionnaires are anonymous and no details are
collected about the participants.

The quality question is phrased as follows:
“Evaluate the quality and naturalness of the fol-
lowing audio segment”, and the raters give a scale
of 1-5 with the labels: “Poor”, “Decent”, “Good”,
“Very Good”, “Excellent”.

The similarity question is phrased as follows:
“The first recording in this section is a reference,
mark all recordings in how similar the speaking
style is to the original. speaking style refers to the
speaking rhythm, intonation etc. Try to ignore the
quality of the recording itself”, and the raters give a
scale of 1-5 with the labels: “Very different”, “Dif-
ferent”, “Slightly similar”, “Similar”, “Very Simi-
lar”.

A.5 Low Resource Language Conversion
As mentioned, DISSC does not use text as any
intermediate representation in conversion (or text
supervision for training). This means that it can
work in low-resource languages which do not have
large annotated datasets.

We demonstrate the ability of DISSC to con-
vert a Hebrew utterance to a target VCTK speaker,
while not being trained on any Hebrew data (see
Fig. 6). While converting the accent in cross-
lingual (Hebrew utterance to English speaker) re-
mains challenging, this shows good potential. No-
tably, this example is out of domain for all model
training data. Training DISSC in a textless self-
supervised way on Hebrew data will likely improve
the performance dramatically.

A.6 WER detailed analysis
While DISSCis the only evaluated method to suc-
cessfully convert prosody, it has a limitation of
slightly harming content compared to some meth-
ods which do not convert prosody (e.g. speech
resythesis). We see this in the WER and CER met-
rics and wish to further analyse the cause for this.

We first manually inspect the samples with high-
est word error rate. We have found that the content
loss is mainly due to minor phonological errors
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Figure 6: An example using DISSC to convert a non-
English sample. Hebrew is a lower resource language,
hence there are little to no transcribed datasets. Thus,
no expressive TTS methods exist, making an ASR-TTS
VC pipeline impossible. Training DISSC on unlabelled
Hebrew data, will likely improve results further. We en-
courage readers to listen to the accompanying samples.

Source Speaker Method

SR DISSC_Rhythm

p231 6.4 11.1
p239 12.2 18.6
p245 4.5 7.9
p257 9.8 15.7
p270 3.0 7.7
p284 12.1 18.2
p306 4.5 7.0
p341 1.3 4.0

Table 3: Word error rate comparison on VCTK, split
by source speaker when converting to all other speakers
as targets. For instance the first row denotes the WER
when converting a fixed set of samples from speaker
p231 to all other speakers in the list. We compare
DISSC_Rhythm and Speech resynthesis and see that
the results vary greatly, and that the success of both
methods are correlated.

which cause transcription change. For example,
in cases with a high error rate, the original text
is: “Please call Stella” and the transcription after
conversion is: “Peace cool Stalla”. However, when
looking at the WER of both DISSC and speech
resynthesis, we observe that such phonological er-
rors are observed in the same samples for both
methods (even without conversion). Therefore, we
believe that the root cause of such phenomenon is
the quality of the SSL model and DISSC amplified
this effect.

To further, evalute this hypothesis we evaluate
the WER per source speaker and per target speaker
(results in Tables 3 and 4). This analysis clearly
shows that WER per-speaker varies greatly based
on the source speaker, but does not depend on the

Target Speaker Method

SR DISSC_Rhythm

p231 6.2 11.2
p239 7.0 11.4
p245 6.6 11.6
p257 6.4 10.5
p270 7.2 10.9
p284 6.4 11.5
p306 7.2 11.4
p341 7.1 11.8

Table 4: Word error rate comparison on VCTK, split by
target speaker when converting from all other speakers
as sources. For instance the first row denotes the WER
when converting a fixed set of samples from all source
speakers in the list (except p231) to speaker p231. We
compare DISSC_Rhythm and Speech resynthesis and
see that the results hardly depend on the target speaker.

target speaker, this further supporting the fact that
this is an issue with the SSL encoding method. An
interesting line of future work would be in improv-
ing SSL for such cases, or even applying error-
correcting codes on the converted speech.
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