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Abstract

Non-autoregressive models have been widely
used for various text generation tasks to acceler-
ate the inference process but at the cost of gener-
ation quality to some extent. To achieve a good
balance between inference speedup and genera-
tion quality, iterative NAR models like CMLM
and Disco are proposed. Researchers have
made much follow-up progress based on them,
and some recent iterative models can achieve
very promising performance while maintain-
ing significant speedup. In this paper, we give
more insights into iterative NAR models by
exploring the anisotropic problem, i.e., the rep-
resentations of distinct predicted target tokens
are similar and indiscriminative. Upon the con-
firmation of the anisotropic problem in iterative
NAR models, we first analyze the effective-
ness of the contrastive learning method and
further propose the Look Neighbors strategy
to enhance the learning of token representa-
tions during training. Experiments on 4 WMT
datasets show that our methods consistently im-
prove the performance as well as alleviate the
anisotropic problem of the conditional masked
language model, even outperforming the cur-
rent SoTA result on WMT14 EN → DE1.

1 Introduction

Transformer-based models (Vaswani et al., 2017)
with auto-regressive (AR) decoding paradigm have
successfully applied to various text generation
tasks, such as machine translation (Wu et al., 2019;
Liang et al., 2021), text summarization (Savelieva
et al., 2020; Elsaid et al., 2022), dialogue sys-
tems (Zhang et al., 2020; Ma et al., 2020), with
exciting performance being achieved. However, the
low inference efficiency prohibits their usage (espe-
cially with current super-large transformer models
as backbones) since the AR paradigm predicts the
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tokens one by one in left-to-right order. To speed
up model inference, many non-autoregressive meth-
ods (Gu et al., 2018; Ghazvininejad et al., 2019;
Qian et al., 2021; Huang et al., 2022b; Guo et al.,
2023) explore predicting target tokens in parallel in
recent years. As a result of parallel decoding, they
inevitably neglect the internal dependency of the
target tokens, causing the generation quality falls
behind their AR counterparts to some extent.

To achieve a better trade-off between inference
speedup and generation quality, many iterative
NAR models (Ghazvininejad et al., 2019; Kasai
et al., 2020; Chan et al., 2020; Huang et al., 2022c)
have been proposed recently. They adopt multi-
ple decoding iterations to generate final results,
where the intermediate result generated from the
last iteration can provide useful target informa-
tion and then be fed into the model for refine-
ments in the next iteration. Excitingly, iterative
decoding brings significant performance improve-
ments for NAR models and even outperforms the
vanilla autoregressive Transformer. Among them,
one of the most competitive and widely-used mod-
els is CMLM (Ghazvininejad et al., 2019), which
adopts uniform masking during training and a
mask-predict strategy for decoding. Based on
CMLM, many advanced methods, such as train-
ing strategy (Kasai et al., 2020), criterion (Marjan
et al., 2020; Du et al., 2021), and inference strat-
egy (Kreutzer et al., 2020; Geng et al., 2021), have
been explored and achieved better performance.
Despite significant progress, some critical prob-
lems of NAR methods still remain challenging, e.g.,
repetition and reliance on distillation.

To disclose more insights into the enhancement
of the iterative NAR models, this paper explores
from a different perspective, i.e., the anisotropic
problem, which has been revealed recently in AR
models (Su et al., 2022). This can cause the de-
generation of AR neural language models with the
anisotropic distribution of token representations
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(d) Iter.10 on EN→DE.

Figure 1: Token cosine similarity matrix of CMLM with
in iteration 1/10 on WMT16 EN→RO and WMT14
EN→DE raw data.

(taken from the output layer of the model), in which
the high similarity of different tokens can mislead
the model to generate repetitive tokens at different
steps. Naturally, we wonder whether the repetition
problem of NAR models is also closely associated
with the anisotropic representations. We take the
typical iterative NAR model CMLM (Ghazvinine-
jad et al., 2019), and present the results in Figure
1, the same phenomenon in AR model (Su et al.,
2022) also holds for iterative NAR models, i.e., the
token similarity is close to each other (Figure 1(a)
and (c)). Besides, decoding with multiple iterations
(Figure 1(b) and (d)) do not alleviate the dense rep-
resentation of token similarity for a large margin.
Therefore, the anisotropic problem of the iterative
NAR models is worth more exploration.

To alleviate the anisotropic problem of CMLM,
we first test the effectiveness of the existing method
based on contrastive learning (Su et al., 2022).
However, we found that directly adopting the ex-
isting method does not obtain consistent improve-
ments on various datasets. Then, we analyze the
potential reason and attribute it to the failure to
learn the token representation well during training,
which is a widely recognized problem for all NAT
models. The reason why "failure to learn represen-
tations" is not conducive to improving performance
will be discussed in Section 2.3. Motivated by
the particularly dense representation of adjacent
tokens, we propose a simple yet effective strategy
named Look Neighbors to enhance the dependency
of adjacent tokens and auxiliarily learn better repre-

sentations. Due to learning better representations,
Look Neighbors can supplement contrastive learn-
ing well during the training of CMLM.

We conduct comprehensive experiments to eval-
uate our methods. Results on WMT14 EN↔DE
and WMT16 EN↔RO datasets all demonstrate that
our methods outperform the vanilla CMLM model,
achieve comparable performance compared with
strong iterative NAR baselines. Besides, the explo-
rations on the token representation of CMLM also
give a new insight into the iterative NAR models,
indicating the anisotropic problem, which has been
well learned in AR models recently, also affects the
performance and further developments for NAR
models.

2 Preliminaries and Trials

2.1 Non-autoregressive Language Model

Most of the text generation models adopt the au-
toregressive decoding format to generate the target
sentences and use the autoregressive factorization
to maximize the following likelihood:

LAR =

T∑

t

logP (yt|y<t, X; θ), (1)

where y<t denotes the previous generated target
tokens, T denotes the length of the target sentence,
X is the source sentence, and θ denotes the model
parameters.

Non-autoregressive Language Model removes
the internal dependency of target tokens and adopts
conditional independent factorization for predic-
tion. Recent non-autoregressive (NAR) language
models can be divided into fully NAR and iterative
NAR models. The former ones adopt the following
objective to maximize the likelihood:

LF-NAR =
T∑

t

logP (yt|X; θ), (2)

Obviously that the conditional tokens y<t are re-
moved for NAT models. Then the models con-
duct parallel generation without autoregressive con-
straints, and the inference speed will be greatly
improved. Comparatively, iterative NAR models
share a spirit of a mixed autoregressive and non-
autoregressive generation. They adopt multiple de-
coding iterations and keep the autoregressive prop-
erty in each iteration. They aim to maximize the
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Figure 2: Token cosine similarity matrix of CMLM with
contrastive learning in iteration 1/10 on raw WMT16
EN→RO and WMT14 EN→DE datasets.

following likelihood:

LI-NAR =
∑

t∈Ytgt

logP (yt|Ŷ , X; θ), (3)

where the Ytgt denotes the prediction target of cur-
rent iteration and the Ŷ denotes generation result
of previous iterations.

2.2 Conditional Masked Language Model

Since we adopt the conditional masked language
model (CMLM) as the backbone to explore the
anisotropic problem for the iterative NAR models,
we give a detailed introduction to the training and
inference process in CMLM.
Training Process. During training, CMLM adopts
a masked language modeling task with a uniform
masking strategy to decide the masked tokens in the
target sentence and learns to predict them. Specifi-
cally, given a training pair (X,Y ), several tokens in
Y will be masked as Ymask, and the rest tokens are
denoted as Yobs. The model then learns to predict
the masked tokens Ymask in parallel given X and
the unmasked tokens Yobs. The training objective
of CMLM is to maximize:

LCMLM =
∑

yt∈Ymask

logP (yt|Yobs, X; θ), (4)

where θ denotes the trainable parameters of CMLM.
Besides, as the same as traditional NAR models, an
auxiliary task to predict the target length is adopted.
CMLM adds a special token [LENGTH] (akin to

Models
WMT14 WMT16

EN-DE DE-EN EN-RO RO-EN

CMLM 24.92 29.59 32.84 32.44
w/ CL 25.59 29.77 32.88 32.76

Table 1: The results on raw datasets with contrastive
learning (CL) for CMLM.

the [cls] token in BERT) into its encoder to predict
the target length conditional on the source sentence.
Inference Strategy. During inference, CMLM
adopts the mask-predict decoding algorithm.
Specifically, the tokens with low confidence pre-
dicted in the previous iteration will be masked, and
the model will predict these masked tokens again
in the next iteration. Given the target length L, the
source sentence X and the total decoding iteration
T , CMLM predicts the entire masked target sen-
tence (i.e., empty Yobs) at the first iteration. Then
after obtaining the relatively incredible result of the
first iteration, the model will choose the specific
number of masked tokens with the lowest predic-
tion probability. In an intermediate iteration t, the
number of the masked tokens n can be calculated
as n = T−t

T ∗ L. The target sentence with newly
masked tokens will be fed into the decoder again
and the masked tokens will be predicted conditional
on the source sentence X and the unmasked tokens
Yobs, and the prediction probability of them will be
updated. In general, the more iterations, the better
the performance of the generation.

2.3 Contrastive Learning for CMLM
In this part, we present how to adopt the contrastive
learning method for the conditional masked lan-
guage model (CMLM). Referring to the original
paper (Su et al., 2022), we adopt a contrastive ob-
jective into the training of CMLM. Specifically,
given a training pair (X,Y ), the contrastive loss
can be calculated as:

Lsum =

|Y |∑

i=1

|Y |∑

j=1,j ̸=i

max{0, s(hyi , hyj )− ρ}, (5)

Lave =
1

|Y |(|Y | − 1)
Lsum, (6)

where |Y | is the length of target sentence, hyi de-
notes the representation of token yi, s(hyi , hyj )
denotes the cosine similarity between two token
representations, and ρ denotes the pre-fined con-
trastive margin. Intuitively, the contrastive learning
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method can punish the close representations of to-
kens, resulting in a discriminative and isotropic
model representation space. The overall training
objective for CMLM is defined as:

L = LCMLM + Lave. (7)

Results are shown in Figure 2 (cosine similarity
matrix) and Table 1 (BLEU score). Fortunately,
the token cosine similarity matrixes become sparse,
e.g., the representations of distinct tokens become
discriminative significantly and multiple iterations
bring further improvements. However, with re-
gard to the BLEU score, there is no consistent im-
provement for various datasets, e.g., as shown in
Table 1, the performances of WMT14 DE→EN
and WMT16 EN→RO dataset only have 0.18 and
0.04 BLEU improvement respectively. We ana-
lyze the potential reason for this inconsistent im-
provement and attribute it to the failure to learn the
correct representation of the distinct target tokens.
More specifically, the anisotropic loss is optimized
based on the token representations, so the effec-
tiveness of anisotropic loss is closely related to the
model’s own ability to learn the token represen-
tations, i.e., blindly constraining incorrect token
representations by anisotropic loss can’t bring sub-
stantial improvement for performance although it
truly makes their representations more distinguish-
able. As a result, due to the character that "fail
to capture the dependency of target tokens" for
NAR models, anisotropic loss just alleviates the
traditional anisotropic problem but gets limited im-
provement on BLEU as shown in Table 1.

It’s noticed that "failure to learn representations"
is a widely-recognized problem for all NAT mod-
els, but not caused by anisotropic loss. The claim
denotes that NAR models fail to capture the de-
pendency of target tokens during training (Gu and
Kong, 2021a; Xiao et al., 2022; Zhan et al., 2022),
i.e., unlike AR models which can learn target-side
dependency between one specific token and previ-
ous generated tokens, NAR models only depend on
source tokens to make predictions due to the condi-
tional independent factorization adopted in training
process. As a result, we aim to promote the ability
to learn the token representations for CMLM first,
then adopt the contrastive learning method.

3 Look Neighbors

In this section, we introduce our enhancement
method, Look Neighbors, which improves the abil-

ity to learn token representations during training.
As mentioned in Section 2.3, the failure to learn
the token representations well for CMLM prevents
the superior effects of adopting contrastive learn-
ing. The instability of the representations in NAR
models has also been explored in recent NAR pa-
pers (Wang et al., 2019; Xie et al., 2022). They
propose the regularization method to normalize the
token representations. Unlike these regularization
methods, we try the enhance the learning of to-
ken representations. Specifically, we incorporate
the representations of other tokens to make predic-
tions during training, thus improving the ability
to learn token representations. As shown in Fig-
ure 1, the cosine similarity is denser in adjacent
tokens, indicating that CMLM has more difficulty
in understanding and distinguishing the adjacent
representations of target tokens. As a result, we
mainly incorporated the representations of adja-
cent tokens rather than all other tokens. The most
similar exploration is explored in LAVA-NAT (Li
et al., 2020). They propose a Look-Around decod-
ing strategy to enhance the inference schedule but
without enhancing the training process.

We propose the Look Neighbors, where the
model integrates a neighbor-aware self-attention
into every decoder layer and concatenates the rep-
resentations from the last decoder layer of the left
and right neighbors to assist in predicting the target
tokens. Firstly, we formally introduce our neighbor-
aware self-attention as follows:

Attmerge = α ·Attself +(1−α) ·Attneighbor (8)

Attneighbor = softmax(
QKT

√
d

+M)V (9)

Mi,j =

{
0, j − 1 ≤ j ≤ j + 1
−∞, otherwise

(10)

where α is a learnable parameter, Attself is the
original decoder self-attention, Attneighbor is our
neighbor-aware self-attention, Attmerge denotes
the final attention we adopt in the experiments,
and Mij expresses the position j of the token i
in the mask matrix. Next, given the representa-
tions of the last decoder layer for target tokens:
H = {h1, h2, ..., hT }, where hi is the represen-
tation of the target token Yi, T is the length of
the target sentence. Each representation hi con-
catenates the left-neighbor hi−1 and right-neighbor
hi+1, denoted by:

h′i = (W (hi−1 ⊕ hi+1)) + hi (11)
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Models Idec
WMT14 WMT16

Speedup
EN-DE DE-EN EN-RO RO-EN

AT Transformer* / 27.48 31.27 33.70 34.05 1.0 ×

Fu
lly

N
A

T

FT-NAT (Gu et al., 2018) 1 11.79 16.27 - - 15.6 ×
Flowseq (Ma et al., 2019) 1 23.64 28.29 32.35 32.91 1.1 ×
Fully-NAT (Gu and Kong, 2021b) 1 23.58 - - - 16.5 ×
AXE-NAT (Marjan et al., 2020) 1 20.40 24.90 - - 14.2 ×
OAXE-NAT (Du et al., 2021) 1 22.40 26.8 - - 15.3 ×
GLAT+CTC (Qian et al., 2021) 1 25.02 29.14 - - 14.6 ×
DSLP+CTC (Huang et al., 2022a) 1 24.81 28.33 - - 14.0 ×
DA-Transformer (Huang et al., 2022b) 1 26.08 30.48 - - 14.0 ×
Diff-GLAT (Qian et al., 2022) 1 26.46 30.48 - - 14.3 ×

It
er

at
iv

e
N

A
T SMART (Ghazvininejad et al., 2020) 10 25.10 29.58 32.71 32.86 2.2 ×

Disco (Kasai et al., 2020) 10 25.64 - - 32.25 3.5 ×
Imputer (Saharia et al., 2020) 8 25.00 - - - 3.9 ×
CORR* (Huang et al., 2022c) 10 26.01 30.55 33.71 33.27 2.1 ×
CMLMC (Huang et al., 2022c) 10 26.40 30.92 34.14 34.13 1.7 ×

Ours
CMLM* (Ghazvininejad et al., 2019) 10 24.92 29.59 32.84 32.44 2.2 ×
CMLM w/ Ours 10 26.68 30.50 34.01 33.83 1.7 ×

Table 2: Results on 4 WMT machine translation tasks. * denotes our implementations.

where W is a learnable matrix, ⊕ denotes the ma-
trix concatenation. Then the decoder representa-
tions will be H ′ = {h′1, h′2, ..., h′T }, and the model
predict the tokens based on H ′. Obviously, the
Look Neighbors strategy makes each representa-
tion to be aware of the information about its neigh-
bors, thus improving the learning of token repre-
sentations during training.

4 Experiment

4.1 Datasets
We verify the effectiveness of our method by con-
ducting experiments on multiple public translation
datasets: WMT14 EN↔DE, WMT16 EN↔RO.
The WMT En↔Ro and En↔De datasets contain
0.6M /1.9K/1.9K and 4.5M /39K/3K of train-
ing/valid/test sentence pairs, respectively.

4.2 Experimental Settings
We conduct all experiments using the Fairseq li-
brary (Ott et al., 2019). We adopt the same
model structure for a fair comparison with previ-
ous work and the CMLM baseline, i.e., the stan-
dard Transformerbase configuration containing 6
layers per stack, 8 attention heads per layer, 512
model dimensions, and 2048 hidden dimensions.
We adopt the Adam optimizer (Kingma and Ba,
2014) β with (0.9, 0.98), set weight decay to 0.01

and label smoothing to 0.1 for all the experiments.
We train the models with batches of 64k tokens
for all the datasets. We set the dropout rate as 0.2
to EN↔DE datasets and 0.3 to EN↔RO datasets.
The other hyper-parameters are adopted following
CMLMC (Huang et al., 2022c), e.g., the learn-
ing rate warms up to 7e-4 in 40k for WMT14
EN↔DE datasets, then gradually decays with an in-
verse square schedule for 300k update steps in total.
The corresponding settings for WMT16 EN↔RO
datasets are 5e-4/15k/100k. Besides, notice that the
pre-fined contrastive margin ρ is set to 0.4, which
has proven to achieve the best performance in 4.4.
During inference, we average the 5 best check-
points based on validation BLEU scores as our
final model, and the length beam is set to 5.

4.3 Results

Following previous works, we evaluate the perfor-
mance with BLEU (Papineni et al., 2002). Results
are presented in Table 2, we compare our meth-
ods with the traditional CMLM, the strong autore-
gressive baseline: vanilla Transformer, and other
NAT methods including related methods (NAT-
REG, Fully-NAT), recent competitive Fully NAT
models (GLAT, DSLP, DAD and DA-Transformer),
and several CMLM-based iterative NAT models
(SMART, Disco, Imputer, MvSR-NAT, CCMLM
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Models
WMT14 WMT16

EN-DE DE-EN EN-RO RO-EN

CMLM 24.92 29.59 32.84 32.44
w/ LN 25.41 30.36 33.43 33.02

Table 3: The effect of LN for CMLM on WMT datasets.
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Figure 3: The exploration of the best pre-fined con-
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and CMLMC). Firstly, our methods gain improve-
ments on all datasets compared with traditional
CMLM, and mitigate the gap between AT and NAT
models for about 1.0 BLEU score. Compared with
other related NAT methods, our proposed methods
outperform most of them, except for CMLMC. Sur-
prisingly, our methods achieve 26.68 on WMT14
EN→DE, and set the new SoTA performance. Be-
sides, compared with CMLM w/ CL (shown in
Table 1), CMLM with both methods achieves sig-
nificant improvements. It verifies our hypothesis
that while better capturing the dependency of tar-
get tokens for NAR models, the anisotropic loss
can perform more effectively to improve the perfor-
mance while alleviating the anisotropic problem.
We also provide the case study in Appendix A to
further understand the effectiveness of our method.

4.4 Ablation Study

Effect of Look Neighbors In order to eval-
uate the effectiveness of Look Neighbors, we
conduct the experiments by comparing CMLM
with/without Look Neighbors (LN). As shown in
Table 3, it’s evident that CMLM w/ LN achieves
consistent improvements on BLEU score (25.41
vs. 24.92, 33.43 vs. 32.84), which certifies that
the Look Neighbors strategy is able to capture the
dependency of the adjacent tokens effectively and
assist in generating better translation results.

Models WMT14 EN → DE WMT16 EN → RO

CMLM 27.21 33.36
w/ Ours 27.71 34.33

Table 4: The performance of CMLM w/o and w/ our
methods on WMT distilled data.
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(d) Iter.10, CMLM w/ Ours.

Figure 4: Token cosine similarity matrix of CMLM w/o
and w/ our methods in iteration 1/10 on distill WMT16
EN→RO dataset.

Best Contrastive Margin As mentioned in Sec-
tion 2.3, there is a pre-fined contrastive margin ρ to
control the strength of contrastive learning. If the
ρ is relatively big, the effect of contrastive learning
is small. However, once the ρ becomes 1.0, the
contrastive loss has no effect on training. We con-
duct experiments on WMT16 EN→RO dataset and
set the margin from 0.3 to 0.6. As shown in Fig-
ure 3, the performance all outperforms the vanilla
CMLM, indicating that it is not hard to apply our
methods. The best value is 0.4.

5 Analysis

5.1 Performance on Distilled Data
Knowledge distillation is a widely-used method in
various NAR models (Hinton et al., 2015; Zhou
et al., 2019). Following the previous works (Gu
et al., 2018; Huang et al., 2022c), we first adopt
AR models trained with original data to generate
the results. Then the generated outputs are adopted
as distilled data and serve as the training data of
NAR models. We adopt Transformerbase/big as the
teacher model for WMT EN↔RO and EN↔DE,
respectively. Compared with original training data,
distilled data is more explicit and simpler, and can
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Figure 5: Comparison of token similarity distribution
between CMLM w/o and w/ our methods.

Models Iter
WMT14 EN → DE WMT16 EN → RO

BLEU Reps Comet BLEU Reps Comet

CMLM
4 22.50 2.00% -0.09 31.47 0.90% 0.21
10 24.92 0.31% 0.08 32.84 0.24% 0.28

w/ Ours
4 24.07 1.18% -0.01 32.79 0.72% 0.26
10 26.68 0.17% 0.12 34.01 0.13% 0.31

Table 5: BLEU score, the token repetition ratio
and Comet score with different iterations on the raw
WMT14 EN → DE and WMT16 EN → RO datasets.

help alleviate the well-known multi-modality prob-
lem in NAR models. We also evaluate our methods
on distilled data and present the results in Table 4.
Our method can achieve about 0.5/1.0 BLEU score
improvements on WMT EN→DE and EN→RO,
respectively. Besides, we also compare the token
cosine similarity with/without our methods on dis-
tilled data. We plot the results in Figure 4, and
we can find that training with distilled data still
suffer from the anisotropic problem, and our meth-
ods also bring significant benefits in alleviating this
problem.

5.2 Quantitative Comparison

Cosine Similarity. Many previous works have
pointed out the positive effects of iterative decod-
ing and knowledge distillation (Ding et al., 2020;
Gu and Kong, 2021b; Xiao et al., 2022) for NAR
models. In order to better understand the effects
of them for alleviating the anisotropic problem,
we conduct a quantitative comparison of the token
cosine similarity between different iterations and
knowledge distillation. As we only compare the
cosine similarity with one specific example in the
previous contexts, e.g., Figure 1 and Figure 2, we
aim to explore the effects on the full test sets and
compute the average token cosine similarity scores
of WMT16 EN → RO dataset and plot them in
Figure 5. We find that decoding with more itera-
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Figure 6: Comparison of token similarity distribution
between CMLM w/o and w/ our methods with different
source lengths.

tions and adopting knowledge distillation does not
alleviate the anisotropic problem effectively. Be-
sides, adopting our methods presents significant ef-
fects in reducing the token cosine similarity scores.
There are no conflicts in our methods with iterative
decoding or knowledge distillation, i.e., adopting
knowledge distillation with our methods together
further reduces the token cosine similarity scores,
and the token cosine similarity scores trained with
our methods will be lower as more iterations are
adopted.

Token Repetition and Comet. Repetition prob-
lem is common in NAR models, we view the
anisotropic problem as one of the reasons to cause
token repetition. Since the anisotropic problem
can be alleviated well with our methods, we won-
der if the repetition rate reduces. We compare our
methods with vanilla CMLM of different iterations
and compute the corresponding repetition ratios.
Besides, we also report Comet (Rei et al., 2020)
to make a more complete evaluation. The results
on raw WMT EN→DE and EN→RO datasets are
presented in Table 5. As we can see, our method
achieves a consistent decrease in the repetition ratio
with different iterations. Besides, the BLEU score
and Comet also outperform the vanilla CMLM in
all conditions.

Different Source Lengths. We also explore the
effects of our methods with different sentence
lengths. Specifically, we divide the source sen-
tences of WMT16 EN→RO test set into 5 intervals
by the length after BPE operation, then compare
the average token representation similarity of it-
eration 10 with/without our methods. Results are
shown in Figure 6. It seems the length has a small
impact on token representation similarity, and our
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Models WMT16 EN → RO WMT16 RO → EN

CMLM 32.84 32.44
CORR 33.71 33.27

CORR w/ Ours 34.15 34.02

Table 6: The performance of CMLM combined with
CORR and CORR w/ our method.

methods alleviate the anisotropic problem greatly
with all conditions of sentence length, e.g., the to-
ken representation similarity is all about 0.7 with
different source sentence lengths and reduced to
around 0.15 with our methods. Although the to-
ken representation similarity seems to increase for
longer sentences after adopting our methods, the
final result is still less than 0.2, and this small in-
crease can be ignored.

5.3 More Explorations
As shown in Table 2, the performance of our meth-
ods is comparable with CMLMC (Huang et al.,
2022c), which introduces a self-correction mech-
anism based on CMLM. We also explore the po-
tential of adopting our methods to combine with
this mechanism. We only adopt the self-correction
mechanism by ourselves as the same as CMLMC
based on CMLM (CORR), and then adopt our meth-
ods (contrastive learning and look neighbors) to it.
Results on two WMT datasets are shown in Table 6,
we can find that the self-correction mechanism truly
improves the performance of vanilla CMLM, and
training with our methods further boosts the per-
formance. Moreover, we also plot the token cosine
similarity matrix of CORR with/without our meth-
ods in Figure 7. Results show that adopting the
self-correction rather than just the mask-predict
algorithm in vanilla CMLM does not help allevi-
ate the anisotropic problem, and our methods also
bring benefits with a self-correction mechanism.
This also presents the potential of our methods to
be applied to other iterative NAR models.

6 Related Work

The iterative NAR models are proposed to achieve
the trade-off between inference speedup and gen-
eration quality. Lee et al. first propose the itera-
tive model, where the noised target sentences are
refined in multiple iterations. Later, text-editing
methods (Stern et al., 2019; Gu et al., 2019; Lu
and Peng, 2022) are also introduced. They gen-
erate the target sentences by adopting the auxil-
iary insertion and deletion operations in each iter-
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(a) Iter.1, CORR.
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(b) Iter.10, CORR.
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(d) Iter.10, CORR w/ Ours.

Figure 7: Token cosine similarity matrix of CORR w/o
and w/ our methods in iteration 1/10 on raw WMT16
EN→RO dataset.

ation. Besides, motivated by BERT (Kenton and
Toutanova, 2019), Ghazvininejad et al. propose
the conditional masked language model (CMLM)
which adopts the uniform masking strategy during
training and a mask-predict strategy for inference.
Due to its promising performance, CMLM has
become one of the most competitive and widely-
used iterative NAR models, and many advanced
enhancement strategies from different perspectives
have been proposed based on CMLM in recent
years, e.g., optimizing the inference strategy (Ka-
sai et al., 2020; Geng et al., 2021), optimizing the
masking strategy (Guo et al., 2020; Xiao et al.,
2023), benefiting from the AT counterpart (Hao
et al., 2021; Xiaobo Liang and Zhang, 2022), train-
ing with better criterion (Marjan et al., 2020; Du
et al., 2021) and introducing correction mecha-
nism (Ghazvininejad et al., 2020; Huang et al.,
2022c). Recently, motivated by the application
of diffusion models (Ho et al., 2020), Savinov et al.
proposed a step-unrolled denoising autoencoder
that adopts a denoising operation in each iteration.
Besides, Wang et al. adapt the cross-lingual pre-
training model (XLMR) into NAT models and fur-
ther improve the performance with iterative refine-
ments.

The token representations of NAR models have
also attracted much attention once the birth of NAR
models. Wang et al. normalize the learning of the
decoder representations by introducing similarity
and reconstruction regularizations. Xie et al. pro-
pose a consistency training method to regularize the
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representations of the same tokens in the different
masked target sentences, thus improving the sta-
bility of representing the tokens. Besides, the con-
trastive learning method has been explored in (Su
et al., 2022) to pull the positive token pairs together
and push negative pairs away. They optimize the
similarity of several different representations of the
same token to learn more informative and robust
representations. Unlike this contrastive method,
we try to make the representations of tokens in
one sentence more discriminative, thus alleviating
the problem of anisotropic representations. The
anisotropic problem is proposed in (Su et al., 2022),
they focus on the AR models and try to alleviate
the degeneration problem with the explorations of
the anisotropic problem. In this paper, we focus on
the iterative NAR model CMLM and try to explore
more potential of iterative models.

7 Conclusion

In this paper, we first verify that the strong and
representative iterative NAR model, CMLM, suf-
fers from the anisotropic problem by analyzing the
changes in the cosine similarity of token represen-
tations. To alleviate the anisotropic problem, we
introduce the contrastive learning method to make
the token representations discriminative and fur-
ther propose a Look Neighbors strategy to enhance
token representation learning during training. Ex-
tensive experiments on several widely-used trans-
lation datasets indicate that our proposed methods
have a great effect on alleviating the anisotropic
problem and can consistently improve the perfor-
mance of iterative NAR models. We hope that our
explorations can give new insights into the iterative
NAR models and promote their development.

8 Limitations

In this section, we present several limitations of
our proposed methods and this paper. Firstly, we
only take the conditional masked language model
(CMLM) as a backbone to evaluate the effective-
ness of our methods, more iterative models may
also need exploration, e.g., the recent diffusion
models. Besides, since the repetition problem is
quite serious in fully NAR models, whether the
anisotropic problem exists in fully NAR models,
we leave this as a future work. Secondly, since
singly adopting contrastive learning brings few
benefits on the performance as mentioned in Sec-
tion 2.3, we further propose the Look Neighbors

to enhance the learning of token representations.
As a result, we wonder whether there exist other
enhancing methods that can better combine with
contrastive learning.
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Example 1 Example 2

Source

If an affected person has waited for a sufficiently
long period of time at a red light , and provided
the crossing is clear , they can drive on , ex-
plained Stuttgart @-@ based lawyer Ralf Becker
in " Motorrad " ( Motorcycle ) magazine .

Aside from honouring Hugo , the 31st Autumn
Festival progressed as usual : Alongside the Be-
tra Male Voice Choir , the Salzstetten Choral
Club , the Baisingen Choral Division and the
Local Music Society , the Vollmaringen singers
delivered a colourful blend of different choral
and song styles , which entertained the 400 or so
visitors .

Reference

Hat ein Betroffener lange genug an einer roten
Ampel gewartet und die Kreuzung ist frei , kann
er weiterfahren , erklärt der Stuttgarter Rechtsan-
walt Ralf Becker in der Zeitschrift " Motorrad "
.

Neben der Ehrung verlief das 31. Herbstfest in
gewohnten Bahnen : Mit dem MGV Betra , dem
Liederkranz Salzstetten , der Sängerabteilung
Baisingen und dem örtlichen Musikverein hat-
ten die Vollmaringer eine bunte Mischung ver-
schiedener Chöre und Gesangsstile geladen ,
welche die rund 400 Besucher unterhielten .

CMLM

Wenn eine betroffene Person eine ausreichend
lange Zeit im roten Licht gewartet hat und
sofern der Übergang klar ist , kann sie weiter-
fahren , erklärte der Stuttgarter Rechtsanwalt
Ralf Becker im " Motorrad rad " ( Motorcycle ) .

Neben der Ehrung von Hugo entwickelte sich
das 31. Herbstfest wie üblich : Neben dem Betra
Male Voice Chor , dem Chorclub SalzSalzstet-
ten , der Chorabteilung Baisingen ingen und der
lokalen Musikgesellschaft gaben die Vollmarin-
gen ingen ingen ingen eine farbenfrohe Mis-
chung aus verschiedenen Chor- und Songstilen ,
, an die etwa 400 Besucher untertierten .

CMLM w/Ours

Wenn der Betroffene schon eine ausreichend
lange Zeit an einem roten Licht gewartet hat
und sofern der übergang klar ist , kann er weit-
erfahren , erklärte der Stuttgarter Rechtsanwalt
Ralf Becker in der Zeitschrift " Motorrad " .

Neben der Ehren von Hugo schreitet das 31.
Herbstfest wie üblich voran : Neben dem Betra
Male Voice Chor , dem Salzstetten Chor Club ,
der Chorabteilung Baisingen und der Local Mu-
sic Society lieferten die Vollmaringer SänSänger
eine farbenfrohe Mischung aus verschiedenen
Chor- und Liongstilen , die etwa 400 Besucher
begleiteten .

Table 7: Translation examples of CMLM w/ and w/o our methods on WMT14 EN→DE test set.

A Case Study

We provide two case analyses that experimented
(shown in Table 7) on WMT14 EN-DE dataset to
understand the effectiveness of our method better.

• In Example 1, we can find that the result of
CMLM obtains the words "Motorrad rad" which
is a grammatical error and the translation of the
word ’magazine’ is missed. In contrast, our meth-
ods enhance the dependency of token representa-
tions to alleviate the above problems.

• In Example 2, the words ’ingen’ and ’,’ are
repeated several times in the result of CMLM
which is caused by the anisotropy problem. Our
methods are effective in alleviating this problem
and provide more fluent translation.
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