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Abstract

Both humans and large language models are
able to learn language without explicit struc-
tural supervision. What inductive biases make
this learning possible? We address this funda-
mental cognitive question by leveraging trans-
former language models: we inject inductive
bias into language models by pretraining on
formally-structured data, and then evaluate the
biased learners’ ability to learn typologically-
diverse natural languages. Our experimental
setup creates a testbed for hypotheses about in-
ductive bias in human language learning. We
investigate the effect of injecting models with
three types of inductive bias: 1) recursive, hi-
erarchical processing, 2) crossing token-token
relationships that can’t be modeled by context-
free grammars, and 3) a Zipfian power-law
vocabulary distribution. We show that non-
context-free relationships form the best induc-
tive biases. Our study leverages the capabil-
ities of transformer models to run controlled
language learning experiments that are not pos-
sible to run on humans, and surfaces hypothe-
ses about the structures that facilitate language
learning in both humans and machines.

1 Introduction

Natural languages are complex and structured sys-
tems which humans learn without direct structural
supervision. It is a fundamental and open prob-
lem in linguistics and cognitive science to under-
stand the inductive biases that make such learning
possible: what structural predispositions does a
successful language learner need to start with? In
this work, we shed light on this cognitive problem
using artificial learners. Using our method of struc-
tural injection, we causally intervene in transformer
language models and manipulate their structural in-
ductive biases, before training on natural language.

We predispose transformers with three struc-
tural biases from the cognitive literature: a bias
for recursive processing, a bias for keeping track
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Figure 1: Our method: we take a GPT-2-sized model
and pretrain it with a formal language corpus (see Fig-
ure 3 for examples). We then take these pretrained
models and fine-tune them on Wikipedia data to asses
each formal structure as an inductive bias for learning
English, Japanese, and Basque.

of context-sensitive dependencies, and a bias for
a power-law Zipfian vocabulary distribution. We
inject untrained transformer language models with
each structural bias by pretraining on synthetic
structured data and then evaluating language mod-
eling fine-tuning on human languages (English,
Japanese, and Basque). Our inquiry is structured
around three experimental questions:

• Experiment 1: How does an inductive bias
for recursion compare to an inductive bias
for context-sensitive crossing relationships?
(Section 5)

• Experiment 2: Is a bias for pure constituent
recursion better when mixed with a small
amount of tokens that break context-free con-
stituency structure? (Section 6)

• Experiment 3: Does a learner biased to-
wards learning a power-law Zipfian vocab-
ulary distribution learn language more effec-
tively? (Section 7)
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The lawyer that the man that the dog bit hired was disbarred

(a) Center embedding in English

... mer d’chind em Hans es huus lönd hälfe aastriiche
... we the children Hans the house let help paint

(b) Cross-serial dependencies in Swiss German, example from
Shieber (1985): “We let the children help Hans paint the house”

“I voted for him even though I am negatively affected by his redistribution policies” he said

(c) Crossing discourse anaphora links in English

Figure 2: Examples of recursive and context-sensitive structures in natural language.

In Experiment 1, we disentangle the effects of re-
cursion and context-sensitivity: both occur in lan-
guage, but which one is more useful as a sole learn-
ing bias? Language is characterized by recursive
structures in context-free constituent relationships
like those in Figure 2a, and some linguistic theories
posit that recursive processing is a crucial (and per-
haps the only) inductive bias that makes human lan-
guage learning possible (Hauser et al., 2002; Chom-
sky, 1995). However, it is widely hypothesized
that human language is mildly context sensitive:
while there is recursive structure, there are also non-
context-free relationships between tokens, both in
syntactic structure (Figure 2b) and in the structure
of meaning and discourse relationships (Figure 2c)
(Joshi et al., 1990; Stabler, 2010; Shieber, 1985;
Steedman, 1990; Frank and Hunter, 2021; Joshi,
1985). We compare the two principles of recursion
and non-context-free relationships, and find that an
inductive bias for non-context-free crossing depen-
dencies is better for downstream language learning.
However, both inductive biases greatly outperform
random and regular language controls.

In Experiment 2, we combine recursion and
context-sensitivity and ask: is a recursive induc-
tive bias better with slight context-sensitivity? We
show that there is a significant improvement in
downstream language learning if we add just 1%
of a bias for crossing dependencies, breaking the
constituent structure of the other 99% recursive
bias we give the learner. Even when learners are
mostly biased towards recursion, they learn lan-
guage faster when their bias includes constituent-
breaking context-sensitive structures.

In Experiment 3, we test the effect of induc-
tive biases in vocabulary distribution: does a
bias towards a human-like Zipfian vocabulary dis-
tribution (Zipf, 1936) help language learning? Lan-

guage is structured not only in how tokens relate,
but also in the structure of the distribution that
tokens are drawn from, a cognitive bias that is es-
pecially significant for memory-based theories of
grammar (Shufaniya and Arnon, 2022; Piantadosi,
2014; Ellis and O’Donnell, 2012). We show that
a Zipfian pretraining bias makes models better at
downstream language learning even when there
is no correspondence between the pretraining and
fine-tuning vocabularies.

While our experiments work with computational
models, the question that we are examining is about
humans: what are the possible inductive biases that
make human language learning possible without ex-
plicit structural supervision? Using computational
models, we can investigate this question through
empirically manipulating the inductive bias of a
language learner — a causal experimental route
that is not possible when working with humans.
Results from such experiments can act as firstly as
proofs of concept, showing how language learning
is or isn’t possible with different inductive biases.
Secondly, such experiments help with hypothesis
generation: with structural injection, we can test
arbitrary inductive biases in a theory-independent
way (see Baroni, 2022; Portelance, 2022; Lappin,
2021; Wilcox et al., 2023; Kauf et al., 2023, for
further discussions on the role of neural NLP mod-
els in cognitive science). In Section 8 we discuss
how our method of leveraging artificial learners to
causally investigate inductive biases adds a new
direction to the rich prior literature on inductive
bias in neural learners.

In summary, our findings indicate that biases for
complex token-token interactions, whether these
involve recursion or not, form a powerful inductive
bias for learning natural language. Crucially, our
results are compatible with and can inform a wide
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variety of cognitive architectures: models in which
structural inductive biases in humans arise from
prior statistical learning (Elman, 1996), models in
which they arise from other aspects of cognition
or communication (Lieven and Tomasello, 2008;
Hahn et al., 2020; Gibson et al., 2019), and models
in which they are presumed to be innate (Hauser
et al., 2002). 1

2 Background: Structural inductive bias
in humans

In order to use our experiments as a window into
hypotheses about human inductive biases, we look
at three families of structural bias from the linguis-
tics and cognitive science literature.

2.1 Recursion
One very prominent hypothesis for linguistic in-
ductive bias focuses on recursion: the ability for
hierarchically-structured constituents to contain
other constituents of the same type, and as such
allow for potentially infinitely deep hierarchical
structure.

Recursive structures can be described in terms
of a context-free language: a grammar with rules
of the form A → β, where a non-terminal node A
consists of a string β that can contain both terminal
and non-terminal nodes. Such a phrase-structure
grammar is recursive when a non-terminal can con-
tain a string that includes another non-terminal of
the same type. For example, one rule describing
the language of well-nested parentheses is

S → ( S )

where any well-formed sentence S can make an-
other well-formed sentence S if it is inserted into
a pair of parentheses. Rules of this type allow for
infinite nesting.

A canonical linguistic example of recursion is
center embedding. In the center embedding exam-
ple in Figure 2a, a noun phrase (“the man that the
dog bit”) can be used as a part of another noun-
phrase (“the lawyer that [the man that the dog bit]
hired”), and this can carry on recursively. Such self-
embedding structures, which are attested in human
language, are possible with recursive grammars but
not in finite-state languages (Chomsky, 1959). The
recursion hypothesis for linguistic inductive bias

1Code and instructions for running our ex-
periments is at https://github.com/toizzy/
injecting-structural-hints.

states that the ability for such constituent recursion
is a crucial linguistic inductive bias, constitutes the
underlying structural bias for the faculty of lan-
guage, and that recursion is what distinguishes lan-
guage from animal communication (Hauser et al.,
2002; Chomsky, 1995).

2.2 Context-sensitivity
Although context-free grammars allow recursive
structure, they are not complex enough to model
many attested linguistic effects, which require a
non-context-free (i.e., at least context-sensitive)
grammar (Joshi et al., 1990; Stabler, 2010; Shieber,
1985; Steedman, 1990; Frank and Hunter, 2021;
Joshi, 1985). For example, Shieber (1985) proves
that a grammar modeling the unbounded cross-
serial dependency structures possible in Swiss Ger-
man (Fig. 2b) must be non-context-free, and Steed-
man (1990) shows that gapping effects (sentences
like “Harry eats beans, and Fred potatoes”) simi-
larly cannot be analyzed by context-free grammars.
Looking beyond syntax, reference and discourse
structures (Fig. 2c) as well as meaning-based inter-
actions do not abide by context-free restrictions.

While it is broadly hypothesized that both recur-
sion and non-context-freeness exist in natural lan-
guage, our experiments empirically disentangle the
two hypotheses. We compare two inductive biases:
an inductive bias for recursive processing, and an
inductive bias for non-context-free structures that
do not have recursion. Non-context-free structures
allow for unbounded and crossing interactions be-
tween tokens, while recursive grammars only allow
tokens to influence each other in specific subtree
relationships. To disentangle these biases, we test
the effect of an inductive bias where there are very
minimal (and non-tree-structured) restrictions on
where related tokens can appear (see Section 4.2
and Fig. 3b for details of our formalization).

2.3 Vocabulary distribution
We next investigate structural biases in the lexicon:
how a cognitive bias towards vocabulary distribu-
tions (i.e., which tokens are more likely to appear
in a corpus of language) affects learning. We aim
to answer: does a bias towards a Zipfian vocabu-
lary distribution (Shufaniya and Arnon, 2022; Pi-
antadosi, 2014) act as a structural bias that aids
language learning?

A feature pervasive across human languages is
the unbalanced nature of vocabulary distributions.
In human languages, some words are very common
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(a) The recursive NEST language. Every S node represents a
well-formed NEST substring.

1( 54( 225( 1) 54) 225) 248( 248) 123( 103( 123) 103)

(b) The context-sensitive CROSS language. Edges connect
matching parentheses.

499 472 300 345 272 309 17 15 329 233 9 267 122

(c) The random language, RAND

499 472 300 345 272 499 472 300 345 272 309 17 15

(d) The regular REP language, with repetition length k = 5.
The repeated block is circled. For our experiments, we use
k = 10.

Figure 3: The formal languages we use to pretrain our models to give them different structural inductive biases. For
simplicity, we represent NEST and CROSS as 250 open tokens with 250 close tokens, while we present RAND and
REP with 500 tokens. The vocabulary distributions are the same between all languages if we concatenate the open
and close tokens: token 1) in the parentheses languages is equivalent to token 251 in RAND and REP.

(like “the” or “a” in English) and most words are
used very rarely, roughly following a power-law
distribution. Zipf’s law states that the rth most
common word has frequency proportional to

1

(r + β)α
(1)

with α ≈ 1 and β ≈ 2.7 providing a good em-
pirical estimate for human languages (Zipf, 1936;
Mandelbrot, 1953). The literature on explaining
and deriving this empirical fact is rich and varied
(see Piantadosi, 2014, for a thorough review), while
experimental and theoretical works examine the
learnability of Zipfian-distributed data (Ellis and
O’Donnell, 2012; Lavi-Rotbain and Arnon, 2022;
Schuler et al., 2017; Chan et al., 2022). In our
work, we examine the effect of a Zipfian inductive
on learning language (Experiment 3).

3 Method Overview: Pretraining as
structural inductive bias

We set up experiments where we control the induc-
tive bias of a language model learner, and examine
how inductive biases influence language learning.
Our experiments consist of two steps: 1) pretrain-
ing a GPT-2-sized model on a formal language to
inject a structural bias and 2) fine-tuning on lim-
ited natural language data (drawing on our prior
methods in Papadimitriou and Jurafsky (2020), see
Figure 1 for a depiction). To instill an inductive
bias in an artificial language learner, we pretrain
untrained transformer language model on synthetic
data which exhibits a single formal structural prin-

ciple. After sufficient pretraining on such a cor-
pus, we have a transformer model which has never
seen human language, but has successfully learnt
to model a type of structure. We can then train this
model on natural language data, taking its pretrain-
ing to be a structural inductive bias. We fine-tune
each model on three different languages (English,
Japanese, and Basque). The final performance on
each language, measured in perplexity, is an indica-
tor of how learnable the raw language data is when
a learner starts with the specific inductive bias.

3.1 Implementation Details

For each experiment, we randomly initialize a GPT-
2-small model with a max sequence length of 512,
and train on one formal language.2. The specific
formal languages we use are described in Section 4.
We use a batch size of 512 to train all models, and
train for 5,000 steps with 1,000 steps of warmup.
Each formal language corpus consists of 1 billion
tokens, which comes out to 3,814 batches. There-
fore, in training 5,000 steps the model sees each
corpus approximately one and a half times.

We fine-tune each pretrained model on three sep-
arate languages to measure final test perplexity. We
use the the wikitext-103 English dataset (Merity
et al., 2017, 103 million tokens), Papadimitriou and
Jurafsky (2020)’s Japanese Wikipedia (129 million
tokens) and Basque Wikipedia (63 million tokens)
corpora. We fine-tune with two epochs on the En-

2We use GPT-2-small to refer to the model config accessed
using Hugging Face AutoConfig with key gpt2: 12 trans-
former layers with 12 attention heads per layer, and a hidden
size of 768
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glish and Japanese datasets, and 4 epochs on the
Basque datasets. Though the three corpora are not
controlled for size and train-test difficulty, we do
not compare results in order to analyze differences
between languages and draw conclusions from this.
We instead use the three languages to verify that
any claims about language learning and inductive
bias that we make are likely cross-linguistic and
not English-specific.

Our pretraining languages all have a vocabulary
size of 500, which has no correspondences with the
50,257-size vocabulary of GPT-2. To accomodate
this new tokenizer, we have to initialize a new word
embedding matrix, with 50,257 rows for the model
to learn in fine-tuning. We initialize the embedding
matrix by randomly sampling with replacement
from the rows of the old embedding matrix with
500 rows, following Wu et al. (2023), who show
that initializing an embedding matrix for transfer
learning by sampling from the old embedding ma-
trix leads to far better transfer learning than random
reinitialization even for unrelated vocabularies (see
also Hewitt, 2021). To account for the effect of hav-
ing to relearn the vocabulary, we also add a control
case where we take the pretrained GPT-2 model
and randomly resample the rows of the embedding
matrix. To re-learn the embedding matrix, we fine-
tune on the natural language corpora. This control
appears on the right of our results graphs.

4 Pretraining languages

Our experimental method rests on pretraining lan-
guage models on well-chosen formal languages.
Here, we describe the four families of formal lan-
guages that we use for pretraining, and present
examples of each of the languages in Fig. 3.

4.1 Recursive and context free: the nested
parentheses language NEST

The first language that we pretrain on is a language
of matching nested parentheses, also known as the
Dyck language. The vocabulary of this language
consists of a set of matched open and closed tokens,
and vocabulary size can be set to any even number
(for our experiments, we used a total vocabulary
size of 500 for all pretraining language). Writing
the language from left to right, at each step we
randomly pick between two choices: either 1) open
a parenthesis (p = 0.49) or 2) close the last opened
parenthesis (p = 0.51). Since we only ever close
the most recently-opened parenthesis token, there

will never be any crossing arcs in how we connect
parentheses. The nested parenthesis grammar is
context-free. An example of this language is shown
in Fig. 3a.

4.2 Non-context-free: the crossing
parentheses language CROSS

The Crossing Parentheses language CROSS is a
parentheses language with the same vocabulary
of open and close tokens as the NEST language, but
where parentheses do not have to be well-nested,
but just have to be balanced: opened parentheses
must close. As such, pairs of parentheses can in-
terleave and cross. Whereas the NEST language
imposes strict limitations to how different tokens
can interact (a parenthesis can only close in the
space between its parent opening and closing, so
there is no ability to see past the top of the stack),
in the CROSS a token can have its pair in any lo-
cation. In order to control the CROSS language to
be like the NEST language as much as possible (ex-
cept for the dependent variable of non-context-free
crossing) we add another structural constraint: the
distribution of distances between open and close
tokens is matched to the empirical dependency dis-
tance distribution of the NEST language. This way,
any difference in the inductive bias is not due to the
lengths of dependencies, but due to the structural
biases in the pretraining data. This dependency link
distribution is what gives the CROSS language struc-
tural information for a language model to learn:
for every opened parenthesis, there are positions
when it is more likely to be closing than others, and
modeling this language involves modeling those
probabilities.

The crossing parentheses language is not context
free. Though every NEST string is a legitimate (but
exponentially unlikely) CROSS string, the CROSS

language can include other strings, like arbitrarily
long cross-serial dependency structures that are
known to be non-context-free (Shieber, 1985):

(1 (2 (3 · · · (k )1 )2 )3 · · · )k

In the NEST language, arbitrarily deep nesting (and
arbitrarily long dependencies) are in the limit pos-
sible, though in practice unlikely, and similarly in
the CROSS language arbitrarily long dependencies
are possible but unlikely. This is roughly anal-
ogous to human language, where processes like
center embedding and cross-serial dependencies
can in theory happen infinitely but in practice are
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Figure 4: Results for Experiment 1, CROSS is a better inductive bias than NEST Each model pretrained with
the formal language on the x-axis is evaluated on a wikipedia test set after natural language fine-tuning. Error bars
represent 95% confidence intervals over 5 fine-tuning runs with different random seeds. Since we cannot directly
compare perplexities between different test sets, we can only compare the ranking of the test conditions. The rank
(CROSS is better than NEST is better than REP is better than RAND) is consistent across English, Japanese, and
Basque.

limited. This probabilistic weighting doesn’t af-
fect our proof of non-context-freeness: the Shieber
(1985) proof is independent of the probabilities of
these constructions.

4.3 Baselines: the Random language and the
regular Repetition language

The Random language RAND For our RAND

baseline, we take the vocabulary of our experimen-
tal languages NEST and CROSS, and create a dataset
by sampling each token randomly from the vocabu-
lary distribution without any structural limitations.

The Repetition language REP We also test a
slightly stronger baseline than RAND, the repetition
baseline. In the REP language, tokens are placed
randomly, like in RAND, but every 10 random to-
kens are then immediately repeated. Using the
repetition language as a baseline lets us control for
the effect of there being any structure that connects

two tokens. This way, we can better measure the
utility of more complex structural inductive biases.
Note that REP is not the same as the ‘copy language’
(the set of arbitrarily long strings followed by their
repetition), which is famously context-sensitive. In
the case of REP, we’re restricting any copied chunk
to be exactly k in length, which makes the language
regular, indeed subregular.

5 Experiment 1: Disentangling recursive
and context-sensitive inductive biases

For our first experiment, we compare the fine-
tuning perplexity of models pretrained on the NEST

language and the CROSS language to each other and
to random and regular controls. Our fine-tuning
results are shown in Fig. 4. From the fine-tuning
perplexity that we get with different structural in-
ductive biases, we can present two findings:
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Figure 5: Results for Experiment 2, even small amounts of non-context-free structures in the inductive bias
cause significant improvement in downstream perplexity. Mixing 1% and 10% of the CROSS language in with
the NEST language, which breaks the recursive constituency structure of NEST , causes significant downstream
language learning improvements over plain NEST . Error bars represent 95% confidence intervals over 5 fine-tuning
runs with different random seeds

Any structure has a significant effect as an in-
ductive bias All of the models with a structural
pretraining language fare significantly better than
the model with the random, unstructured pretrain-
ing language. This especially surprising in the
case of the REP language, which has a very simple
structure that is similar to RAND. However, our
experiments also show that the shallow structure of
REP is worse than both of our languages with more
complex structural organization. Comparing the
performance of the NEST and the CROSS language
leads us to our next finding:

Context sensitivity acts as a better inductive bias
than recursion Our experiments disentangle the
effects of recursive structure and non-context-free
linking structure, and show that the non-context-
free CROSS language acts as a stronger inductive
bias for language learning than the recursive NEST

language. Our current methodology does not as-
certain which aspects of language learning the

CROSS language is most helpful for, which is an
especially fruitful question for future work since
context-sensitive linking structures arise in syn-
tax, semantics, and discourse. Understanding the
role of different complex structures in influencing
language learning in an in-vitro paradigm such as
ours shines light on the properties of language as
a learnable system under different cognitive struc-
tural assumptions.

6 Experiment 2: Mixing context-free and
non-context-free structures

In Experiment 1, we saw that the non-context-free
inductive bias of the CROSS language is more
beneficial for downstream language learning than
the constituent recursion of the NEST language.
However, neither of these extremes encompass the
more widely agreed nature of linguistic syntactic
structure: likely a recursive grammar with mildly
context-sensitive elements. To examine the
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effects of non-context-free elements in otherwise
context-free grammars, we create the NEST-MIX-P

languages. These languages follow the NEST

grammar, except that with probability p% an ‘open’
token does not follow the NEST grammar and
instead follows the CROSS grammar. This means
that we sample a dependency distance and place a
‘close’ token for it without taking into account the
constituent structure of the NEST language. The
NEST example from Figure 3a, with one CROSS to-
ken added and shown in green, would look like this:

1( 54( 54) 225( 225) 123( 1) 248( 103( 123) 103) 248)

We test two such languages: NEST-MIX-1, with
1% CROSS tokens, and NEST-MIX-10, with 10%
CROSS tokens. Our results are shown in Figure 5.
Adding 1% CROSS tokens to a NEST language
causes it to act as a significantly better inductive
bias, with an average improvement of 5 perplexity
points, while adding 10% CROSS tokens causes an
average downstream improvement of 9 perplexity
points. Our results show that even small amounts
of context-sensitive inductive bias have a big effect
on language learning, aligning with theoretical
linguistics results about human language being
mildly context sensitive.

7 Experiment 3: Zipfian structural bias

How does a bias towards a particular vocabulary
distribution affect a language learner? We test the
effect of a uniform vocabulary distribution versus
a Zipfian vocabulary distribution as a pretrained
inductive bias. As shown in Figure 6, a Zipfian pre-
training distribution of random tokens predisposes
a model with a better language-learning bias.

Crucially, there is no connection or correspon-
dence between the pretraining and fine-tuning vo-
cabularies: the pretraining vocabulary is made up
of 500 parentheses tokens (whose frequency rank-
ing is randomly ordered in order to make a Zipfian
distribution in the Zipfian case), whereas the GPT-
2 tokenizer’s fine-tuning vocabulary is over 50K
tokens. No token correspondence of specific to-
ken information is transferred between pretraining
and fine-tuning as the tokens are unrelated and we
re-sample the rows of the embedding matrix.

Since there is no correspondence, our vocabu-
lary distribution ablations measure the effect of
an abstract bias towards one type of vocabulary
distribution, rather than the effect of knowing the
specific distribution of tokens in a language. Our

Figure 6: Results for Experiment 3, a Zipfian induc-
tive bias improves downstream learning, even when
the pretraining and fine-tuning vocabularies are unre-
lated. We pretrain models with random tokens sampled
either from a uniform or a Zipfian distribution.

experiments show that pretraining on a random
Zipfian corpus biases a model for better language
learning than a uniform corpus, and that a struc-
tural bias for vocabulary distribution is encoded
beyond the word embedding matrix and more ab-
stractly in network parameters. Due to the lack
of any structure beyond vocabulary distribution in
the random corpora, neither of the test cases lead
to very good downstream language performance.
Results around combining Zipfian vocabulary with
other structural biases like those in Experiment 1
are mixed, and we do not have clear evidence that
Zipfian vocabulary has a structural effect that can
add on to the effect of structure in data. We discuss
these results in more detail in Appendix A.

8 Related Work: Inductive bias

Our experiments use transformer models in order
to create a controllable testbed for understanding
human language learning: by manually varying
the inductive bias through pretraining, we can test
the effect of different inductive biases in making
a learner fit for language learning. Our focus is
different, though related, to the focus of much
of the work about inductive bias in transformers.
While we set the inductive bias of our learners
through pretraining, the built-in structural induc-
tive biases of untrained deep neural network archi-
tectures are unknown and difficult to assess (Ba-
roni, 2022; Warstadt and Bowman, 2022). A rich
line of past experiments work towards defining
this inductive bias of neural models through em-
pirical methods, looking at how much transform-
ers are biased towards learning hierarchical rules
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(Kharitonov and Chaabouni, 2021; Petty and Frank,
2021; Mulligan et al., 2021) or tree-structured pro-
cessing (Murty et al., 2023), or biases towards dif-
ferent typological linguistic structures (White and
Cotterell, 2021; Ravfogel et al., 2019; Ravishankar
and Nivre, 2022), and how inductive bias changes
with language modeling pretraining (Mueller et al.,
2022; Warstadt et al., 2020).

We build on these results by working to in-
fluence, rather than measure, the inductive bias
of transformers. Our experimental paradigm re-
lies on structural transfer between pretraining and
fine-tuning data in unrelated modalities, an effect
demonstrated by past research. We showed in pre-
vious work how the structures of non-linguistic
modalities like music and code can predispose
learners for language learning (Papadimitriou and
Jurafsky, 2020), work that has been reproduced
(Chiang and Lee, 2022; Ri and Tsuruoka, 2022),
extended to other modalities like amino acid se-
quences (Chiang and Lee, 2020), and between lan-
guage and multiple symbolic tasks (Lu et al., 2022).
In a similar line of inquiry, Krishna et al. (2021)
show structural transfer from the abstract task struc-
ture of summarizing random data to summarizing
real natural language passages. The paradigm of
structural transfer lets us study the fundamental
cognitive issue of inductive bias from an exciting
angle: through causal experiments where we con-
trol the inductive bias of language learners.

9 Discussion

Our experiments and methodology provide a new
view into the biases that make language learn-
ing possible in both human and artificial learn-
ers. We use transformer language learners and
perform causal interventions that alter their induc-
tive learning biases before training them on natural
languages. Our findings show the relative strengths
of different structural inductive biases: simple, reg-
ular structure is far outperformed by both context-
free and non-context-free structural relationships,
but a recursive structure is not necessarily the best
such complex bias.

We obtain our results from experimenting on
artificial language learners, rather than working
with humans or analyzing human language. In-
ductive bias experiments on artificial learners let
us easily identify possible hypotheses of structural
inductive biases in human cognition. More impor-
tantly, since we are working with systems we can

influence (rather than analyzing properties and uni-
versals of language) we can test hypotheses that are
not dependent on linguistic theory-building. We
can therefore explore outside the well-studied hy-
potheses in the linguistics literature.

Our experiments address questions about the
learnability of human languages under different
structural inductive biases which have been pro-
posed in the linguistics and cognitive science liter-
ature as bases for language. However, experiments
such as ours cannot directly prove how the human
language system is structurally biased. What such
experiments can achieve is to shine light on lan-
guage as a learnable system as a whole, and pro-
duce hypotheses about the relevant structures that
could be guiding human language learning. In our
case, we find that recursion is indeed a strong in-
ductive bias for language learning. However, our
experiments also serve to point out that it’s not
nesting constituent, structurally-recursive proper-
ties that necessarily most help language learning.
Using the CROSS language, we show that when
we take away recursion from the inductive bias,
but keep the overall framework of paired tokens
that connect in non-trivial ways, we get a better
inductive learning bias. Thus, our work serves to
showcase possible alternatives to the Hauser et al.
(2002) hypothesis that recursion is a necessary bias:
other structurally-complex ways of relating tokens
may be just as strong. Differences such as those be-
tween recursion and non-recursive complex struc-
tures are hard to disentangle theoretically. As such,
an experimental paradigm such as ours is a helpful
step in widely exploring the hypothesis space in
questions around human language cognition.

Artificial models of language can never defini-
tively prove facts about human language process-
ing. The models pretrained and fine-tuned in this
paper are products of opaque optimization pro-
cesses, and the results that we get do not neces-
sarily match human learning. Nevertheless, our
work serves to identify and examine different hy-
potheses about human inductive learning biases.
We hope that such work can help enrich the hypoth-
esis space over which theoretical argumentation, as
well as human subject experiments, are conducted,
ultimately leading to a richer understanding of the
human language learning process.
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Limitations

As discussed throughout the paper, our method uses
language models to better understand language
learning and cognitive inductive bias in humans,
and this comes with all of the limitations of using
computational schematic models of cognition to
understand the complex and intractable problem of
human cognition. Though strong artificial language
learners give us a tool with which to run control-
lable language learning experiments, experiments
on artificial learners do not provide any proof about
the actual cognitive processes that happen in hu-
mans, and our experiments cannot be taken to pro-
vide any such proof. Our results serve to showcase
the properties of language as a learnable system
under different inductive bias constraints, and can
inform hypotheses and theories that are worked
out and evaluated on human language learning and
human subjects.

A limitation of our experiments is that we only
evaluate models on natural language perplexity.
Perplexity is a coarse-grained measure, and to ex-
pand these epxeriments we plan to further examine
which specific parts of language production dif-
ferent models are doing better in. Understanding
which inductive biases lead to which acquisition
patterns, especially with respect to the acquisition
of semantic and syntactic patterns, would be a very
interesting addition to these findings.

Lastly, our experiments evaluate language learn-
ing by fine-tuning on modeling wikitext, which
is not similar to the learning environment of hu-
man language. Our methodological contribution
is independent from the actual data we use, and
one way our method could be applied would be in
more realistic language acquisition situations, us-
ing datasets of child-directed speech for fine-tuning
(Warstadt et al., 2023). Understanding the effects
of inductive biases in scenarios closer to human
language acquisition would be a great next step for
this paradigm.

Ethics Statement

Our experiments address a cognitive question about
language learning by running in-vitro experiments
on language models. Such methodologies do not
provide definitive proof about any human cognitive
processes. Instead, such experiments use language
models in the way that computational models of
cognition are generally used: in order to surface
and experiment on interesting cognitive hypotheses.

Methodologies such as ours, especially applied to
more narrow definitions of learning than language
learning, could become harmful if they are taken
to provide actionable proof about human learning
patterns.
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A Combining syntactic structure and
vocabulary distribution

In Experiment 3 (Section 7), we showed that a
Zipfian vocabulary distribution provides a stronger
structural inductive bias than a uniform distribution.
Here, we present results in combining a Zipfian dis-
tribution with the grammatical structural biases in
Experiment 1. The results are shown in Figure 7,
and do not definitively point one way or the other
regarding combining grammatical structure and vo-
cabulary distribution: a Zipfian pretraining distri-
bution creates a stronger bias in some cases and a
weaker bias in others. More well-powered and con-
trolled experiments, looking at carefully-chosen
grammatical structure to combine with vocabulary
distribution, in order to understand the interactions
between these two aspects of structural information.

Figure 7: Results for downstream perplexity in all three
languages when combining vocabulary distribution bi-
ases with ).
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