
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 8429–8441
December 6-10, 2023 ©2023 Association for Computational Linguistics

Unleashing the Power of Language Models in Text-Attributed Graph
Haoyu Kuang1, Jiarong Xu2∗, Haozhe Zhang5, Zuyu Zhao5,

Qi Zhang3, Xuanjing Huang3, Zhongyu Wei1, 4∗
1School of Data Science, Fudan University, China
2School of Management, Fudan University, China

3School of Computer Science, Fudan University, China
4Research Institute of Intelligent Complex Systems, Fudan University, China

5Huawei Technologies Co.,Ltd, China
hykuang23@m.fudan.edu.cn, {jiarongxu, qz, xjhuang, zywei}@fudan.edu.cn

{zhanghaozhe7, zhaozuyu1}@huawei.com

Abstract
Representation learning on graph has been
demonstrated to be a powerful tool for solv-
ing real-world problems. Text-attributed graph
carries both semantic and structural informa-
tion among different types of graphs. Existing
works have paved the way for knowledge ex-
traction of this type of data by leveraging lan-
guage models or graph neural networks or com-
bination of them. However, these works suffer
from issues like underutilization of relation-
ships between nodes or words or unaffordable
memory cost. In this paper, we propose a Node
Representation Update Pre-training Architec-
ture based on Co-modeling Text and Graph
(NRUP). In NRUP, we construct a hierarchical
text-attributed graph that incorporates both ini-
tial nodes and word nodes. Meanwhile, we ap-
ply four self-supervised tasks for different level
of constructed graph. We further design the
pre-training framework to update the features
of nodes during training epochs. We conduct
the experiment on the benchmark dataset ogbn-
arxiv. Our method achieves outperformance
compared to baselines, fully demonstrating its
validity and generalization.

1 Introduction

Text-attributed graphs, characterized by the associa-
tion of nodes with text attributes (Yang et al., 2021),
are prevalent in diverse real-world contexts. For
instance, in paper citation networks, each paper is
accompanied by textual content, while in social net-
works, each user can be described through a text de-
scription. The investigation of learning techniques
on text-attributed graphs has garnered considerable
attention in domains such as graph learning, infor-
mation retrieval, and natural language processing,
reflecting the growing importance of understand-
ing and analyzing textual information within the
context of graph-based structures.

*Corresponding author

Link Reconstruction

Node Attribute
Reconstruction

Important Word
Identification

Important Word
Reconstrucion

Decoupled
Words

Base
Structure

Node-Word edges

Figure 1: An illustration of hierarchical text-attributed
graph and corresponding self-supervised tasks for dif-
ferent level.

Existing research on learning from text-
attributed graph mainly falls into three lines:
(1)Language models(LMs) only, in these works,
LMs(Kim, 2014; Vaswani et al., 2017) are ap-
plied to leverage the local textual information
of individual nodes and generate representation
for them(Howard and Ruder, 2018). How-
ever, structural relationship between nodes are
ignored in this way. To leverage the re-
lationships between nodes, an self-supervised
learning framework GIANT(Chien et al., 2021)
propose to guide the training of LM with
graph structure. Nevertheless, LM-based meth-
ods ignore the message passing among nodes;
(2)Graph neural networks(GNNs) only(Kipf and
Welling, 2017; Zhang and Chen, 2018), which
are used to capture the structural properties of
text-attributed graphs. Raw texts contained by
each node are transformed to numerical features
as node attributes(Hu et al., 2020a; Liu et al.,
2020; Hu et al., 2020c) by graph-irrelevant meth-
ods, such as bag-of-words, pre-trained bert in
most previous studies. Clearly, the information
contained in raw text is compressed and under-
utilized. Additionally, relying solely on a fixed

8429

representation of text may not be appropriate for
certain scenarios. For instance, the term ’Trans-
former’ can refer to a device used for adjusting
the voltage of an electric power supply, while in
an academic context, it signifies a specific model;
(3)combination of LMs and GNNs(Bi et al., 2021;
Zhu et al., 2021a), which boost the text embedding
with graph structure. However, it suffers from se-
vere scalability issues when facing with large-scale
graph and huge parameters of LMs. To address
this, GLEM (Zhao et al., 2023) leverages a varia-
tional EM framework to iteratively update both the
LM and GNN modules, enabling scalability to real-
world graphs. Nevertheless, GLEM relies on task-
specific labels, resulting in node representations
that are constrained to the specific task at hand.
Generally, prior researches encounter issues such
as overlooking the relationships between nodes or
words, scalability limitations, and a lack of gener-
alizability.

In this paper, we introduce a general text-
attributed graph pre-training framework that could
fully utilize the relationship between graph-based
structure and textual information. The main contri-
butions of our proposed research are as follows.

First, to enhance the modeling of textual infor-
mation within nodes of text-attributed graphs, we
construct a hierarchical text-attributed graph that
incorporates both initial nodes and word nodes.
More specifically, we further decouple the word
nodes from the corpus consisting of the textual in-
formation from all nodes. Then we construct edges
among nodes based on word occurrence in nodes
(node-word edges) and word co-occurrence in the
whole corpus (word-word edges), as shown in fig-
ure 1. This enables us to capture the finer nuances
of the text at a more granular level.

Second, approaching the capability of generating
effective representations adapted to various scenar-
ios, we introduce a multi-task graph pre-training
framework. This framework encompasses various
self-supervised tasks, such as link reconstruction,
node attribute reconstruction, important word re-
construction, and important word identification.
The objective of link reconstruction is to capture
the underlying structural patterns in a general sense,
while node attribute reconstruction aims to uncover
the semantic relationships among nodes. Further-
more, the tasks of important word reconstruction
and important word identification are specifically
designed for access to distinctive semantics and

paper-occurrence correlation, respectively.
Third, to mutually boost representations of nodes

and words, we employ a relational graph neural
network (R-GNN) as the foundational model for
acquiring knowledge from the hierarchical text-
attributed graph. Furthermore, within our frame-
work, we introduce two aggregators that iteratively
refine the features of both nodes and words, lever-
aging progressively optimized embeddings of pa-
pers/words after a designated number of training
epochs.

2 Method

In this section, we present the entire training frame-
work to learn paper and word representations simul-
taneously without supervision based on R-GNNs,
including the modeling method of text-attributed
graph, self-supervised tasks and pre-training archi-
tecture, see overall framework in figure 2.

2.1 Hierarchical Text-attributed Graph
To better establish the relationship between the
raw text and the graph, we propose to construct
a hierarchical text-attributed graph encompassing
initial nodes and word nodes, inspired by Yao et al.
(2019).

First, we tokenize the raw text contained in the
nodes, thereby acquiring all the individual words;

Second, we construct a hierarchical text-
attributed graph that incorporates both initial nodes
and word nodes.

Third, we construct edges among nodes for the
hierarchical text-attributed graph. The relationship
between initial nodes constitutes the edges between
them; and we build paper-word edges based on
word occurrence in papers; as for edges between
word nodes, we employ point-wise mutual informa-
tion (PMI) to measure the co-occurrence frequency
between words to determine whether to build a
edge. The PMI value is computed as follows:

PMI(i, j) = log p(i,j)
p(i)p(j)

p(i, j) = W (i,j)
W

p(i) = W (i)
W

where i, j represents two word nodes; W (i) is
the number of sliding windows in the nodes that
contain word i; W (i, j) is the number of sliding
windows in the nodes that contain both word i and
j; and W is the total number of sliding windows
in the corpus from all nodes. We construct edges

8430

Text-attributed
Graph

Decouple Text

Hierarchical
Text-attributed Graph

a. Link Reconstruction b. Node Attribute Reconstruction

d. Important Words Identification c. Important Words Reconstruction

[MASK]

[MASK]
Graph
AUTO

ENCODER

Projection
Head

Initial feature

SSL Tasks

Updated feature

SSL Tasks

Aggregator

Downstream
Task

RGAT

[MASK]

Graph
AUTO

ENCODER

Normalization

edge
representation

negative sampling

Text1

Text3Text2

Word
Nodes

Figure 2: An illustration of of the entire process of NRUP. 1). Co-modeling the text and graph based on
heterogeneous graph. 2). Self-supervised tasks as training objectives. 3). Pre-training architecture updates
the features with aggregators.

for words with positive PMI value which suggests
a high semantic correlation of words.

Thus far, we have constructed the structure of
hierarchical text-attributed graph. Next, we need
to assign corresponding node attributes to different
types of nodes. Initially, we use a pre-trained Bert
model to generate word embedding for each word
node as the attributes; Subsequently, we simply av-
erage the embeddings of all word nodes in one node
to obtain the feature of initial nodes. Finally, we
obtain this hierarchical text-attributed graph with
semantic and structural information coexisting.

Let G = (V, E ,J ,K, φ, ϕ,X ,Z) denotes the
hierarchical text-attributed graph we built, where V
and E represent the sets of nodes and edges respec-
tively; J and K represent sets of node types and
edge types respectively; φ : V → J is the node
type mapping function, while ϕ : E → K is the
edge type mapping function; X n×d and Zm×d rep-
resent the feature matrix of paper and word nodes
respectively; n and m denote the number of initial
nodes and words respectively, and d denotes the
feature dimension. The number of nodes |V| is
the summation of the number of initial nodes and
individual words.

Intuitively, by constructing hierarchical text-

attributed graph with initial nodes and words, we
build a bridge for information interaction. Conse-
quently, as we incorporate individual words into
the training process, the initial nodes are endowed
with knowledge from both interconnected nodes
and their respective textual components.

2.2 Self-supervised Tasks

Appropriate tasks drive R-GNNs to mine poten-
tial structure and semantic information in hetero-
geneous graph continuously. In our pre-training
architecture, we apply 4 tasks to fully mine the
information of different level in hierarchical text-
attributed graph, as shown in figure 1.

2.2.1 Link Reconstruction
Briefly speaking, link reconstruction is to predict
existing edges between node pairs.
Task Process: In the design of link reconstruction
task, we regard it as a binary classification problem,
and train the model by negative sampling.

First, we treat the edges existing in the graph
as positive samples, and sample some non-existent
edges in the graph as negative samples.

Second, for each node pair (u, v) in the graph,
we calculate their score: eu,v = φ(hu, hv) based
on the representation hu and hv, where φ is a dot

8431

product, and can be any other function that com-
putes similarity.

Third, labeling the positive sample as 1 and the
negative sample as 0, we can optimize R-GNN with
the following loss function:

LLR = − log σ(eu,v)−
∑

vi∼Pn(v)

log(1−σ(eu,vi))

where σ denotes a activation function, and vi ∼
Pn(v) denotes the negative sampling distribution.

We perform link reconstruction for edges among
initial nodes.

2.2.2 Node Attribute Reconstruction
In our work, we use node attribute reconstruction
task to maximize the semantic information of hier-
archical text-attributed graph, also known as feature
reconstruction in homogeneous graphs(Hou et al.,
2022).
Task Process: First, we sample a subset Ṽinitial ⊂
Vinitial, and mask their features with a mask token
[MASK], i.e., a learnable vector x[M] ∈ d, and the
feature matrix of word nodes remains unchanged.
Thus the node feature x̃i can be defined as:

x̃i =

{
x[M], vi ∈ Ṽpaper

xi, vi /∈ Ṽpaper

z̃i = zi, vi ∈ Vword

Second, we input the feature matrix X̃ , Z̃ and
graph G into a graph encoder fe to obtain the la-
tent code H . Then we replace H on masked node
indices again with another mask token [DMASK].

Third, input the re-masked code matrix H̃ into
a decoder fd to obtain the reconstructed feature
matrix W . Then optimize with the scaled cosine
error:

LNAR =
1∣∣∣Ṽpaper

∣∣∣

∑

vi∈Ṽpaper

(1− xTi wi

∥xi∥ · ∥wi∥
)γ

which is averaged loss over all masked initial
nodes. The scaling factor γ is a hyper-parameter.

2.2.3 Important Word Reconstruction
Intuitively, we believe that there are important
words in the raw text of initial nodes which can
reflect the semantic information of the node to a
large extent. Motivated by this, we design impor-
tant word reconstruction task to reconstruct seman-
tic information of important words.
Task Process: We need to define what are impor-
tant words to the initial nodes. For instance, the

title of a paper contains key information thus we re-
move the stop words after tokenizing the title of the
paper, and take the remaining words as important
words. We mask the features of these important
words and reconstruct them. The reconstruction
loss is denoted as:

LIWR =
1∣∣∣ṼIM

∣∣∣

∑

vi∈ṼIM

(1− zTi wi

∥zi∥ · ∥wi∥
)γ

2.2.4 Important Word Identification
Each node contain distinctive important words.
Therefore, we design important word identifica-
tion task with the objective of judging important
words.
Task Process: First, we label the paper-word edge
differently according to whether it is a important
word to this node, 1 for important and 0 for unim-
portant.

Second, we splice the representation hu and hm
of each node-word pair (u,m) as the edge repre-
sentation hu,m.

Third, we input the edge representation into a
projection head to predict the edge label, then opti-
mize with the following loss function:

hu,m = hu ⊕ hm
y′u,m = projection− head(hu,m)

LIWI =
∑
u,m

− log σ(y′u,m)− log(1− y′u,m)

where y′u,m denotes the probability of being
predicted as an important word edge.

2.3 Pre-training Framework

The representation of initial nodes and word nodes
can be optimized simultaneously based on hierar-
chical text-attributed graph. Motivated by this, we
propose a pre-traininig framework: Node Represen-
tation Update Pre-training Architecture(NRUP).

In our framework, we use the constructed graph
as the input; and we select a R-GNN model as
our base model, then the combination of self-
supervised tasks is served as the objectives of the
pre-training stage. Furthermore, we design two
aggregators to update features of both initial nodes
and words, which are denoted as follows:

Aggregatorinitial ←MEAN −AGG(v, neighinitial
v)

+c ∗MEAN −AGG(neighword
v)

Aggregatorword ←MEAN −AGG(n, neighword
n)

+d ∗MEAN −AGG(neighinitial
n)

8432

c =
∣∣neighinitial

initial

∣∣ /(
∣∣neighinitial

initial

∣∣+
∣∣neighword

initial

∣∣)
d =

∣∣neighword
word

∣∣ /(
∣∣neighinitial

word

∣∣+
∣∣neighword

word

∣∣)

where MEAN − AGG denotes a mean-
aggregator, which average the embeddings of
the aggregated nodes; neighinitialv denotes 1-hop
paper-neighbors of initial node v; while neighword

n

denotes 1-hop word-neighbors of word node n; c
and d are adaptive parameters based on the av-
erage neighbor count of papers and words respec-
tively,

∣∣neighword
initial

∣∣ denotes the number of word
neighbors of the initial node, and

∣∣neighinitialword

∣∣ de-
notes the number of initial node neighbors of the
word node.

After aggregation, we normalize the aggregated
initial node and word embeddings separately to
obtain the updated embedding matrix Un×d

initial and
Um×d
word . Then we replace the initial node features

with the updated matrix, and continue to train the
same R-GNN with self-supervised tasks until con-
vergence.

2.4 Multi-Task Pre-training

Link reconstruction task tends to restore structural
features, while node attribute reconstruction task
focuses on semantic information. IWI and IWR
tasks focus on deep mining of important words.
Therefore, we combine these tasks to guide the
representation learning of the R-GNN model. Loss
function L can be denoted as:

L = LNAR + λ1LLR + λ2LIWI + λ3LIWR

where λ1, λ2, λ3 are hyper-parameters.

3 Experiment Setup

In this section, we apply our entire pre-training
method to a real-world citation network ogbn-
arxiv(Hu et al., 2020a) and report performance on
the downstream tasks. To demonstrate the general-
ization of our method, we considered two settings
on the same dataset: Transductive Learning and
Inductive Learning. Meanwhile, we select sev-
eral baseline models to prove the validity of our
method.

3.1 Dataset

Data Profiling: The ogbn-arxiv dataset is a bench-
mark node classification dataset, representing the
citation network between all Computer Science
(CS) arXiv papers indexed by MAG. Each node
with its raw text of title and abstract is an arXiv

paper and each directed edge indicates that one pa-
per cites another one. In addition, all papers are
also associated with the year that the corresponding
paper was published.
Downstream Tasks: We evaluate our model on
two types of tasks, namely subject prediction and
important words identification.

• Subject Prediction: This task is regarding pre-
diction of subject areas of arXiv CS papers,
which are manually labeled by the paper’s au-
thors and arXiv moderators. Formally, the task
can be formulated as a 40-class classification
problem.

• Important Words Identification: This task is
designed to identify important words based on
paper-word correspondence. Formally, it can
be regarded as a binary classification problem.

3.2 Pre-Training and Fine-Tuning Setup

Basically, pre-training methods are designed to ob-
tain the transferable knowledge from unlabeled
datasets, thus pre-training models bring better rep-
resentations for the downstream tasks. Therefore,
to evaluate the effectiveness of our method, we
propose two different setups.

The first setting is called Transductive Learn-
ing, we pre-train and fine-tune on the same graph
in this setting, which means all nodes are visible
during both pre-traing and fine-tuning stage. The
second one is called Inductive Learning, we pre-
train on one grpah and fine-tune on another graph
in this setting. Generating representation for un-
seen nodes in fine-tuning stage makes this setting
more challengeable.

Dataset Nodes Edges Avg.degree Split Ratio

Ogbn-arxiv 169343 1166243 13.7 41/13/17/29

Table 1: Data Split of Ogbn-arxiv

We propose to split the dataset into four parts
as shown in Table 1 based on the publication dates
of the papers to adapt to the pre-training settings,
where 41% of papers published before 2017; 13%
of papers published in 2017; 17% of papers pub-
lished in 2018; 29% of papers published since 2019.
Specifically, the descriptions of the two settings are
as follows:

• Transductive Learning: Under this setting, we
select all papers to involve in the pre-training
stage; In the fine-tuning stage, we propose to

8433

Setting Graph Papers Words Paper-Paper edge Paper-Word edge Word-Word edge

Transductive Learning Pre-Train/Fine-Tune 169343 17634 2484941 21175983 7286638

Inductive Learning
Pre-Train 69499 17634 534337 8359451 3634502
Fine-Tune 99844 17634 927020 12816390 4081080

Table 2: Constructed Hierarchical Text-attributed Graph

Method
Subject Prediction Important Words Identification

Accuracy(%) ROC-AUC
Transductive Inductive Transductive Inductive

Feat 59.17± 0.06 60.05± 0.01 0.7463± 0.0012 0.7715± 0.0008

Attribute Masking 65.32± 1.98 61.96± 2.48 0.7405± 0.0055 0.7752± 0.0052

Edge Prediction 64.94± 2.04 62.46± 2.08 0.7394± 0.0072 0.7736± 0.0049

DGI 70.34± 0.16 63.66± 0.04 0.7473± 0.0062 0.7707± 0.0014

GPT-GNN 68.45± 2.54 66.04± 2.09 0.7403± 0.0078 0.7689± 0.0111

GraphMAE 71.75± 0.17 67.42± 0.35 0.7475± 0.0032 0.7812± 0.0009

GIANT 72.46± 0.07 68.89± 0.06 0.7433± 0.0008 0.7725± 0.0012

NRUP 72.33± 0.14 69.67± 0.12 0.7515± 0.0011 0.7847± 0.0023

Table 3: Main result of Subject Prediction and Important Words Identification; we report Accuracy in task subject
prediction and ROC-AUC in task important word indentification(bolded number is the best in that column).

train on papers published until 2017, validate
on those published in 2018, and test on those
published since 2019.

• Inductive Learning: Under this setting, we
propose to pre-train on papers published until
2016, train on those published in 2017, vali-
date on those published in 2018, and test on
those published since 2019.

For the evaluation protocol, we conduct the same
experimental process under two settings. First, we
train a R-GNN encoder by the proposed NRUP
based on pre-train graph. Then we freeze the pa-
rameters of the encoder and generate all the nodes’
embeddings for fine-tune graph. For evaluation,
we train a linear classifier and report the mean and
standard deviation of performance on the test nodes
through 10 random initializations.

3.3 Implementation Details

Construction of Hierarchical Text-attributed
Graph: We construct pre-train and fine-tune hier-
archical text-attributed graphs based on ogbn-arxiv
according to two settings as shown in Table 2. The
process time for construction can be found in the
Appendix E.
Basic Settings: In NRUP, R-GAT is selected as the
base model. We update the features of both papers
and words with aggregator after training for 2000
epochs, then we input normalized updated features
into the same R-GAT. Throughout the entire pro-

cess, we train the model to minimize the loss L
using AdamW Optimizer and cosine learning rate
decay without warmup. We provide an explanation
of the hyper-parameter settings for different losses
in Appendix D. More details and hyper-parameters
can be found in Appendix A.

3.4 Baseline Models

To verify the effectiveness of our method, we select
several baseline models for comparison.

• Feat: Fixed representation of paper generated
by the BERT model.

• Attribute Masking: Mask the attributes of
some nodes in the graph and reconstruct
masked attributes by projection head.

• Edge Generation: Mask some edges and
generate them based on nodes and remaining
edges, and optimize the by contrastive loss.

• DGI(Velickovic et al., 2019): Maximizing
mutual information between patch representa-
tions and corresponding high-level summaries
of graphs.

• GPT-GNN(Hu et al., 2020c): A genera-
tive pre-training framework, which trains the
model by reconstructing node attributes and
graph structure through joint optimization of
attribute generation and edge generation.

• GraphMAE(Hou et al., 2022): A generative
self-supervised learning framework, which re-
constructs initial node features by masked

8434

graph autoencoder, and the model is opti-
mized by reconstruction loss.

• GIANT(Chien et al., 2021): An SSL frame-
work that generates numerical node features
with graph-structured self-supervision by XR-
Transformer.

4 Experiment Results

4.1 Main Results
Tabel 3 presents the performance of applying differ-
ent pre-trian methods on the same pre-train dataset
and fine-tune test set.

In task Subject Prediction we predict subject
of paper based on paper representation, and in task
Important Words Identification we identify im-
portant words based on concatenation representa-
tion of paper and word. More details can be found
in Appendix B.

In both Transductive Learning and Inductive
Learning setting, our NRUP achieves better or com-
petitive performance compared to the selected base-
line models, demonstrating the effectiveness and
transferability of our method.

4.2 Effect of Different Tasks
The experimental results demonstrate that using
multi-task loss for optimization can help the model
capture both semantic and structural information
in heterogeneous graph simultaneously.

We further investigated the performance on
the test dataset using different tasks under Induc-
tive Learning setting without embedding update.
Tabel 4 shows the results that scenario-specific
tasks can bring benefits to basic tasks, and our
NRUP with multi-loss achieve the best perfor-
mance.

Self-Supervised Task Accuracy

Node Attribute Reconstruction(NAR) 66.65± 0.14
Link Reconstruction(LR) 65.98± 0.11

NAR+LR 67.31± 0.07
NAR+IWI 66.77± 0.12
NAR+IWR 66.85± 0.04

LR+IWI 66.10± 0.11
LR+IWR 66.29± 0.09

NRUP 67.56± 0.03

Table 4: Effect of Different Tasks

4.3 Optimized Word Embedding
The optimization of word’s embedding is a charac-
teristic of our co-modeling method based on hier-

archical text-attributed graph. We conduct experi-
ment under Inductive Learning setting using two
basic self-supervised tasks to verify that embed-
dings of words have indeed been optimized.

Self-Supervised Task Accuracy
Bert Embedding 60.05± 0.01

Word Embedding of NAR 66.18± 0.01
Paper Embedding of NAR 67.32± 0.04

Word Embedding of LR 67.92± 0.04
Paper Embedding of LR 66.87± 0.10

Table 5: Optimized Word Embedding (Word embedding
means the average representation of word nodes, Paper
embedding means the node representation output by
RGAT)

We average the optimized word representation
obtained by training for 2000 epochs through a
certain task as the representations of downstream
papers, then we train a linear classifier on the down-
stream data to predict the field of the paper. The
experimental results in Tabel 5 show that the word
node embeddings are optimized as well as the pa-
per nodes, which is the reason why our update
framework works.

4.4 Effect of Important Word Reconstruction
In task important word reconstruction, it is true
that a word may be "important" to some papers
but not to others. However, even though the word
decoupled from the title of a particular paper may
not have a significant impact on another one, it is
still a part of the overall content and meaning of
that paper.

We focus on reconstructing the important words
in this task which contribute to the overall seman-
tic understanding of a particular paper. In other
words, the less informative words which are not
"important" to any paper can be disregarded.

Method Accuracy
NAR+ AWR 65.49± 0.07

NAR 66.65± 0.14
NAR+ IWR 66.85± 0.04

Table 6: Effect of Important Word Reconstruction

Further, we have conducted experiments regard-
ing to all words reconstruction(AWR) instead of
important words(IWR) under Inductive learning
setting, and the findings of these experiments in

8435

Table 6 indicate that it is more effective not to re-
construct the word nodes unless we have specific
preferences or criteria for word selection.

4.5 Ablation Studies
To verify the effects of the main components in
NRUP, we further conduct several ablation studies.
We choose explore under Inductive Learning set-
ting.
Effect of Update Architecture: We explore the
influence of update architecture, and table 7 shows
the results that pre-train with the update architec-
ture or not. Without the update component, we
use certain self-supervised tasks for end-to-end pre-
training, and keep the optimal pre-training model to
generate the embeddings for downstream dataset.
And in our architecture, we update the features
halfway through the pre-training and retain the op-
timal model in the later stage. The performance on
downstream dataset indicates that our framework
is effective.

Method Accuracy
NRUP 69.67± 0.12

w/o Update Architecture 67.56± 0.03

Overall Normalization 68.16± 0.18
w/o Paper Normalization 69.12± 0.03
w/o Word Normalization 68.54± 0.07

w/o Normalization 68.42± 0.11

Table 7: Effect of Update Architecture

Effect of Normalization: The normalization plays
an crucial role in the update pre-training frame-
work which brings the updated feature matrix back
to normal distribution, eliminated the effect of dis-
tribution transfer. Table 7 shows the results that
update feature without normalization and with dif-
ferent normalization ways. We found that the effect
of normalizing the feature matrix is significantly
better than not performing it. Meanwhile, the effect
of normalizing the feature matrices of the papers
and words separately is better than the effect of
overall normalizing. In brief, normalization brings
improvements.
Effect of Adaptive Parameter: Aggregators in
NRUP are in charge of updating node features. We
further explore the way and degree of aggregation
by using fixed hyper-parameters instead of adaptive
hyper-parameters for dataset. Figure 3 shows the
results that when the value of hyper-parameters is
around adaptive parameters, the effect is better.

0.0 0.2 0.4 0.6 0.8

c
67.5

68.0

68.5

69.0

69.5

70.0

70.5

71.0

71.5

72.0

Ac
cu

ra
cy

(%
)

c = 0.06

68.1

69.6 69.5

68.9
69.2

68.7
68.5

68.3 68.2 68.1

Adaptive

Fixed parameters

(a) c

0.0 0.2 0.4 0.6 0.8

d
67.5

68.0

68.5

69.0

69.5

70.0

70.5

71.0

71.5

72.0

Ac
cu

ra
cy

(%
)

d = 0.46

68.1

68.9 68.8 68.7

69.1

69.5 69.4

68.9

68.4 68.2

Adaptive

Fixed parameters

(b) d

Figure 3: Effect of Adaptive Parameter(When exploring
the hyperparameter c, we set d as the adaptive parameter
and vice versa)

5 Related work

Representation Learning on Text-attributed
Graphs: Text-attributed graphs(Yang et al., 2021)
are rich in semantic and structural information, pre-
vious studies on text-attributed graphs can be di-
vided into three aspects: LMs only, GNNs only,
combination of LMs and GNNs.

Early works leverage language models(Kim,
2014; Vaswani et al., 2017) to learn word repre-
sentation based on sentence sequence. However,
neglect of the relationship between nodes leads
to underutilization of structural information. In
order to leverage the interrelation of nodes more
effectively, the graph’s structural configuration is
employed as a complementary resource alongside
textual data, with the aim of augmenting the train-
ing process of language models(Yang et al., 2020;
Mou et al., 2023). Besides, GIANT(Chien et al.,
2021) propose to train LM with graph structure,
but message passing among nodes is ignored in
LM-based methods.

The development of GNNs(Kipf and Welling,
2017; Zhang and Chen, 2018) brings new ideas for
studying this data format. In these works(Hu et al.,
2020a), the raw text of nodes are transformed to
numerical features as node attributes using graph-
irrelevant methods(Mikolov et al., 2013; Devlin
et al., 2019). Nevertheless, representations for text
are fixed in this situation, resulting in undermining
of text information.

Co-training approaches(Bi et al., 2021; Zhu et al.,
2021a) with combination of LMs and GNNs have
advantages of both models. However, it suffer from
issues of scalability due to the size of graph and
parameters of LMs. Recently, a variational EM
framework(Zhao et al., 2023) propose to alterna-
tively update the LM and GNN, but it relies on
task-specific labels thus the learned representation
cannot be applied to other scenario.
Heterogeneous Graph Pre-training: There are

8436

studies on related pre-training methods in the field
of heterogeneous graph, which leads to more gen-
eral representation generated by R-GNN encoder.
Jiang et al. (2021a,b) proposed two heterogeneous
graph pre-training frameworks: PT-HGNN and
CPT-HG, in which PT-HGNN proposed two pre-
training tasks at the node level and pattern level,
while CPT-HG proposed two pre-training tasks at
the relation level and subgraph level, both of which
achieved good results. These pre-training methods
helps the model acquire the representation with
generalization and effectiveness.

6 Conclusion

In this work, we propose to learn representations of
papers and words simultaneously via co-modeling
the raw text and graph based on hierarchical text-
attributed graph. We design a pre-training frame-
work and corresponding self-supervised tasks for
this scenario. Sufficient experiments conducted on
the benchmark dataset ogbn-arxiv demonstrate the
effectiveness and generality of our method.

Limitations

In our work, we propose to construct a hierarchi-
cal text-attributed graph to realize connections be-
tween nodes and words. However, the size of con-
structed heterogeneous graph is proportional to the
number of initial nodes, and the memory complex-
ity is proportional to size of graph structure. There-
fore, with the increase of paper-word edges, the
memory cost of NRUP may become unaffordable,
which limits the scalability of our method. Mean-
while, hyper-parameters of loss function may vary
in different datasets. We will manage to address
these issues in future work.

Ethics Statement

Our work strictly adheres to the ACL Ethics Policy,
and the data in this paper comes from Open Graph
Benchmark.

Acknowledgements

This work is supported by National Natural Sci-
ence Foundation of China (No. 6217020551) and
Science and Technology Commission of Shanghai
Municipality Grant (No.21QA1400600).

References
Nesreen K. Ahmed, Ryan A. Rossi, Rong Zhou,

John Boaz Lee, Xiangnan Kong, Theodore L. Willke,
and Hoda Eldardiry. 2017. Inductive representation
learning in large attributed graphs.

Shuxian Bi, Chaozhuo Li, Xiao Han, Zheng Liu, Xing
Xie, Haizhen Huang, and Zengxuan Wen. 2021.
Leveraging bidding graphs for advertiser-aware rele-
vance modeling in sponsored search. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 2215–2224, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Dan Busbridge, Dane Sherburn, Pietro Cavallo, and
Nils Y Hammerla. 2019. Relational graph attention
networks. arXiv preprint arXiv:1904.05811.

Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-
Fu Yu, Jiong Zhang, Olgica Milenkovic, and In-
derjit S Dhillon. 2021. Node feature extraction by
self-supervised multi-scale neighborhood prediction.
arXiv preprint arXiv:2111.00064.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong,
Hongxia Yang, Chunjie Wang, and Jie Tang. 2022.
Graphmae: Self-supervised masked graph autoen-
coders.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. 2020a. Open graph benchmark: Datasets
for machine learning on graphs. Advances in neural
information processing systems, 33:22118–22133.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik,
Percy Liang, Vijay Pande, and Jure Leskovec. 2020b.
Strategies for pre-training graph neural networks.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei
Chang, and Yizhou Sun. 2020c. Gpt-gnn: Gener-
ative pre-training of graph neural networks. In Pro-
ceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 1857–1867.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou
Sun. 2020d. Heterogeneous graph transformer.

Shuai Hua, Xinxin Li, Yunpeng Jing, and Qunfeng Liu.
2022. A semantic hierarchical graph neural network
for text classification.

Xunqiang Jiang, Tianrui Jia, Yuan Fang, Chuan Shi, Zhe
Lin, and Hui Wang. 2021a. Pre-training on large-
scale heterogeneous graph. In Proceedings of the
27th ACM SIGKDD conference on knowledge discov-
ery & data mining, pages 756–766.

8437

http://arxiv.org/abs/1710.09471
http://arxiv.org/abs/1710.09471
https://doi.org/10.18653/v1/2021.findings-emnlp.191
https://doi.org/10.18653/v1/2021.findings-emnlp.191
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2205.10803
http://arxiv.org/abs/2205.10803
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1905.12265
http://arxiv.org/abs/2003.01332
http://arxiv.org/abs/2209.07031
http://arxiv.org/abs/2209.07031

Xunqiang Jiang, Yuanfu Lu, Yuan Fang, and Chuan Shi.
2021b. Contrastive pre-training of gnns on hetero-
geneous graphs. In Proceedings of the 30th ACM
International Conference on Information & Knowl-
edge Management, pages 803–812.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks.

Zhenghao Liu, Chenyan Xiong, Maosong Sun, and
Zhiyuan Liu. 2020. Fine-grained fact verification
with kernel graph attention network. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7342–7351, On-
line. Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity.

Xinyi Mou, Zhongyu Wei, Qi Zhang, and Xuanjing
Huang. 2023. UPPAM: A unified pre-training ar-
chitecture for political actor modeling based on lan-
guage. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 11996–12012, Toronto,
Canada. Association for Computational Linguistics.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang,
Hongxia Yang, Ming Ding, Kuansan Wang, and Jie
Tang. 2020. Gcc: Graph contrastive coding for
graph neural network pre-training. In Proceedings
of the 26th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 1150–
1160.

Meng Qu, Yoshua Bengio, and Jian Tang. 2020. Gmnn:
Graph markov neural networks.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2017. Modeling relational data with graph convolu-
tional networks.

Chuxiong Sun, Hongming Gu, and Jie Hu. 2021. Scal-
able and adaptive graph neural networks with self-
label-enhanced training.

Shantanu Thakoor, Corentin Tallec, Mohammad Ghesh-
laghi Azar, Mehdi Azabou, Eva L Dyer, Remi Munos,
Petar Veličković, and Michal Valko. 2021. Large-
scale representation learning on graphs via bootstrap-
ping. arXiv preprint arXiv:2102.06514.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Petar Velickovic, William Fedus, William L Hamil-
ton, Pietro Liò, Yoshua Bengio, and R Devon Hjelm.
2019. Deep graph infomax. ICLR (Poster), 2(3):4.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo
Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. 2021. Graphform-
ers: Gnn-nested transformers for representation learn-
ing on textual graph.

Yuqiao Yang, Xiaoqiang Lin, Geng Lin, Zengfeng
Huang, Changjian Jiang, and Zhongyu Wei. 2020.
Joint representation learning of legislator and leg-
islation for roll call prediction. In Proceedings of
the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20, pages 1424–1430.
International Joint Conferences on Artificial Intelli-
gence Organization. Main track.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 7370–7377.

Michihiro Yasunaga, Jure Leskovec, and Percy Liang.
2022. Linkbert: Pretraining language models with
document links.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang
Wang. 2021. Graph contrastive learning automated.
In International Conference on Machine Learning,
pages 12121–12132. PMLR.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen,
Zhangyang Wang, and Yang Shen. 2020. Graph
contrastive learning with augmentations. Advances
in neural information processing systems, 33:5812–
5823.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo
Kang, and Hyunwoo J. Kim. 2020. Graph trans-
former networks.

Muhan Zhang and Yixin Chen. 2018. Link prediction
based on graph neural networks.

Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen
Ouyang, Xiaosen Li, Yangyu Tao, Zhi Yang, and
Bin Cui. 2022. Graph attention multi-layer percep-
tron. In Proceedings of the 28th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining.
ACM.

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian
Liu, Rui Li, Xing Xie, and Jian Tang. 2023. Learning
on large-scale text-attributed graphs via variational
inference.

Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li,
Markus Pelger, Tianqi Yang, Liangjie Zhang, Ruofei
Zhang, and Huasha Zhao. 2021a. TextGNN: Improv-
ing text encoder via graph neural network in spon-
sored search. In Proceedings of the Web Conference
2021. ACM.

Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li,
Markus Pelger, Tianqi Yang, Liangjie Zhang, Ruofei
Zhang, and Huasha Zhao. 2021b. TextGNN: Improv-
ing text encoder via graph neural network in spon-
sored search. In Proceedings of the Web Conference
2021. ACM.

8438

http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/10.18653/v1/2020.acl-main.655
https://doi.org/10.18653/v1/2020.acl-main.655
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
https://doi.org/10.18653/v1/2023.acl-long.670
https://doi.org/10.18653/v1/2023.acl-long.670
https://doi.org/10.18653/v1/2023.acl-long.670
http://arxiv.org/abs/1905.06214
http://arxiv.org/abs/1905.06214
http://arxiv.org/abs/1703.06103
http://arxiv.org/abs/1703.06103
http://arxiv.org/abs/2104.09376
http://arxiv.org/abs/2104.09376
http://arxiv.org/abs/2104.09376
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2105.02605
http://arxiv.org/abs/2105.02605
http://arxiv.org/abs/2105.02605
https://doi.org/10.24963/ijcai.2020/198
https://doi.org/10.24963/ijcai.2020/198
http://arxiv.org/abs/2203.15827
http://arxiv.org/abs/2203.15827
http://arxiv.org/abs/1911.06455
http://arxiv.org/abs/1911.06455
http://arxiv.org/abs/1802.09691
http://arxiv.org/abs/1802.09691
https://doi.org/10.1145/3534678.3539121
https://doi.org/10.1145/3534678.3539121
http://arxiv.org/abs/2210.14709
http://arxiv.org/abs/2210.14709
http://arxiv.org/abs/2210.14709
https://doi.org/10.1145/3442381.3449842
https://doi.org/10.1145/3442381.3449842
https://doi.org/10.1145/3442381.3449842
https://doi.org/10.1145/3442381.3449842
https://doi.org/10.1145/3442381.3449842
https://doi.org/10.1145/3442381.3449842

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu,
and Liang Wang. 2020. Deep graph contrastive repre-
sentation learning. arXiv preprint arXiv:2006.04131.

A Pre-training Details

This section illustrates some details during the pre-
training stage.
Update Architecture Setting: We design the ag-
gregators to update the paper and word features
using optimized embedding. Specificly, we update
the features after 2000 epochs training, and train R-
GAT with the updated representations for another
2000 epochs. In Table 8, we outline the hyper-
parameters of our update architecture.

Hyper-parameters Value
epochs 4000

optimizer AdamW
hidden layer dimension 768

layers of R-GAT 2
heads of R-GAT 4

drop-out of R-GAT 0.5
activation prelu

norm layernorm
weight decay 1e-4

lr 0.001

Table 8: Hyper-parameters of Update Architecture

Self-supervised Tasks Setting: In the frame-
work, we select 2 basic self-supervised tasks:
Feature Reconstruction and Link Prediction, and 2
scenario-specific tasks: Identify Important Words
and Reconstruct Important Words. And we opti-
mize the R-GAT model with the multi-loss of these
tasks. Table 9 outline the hyper-parameters of self-
supervised tasks.

In task node attribute reconstruction, we follow
GraphMAE (Hou et al., 2022) and select a one-
layer R-GNN as the decoder, because the R-GNN
decoder can recover the input features of one node
based on a set of paper nodes and word nodes in-
stead of only the node itself, and it consequently
helps the encoder learn high-level latent code. And
the scaling cosine error can get rid of the impact of
dimensionality and vector norms thus improves the
training stability of representation learning.

B Fine-tuning Details

This section illustrates some details during the fine-
tuning stage.
Subject Prediction Setting: In this downstream
task, we leverage the embeddings output by R-
GAT for prediction. We train a linear classifier
on the fixed representations of downstream dataset.

8439

Hyper-parameters Value
negative to positive ratio in LP 3

edge type of negative in LP Paper-Paper
Decoder in FR R-GAT

layers of decoder in FR 1
heads of decoder in FR 1

mask rate of FR 0.5
mask edge rate of FR 0.5
Loss function of FR sce

γ of FR 3
dimension of PH in IIW 768

layers of PH in IIW 2
mask rate of RIW 0.2

Table 9: Hyper-parameters of Self-supervised Tasks

Tabel 10 outline the hyper-parameters of this task.

Hyper-parameters Value
epochs of linear 2000

optimizer of linear adamW
lr of linear 0.01

dimension of linear 768
classification number 40

Table 10: Hyper-parameters of Subject Prediction

Important Words Identification Setting: In this
downstream task, we leverage the concatenation
of paper and word embedding output by R-GAT
for prediction. For baseline models, we use the
concatenation of paper embedding output by GNN
and initial bert embedding for prediction. We train
a linear classifier on the concatenation of represen-
tations of downstream dataset. Tabel 11 outline the
hyper-parameters of this task.

Hyper-parameters Value
epochs of linear 1000

optimizer of linear adamW
lr of linear 0.01

dimension of linear 1536
classification number 2

Table 11: Hyper-parameters of Important Words Identi-
fication

C Other Experiments

In addition to the ogbn-arxiv dataset in this paper,
we have conducted extra experiment on the Open

Academic Graph (OAG) dataset, which contains
more than 178 million paper nodes and 2.236 bil-
lion edges. Each paper is labeled with a set of
research topics/fields (e.g., Physics and Medicine)
and the publication date ranges from 1900 to 2019.

Method Paper-Field Paper-Venue
GPT-GNN 42.22± 1.02 46.72± 0.99
GraphMAE 43.77± 0.12 47.81± 0.18

GIANT 44.59± 0.07 48.98± 0.09
NRUP 45.01± 0.13 49.92± 0.12

Table 12: Hyper-parameters of Update Architecture

Due to our limited computing resources, we
only sampled 0.5% of the nodes and corresponding
edges for the hierarchical text-attributed graph con-
struction(850000 nodes) and pre-training. For the
fine-tuning step, we consider the edge prediction of
Paper-Field, Paper-Venue as two downstream tasks.
Table 12 shows our results.

D The hyper-parameters for the
coefficients of different losses

During the pre-training process of ogbn-arxiv, we
consider node attribute reconstruction as the funda-
mental self-supervised task. This is because seman-
tic information plays a crucial role in text-attributed
graphs.

Also, in our experiments, we observed that set-
ting the values of λ1, λ2, λ3 (which are hyperpa-
rameters controlling the relative importance of dif-
ferent loss terms) to be around 0.1 to 0.2 yielded
good results.

Empirical results indicate that sufficient mining
of semantic information and appropriate learning
of structural information can enable graph neural
networks to acquire more useful transferable knowl-
edge that is beneficial for downstream tasks.

E Cost of Graph Construction

We run the construction process of hierarchical text-
attributed graph to record the time complexity. The
running time of construction process under two
different settings are as follows:

• Transductive Learning: 7.5hr
• Inductive Learning: 3.5hr

The experimental results indicate that the construc-
tion step is affordable in terms of time complexity.

8440

Furthermore, it is worth highlighting that the
construction step of the hierarchical text-attributed
graph only needs to be performed once and con-
structed graphs are large-scale with 10~30 million
edges. Once the graph is constructed, it can be
utilized for both the pre-training step and multiple
downstream tasks.

8441

