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Abstract

We present a simple, but effective method to in-
corporate syntactic dependency information di-
rectly into transformer-based language models
(e.g. RoBERTa) for tasks such as Aspect-Based
Sentiment Classification (ABSC), where the de-
sired output depends on specific input tokens.
In contrast to prior approaches to ABSC that
capture syntax by combining language models
with graph neural networks over dependency
trees, our model, Syntax-Integrated RoBERTa
for ABSC (SIR-ABSC) incorporates syntax
directly into the language model by using a
novel aggregator token. SIR-ABSC1 outper-
forms these more complex models, yielding
new state-of-the-art results on ABSC.

1 Introduction

Aspect-Based Sentiment Classification (ABSC,
Pontiki et al. (2014), Figure 1) is a fine-grained
sentiment analysis task that aims to handle the fact
that even simple statements such as “The ambience
was nice, but service wasn’t so great." may express
different sentiments towards different aspects (this
reviewer is positive about the restaurant’s “ambi-
ence", but negative about its “service"). In ABSC,
the aspect to be classified is identified by a target
string in the input sentence (e.g. “ambience"), and
systems have to return the polarity (positive, neu-
tral, negative) of the corresponding sentiment.

Pre-trained language models (PLMs) have been
shown to work well for ABSC, presumably be-
cause their attention mechanisms capture semantic
connections between target and context words (Li
et al., 2019; Xu et al., 2020; Karimi et al., 2021).
Starting with Do et al. (2019), PLMs have been
supplemented with syntactic features, typically ex-
tracted from dependency graphs. This is typically
done by using the word embeddings obtained from
the PLM to initialize the node embeddings of a

1The code for SIR-ABSC is publicly available at https:
//github.com/ihcho2/SIR-ABSC

graph neural network (GNN) obtained from the
dependency graph (Tang et al., 2020; Wang et al.,
2020; Hou et al., 2021; Xiao et al., 2022). However,
such combined models have two major limitations:

1. Suboptimal Interaction: A typical challenge
in combining PLMs and GNNs is to make
the two models effectively interact with each
other. Some approaches (Tang et al., 2020;
Lu et al., 2020) attempt to accomplish this
through heavy model architecture engineering.
However, the PLM and GNN still operate in
an asynchronous manner (one after the other),
limiting their interaction, and yielding only
a minor improvement in performance. We
hypothesize that more integrated models can
yield larger boosts in performance.

2. Suboptimal Aggregation: Existing (PLM +
GNN) models cannot emphasize information
at a specific distance(s) away from the target
token. This is problematic since the models
pre-define the number of GNN layers before-
hand (Bai et al., 2020; Veyseh et al., 2020;
Zhao et al., 2022). For example, if the number
of GNN layers is fixed to three while an input
sequence has the key sentiment word at a dis-
tance of one, the redundant second and third
GNN layers can introduce noise. The ability
to identify the most important distance(s) (one
in this case) and to focus on that specific dis-
tance(s) based on the input is crucial to reduce
such noise.

In order to alleviate these limitations, we propose
syntax-integrated RoBERTa (SIR-ABSC), a novel
framework for effectively augmenting PLMs with
syntactic information. We chose RoBERTa (Liu
et al., 2019) as our PLM baseline due to its notable
performance on ABSC (Dai et al., 2021).

Instead of stacking multiple GNN layers on top
of a PLM as in most previous works, we insert a

8535

https://github.com/ihcho2/SIR-ABSC
https://github.com/ihcho2/SIR-ABSC


Dependency tree

vista .

to

sucked

compared

xp

although

Syntactic distance to ‘vista’

vista .

to

sucked

compared

xp

although

Syntactic Distance to ‘XP’

vista .

to

sucked

compared

xp

although

1 2 3 4+Distance: 0

Figure 1: (Left Top) In ABSC, the sentiment to be predicted depends on the desired target aspect (words from
the input). (Left Bottom) For ABSC, syntactic distance can be more informative than surface distance. (Right)
Syntactic distances as defined by a dependency tree

new [g] token into the PLM that acts as a syntax
aggregator and effectively replaces the work of
GNN layers. A Variable Distance Control (VDC)
mechanism allows [g] to focus on capturing syntac-
tic knowledge by using constrained attention masks
that reflect the graph structure. A Dependency-
Aware Aggregation (DAA) mechanism leverages
dependency label information. We further improve
our model with Automatic VDC Learning (Auto-
VDC), which enables SIR-ABSC to capture and
focus on important syntactic distances based on the
input, an important advantage over GNNs. SIR-
ABSC outperforms prior approaches, and estab-
lishes a new state of the art, on the most widely
used ABSC datasets.

Our main contributions are summarized below :

• We present a novel approach to incorporating
syntactic information into PLM through the
use of a syntax aggregator token.

• We highlight two limitations in current GNN-
based approaches (suboptimal interaction and
aggregation) and present effective methods
(DAA and Auto-VDC) to address them.

• To our knowledge, this is the first work to
utilize dependency graph information without
resorting to GNNs in ABSC.

• Our model achieves state-of-the-art results on
two out of the four widely used ABSC datasets
and demonstrates competitive performance on
the remaining ones.

2 Aspect-Based Sentiment Classification

In ABSC, illustrated in Figure 1, the task
is to predict the polarity (positive, negative

or neutral) of the sentiment in input sentence
s = [w1, w2, ..., wp, ..., wp+m−1, ..., wn] towards
a given target aspect t (a substring of the input
sentence: ti = {wp, ..., wp+m−1}).

2.1 Language Models for ABSC

Pre-trained language models (PLMs) such as BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) have gained predominance for many NLP
tasks, including ABSC. RoBERTa, a variant of
BERT, is known to show notable performance on
ABSC tasks (Dai et al., 2021), and forms the basis
of the models explored in this paper. RoBERTa
(and BERT) are (pre)trained on large amounts of
raw text with a masked language modeling objec-
tive. Both models use a Transformer (Vaswani
et al., 2017) architecture in which each token’s em-
bedding is fed through multiple layers such that
each token’s embedding in a given layer can attend
to all tokens in the sequence (in the same layer). To
adapt these models for classification tasks, a special
token ([CLS] for BERT, [s] for RoBERTa) whose
output is fed into a task-specific feedforward layer
is included in the input sequence. A separation to-
ken ([SEP] or [/s]) can be used to separate the input
sequence from other task-specific information.

For the ABSC task, RoBERTa is typically used
as follows: after tokenization, the input sentence
is constructed as ‘[s] input sentence [/s] [/s] aspect
sequence [/s]’, where the aspect sequence includes
the target aspect itself. The [s] token of the last
layer is used for the final prediction and fine-tuning.

2.2 Combining PLMs with syntax

A common approach to ABSC is to supplement a
PLM with syntactic information obtained from a
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dependency parser. In a dependency graph (Figure
1) each word in the sentence corresponds to a node,
with labeled edges indicating word-word depen-
dencies. Note that the syntactic distance between
words (e.g. sucked and vista) can be much smaller
than their surface (string) distance (Figure 1).

Since the dependency parser and the PLM may
use different tokenizers, tokenization needs to be
broken into two stages to integrate both models
seamlessly. The input sentence is first tokenized
by the dependency parser, and then each token is
again tokenized by RoBERTa’s tokenizer, follow-
ing previous work (Tang et al., 2020).

Graph Neural Network-based ABSC models
To incorporate syntax into ABSC models, PLMs
have been augmented with Graph Neural Networks
(GNNs, Kipf and Welling (2016)) that capture the
structure of the sentence’s dependency tree. Al-
though there are many variants (Trisna and Jie,
2022), the basic idea behind GNNs is to represent
each node as a vector hi that is updated via graph
convolution in each layer (l ∈ [1, 2, . . . L]) of the
GNN (Kipf and Welling, 2016) by aggregating its
neighborhood information from the previous layer:

hli = σ(AijWlh
l−1
j + bl)

σ is an activation function, W and b are learnable
parameters, and Aij is the entry of the graphs adja-
cency matrix that indicates whether nodes i and j
are connected (in which case Aij = 1; otherwise
Aij = 0). The general framework for augment-
ing PLMs with GNNs for ABSC is to initialize the
GNN node embeddings with the PLM’s output em-
beddings and use the final embeddings of the target
aspects in the last GNN layer for classification.

Zhang et al. (2019) were the first to implement
a GNN-based model for ABSC, adding a multi-
layered Graph Convolutional Network (GCN) to
encode dependency graphs on top of the word em-
bedding layer. Wang et al. (2020) and Bai et al.
(2020) proposed a relational graph attention net-
work (R-GAT), which computes an additional at-
tention distribution using the dependency label em-
beddings. Tang et al. (2020) strengthened interac-
tions between contextual and graph representations
through a mutual biaffine module. Mei et al. (2023)
incorporated part-of-speech, distance, and syntactic
dependency in a supervised manner. Several recent
research in ABSC has tried to revise dependency
graphs due to their imperfections or add external
resources (Xiao et al., 2021, 2022; Liang et al.,

2022a). What is common to all these approaches is
that the PLM and GNN operate in a serial fashion,
and are not tightly integrated.

Attention-mask based approaches Another
promising approach to incorporate syntactic infor-
mation into PLMs that is more related to this paper,
is to manipulate the Transformer’s self-attention
masks. For example, Syntax-BERT (Bai et al.,
2021) uses multiple masks induced from the syn-
tactic trees (e.g., parent, children, sibling, pairwise
masks) to incorporate syntactic information into
BERT. To do so, it requires multiple (usually more
than 90) sub-networks, which share the same model
parameters in a masked self-attention module, and
then the outputs are aggregated through another
attention layer, named a topical attention module.

The key difference between Syntax-BERT and
SIR-ABSC is that Syntax-BERT alters all the in-
put tokens’ attention masks and aggregates them
in a serial manner, while SIR-ABSC (which is
specifically designed for tasks like ABSC, where
the desired output depends on specific parts of the
input) keeps the original input tokens intact while
only modifying the attention-mask of the newly
added [g] token.

3 SIR-ABSC

We present SIR-ABSC (Figure 2), which incorpo-
rates syntactic information into PLM designed for
ABSC tasks. We accomplish this goal by augment-
ing RoBERTa with four components: (1) a single
additional input token, named [g], whose attention
masks depend on the structure of the input’s depen-
dency tree(s), paired with (2) a “variable distance
control" mechanism that specifies how the struc-
ture of the dependency graph is reflected in [g]’s
attention masks, (3) a dependency-aware aggrega-
tion which incorporates dependency labels using
embeddings, and (4) an “Auto-VDC" mechanism
that learns the ideal VDC for a given input.

Input and output After tokenization with
RoBERTa’s tokenizer, the input to SIR-ABSC is
‘[s] [g] input sentence [/s] [/s] aspect sequence
[/s]’, where the aspect sequence is the token "[g]"
followed by the target aspect words. [g] uses its
own independent dictionary embedding in the input
layer but is initialized with the initial [s] embedding.
We evaluate this choice in Section 5.

To obtain the output, the final layers of the [s]
and [g] tokens are pooled and fed to a classification
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Figure 2: The overall architecture of our approach. Instead of stacking GNNs on top of a PLM (left), SIR-ABSC
inserts a syntax aggregator token, [g], into the PLM for a synchronous and deeper aggregation (right). A heuristic
VDC of [0,0,0,1,1,1,2,2,2,3,3,3] is used in this example ("vista" is the target aspect). DAA is not explicitly
represented for the sake of simplicity. Best viewed in color.

layer as follows. First, a global vector c is created
by averaging [s] and [g] embeddings followed by a
weight Wc and an activation function f :

c = f

(
1

2

(
Xs +Xg

)
Wc

)

Then, the final pooled vector (h) is:

h = α1Xs + α2Xg

where,

(α1, α2) = softmax
(
cXT

s , cX
T
g

)

Then, h is fed into a fully connected layer (WFC) to
calculate the final sentiment polarity score y ∈ RC :

y = softmax
(
hWFC

)

where C is the number of sentiment polarity classes.
We use the cross-entropy loss function as the ob-
jective function.

The [g] token and distance-based attention
masks The [g] token is inserted next to the [s]
token. Unlike the [s] token that attends to every
token in the input, we allow each layer l of [g] to
only attend to the subset of input tokens j that are
at most a distance D(j) ≤ dl away from the target
aspect, allowing us to capture the intuition that the
relevance of each word in a sentence to ABSC de-
pends on its distance to the target aspect words. We
achieve this with distance-based attention masks
(Figure 2) that depend either on syntactic or surface
distance, and are only used for the [g] token, and
the VDC hyperparameters explained below that de-
fine the parameter dl. We do not restrict how the
input tokens can attend to [g].

For our baseline model, we assume that each
layer l of [g] is associated with one specific dis-
tance dl. This yields a layer-specific attention mask
md=dl

g (a vector whose elements md=dl
g,j are 0 if

the distance D(j) between token j and the target
aspect words is greater than dl, and 1 otherwise). If
distance is syntax-based, D(j) is the length of the
shortest path between token j and the target aspect
(so, if the target aspect consists of multiple tokens,
we take the minimum distance to any of its compo-
nent tokens). If the distance is surface-based, D(j)
is simply the token distance to the target aspect.

To summarize, all tokens except [g] are updated
precisely as in the original PLM using the original
attention mask m, and [g] is updated using its own
attention mask md=dl

g as follows:





X l
out ,i ̸=g = softmax

(
Ql

iK
lT

√
d

+m

)
V l, (1)

X l
out ,i=g = softmax

(
Ql

gK
lT

√
d

+md=dl
g

)
V l (2)

where,

Ql = X l
inW

l
Q,K

l = X l
inW

l
K , V l = X l

inW
l
V

md=dl
g,j =

{
0 , if D(j) ≤ dl

− inf , otherwise
X l

in and X l
out are the input and output token embed-

dings of the l-th self-attention layer, m is the atten-
tion mask that cancels out padding tokens, md=dl

g

is the [g] token’s attention mask, Ql,K l, V l are the
l-th Query, Key, and Value weights, respectively,
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i is the token index, and g is the [g] token’s in-
dex. For simplicity, we ignore the relatively minor
details, such as the FFN and normalization layers.

Unlike previous works where PLM and GNN
operate one after the other, SIR-ABSC is a syn-
chronous and fully-integrated model in that [s] (=
semantic aggregator) and [g] (= syntactic aggre-
gator) can attend to and affect each other’s em-
beddings at every layer. We verify that this fully-
integrated characteristic is crucial for SIR-ABSC’s
performance in Section 5.

Variable Distance Control (VDC) To specify
the attention masks used by the [g] token, we intro-
duce a new set of hyper-parameters named Variable
Distance Control (VDC). VDC is a list of 12 non-
negative integers where the l-th element represents
the dl value of the l-th layer of the [g] token: With a
VDC of [0,0,0,0,0,0,1,1,1,1,1,1], the first six layers
of the [g] token attend only to the target aspect, and
the remaining six layers attend to tokens connected
to the target via a direct dependency link.

Note that increasing VDCs (e.g.,
[0,0,0,0,1,1,1,1,2,2,2,2], [0,0,0,1,1,1,2,2,2,3,3,3])
can be used to mimic how GNNs work. Through
graph convolution, the i-th layer of a GNN
aggregates features of nodes up to length i away
from each node in the graph, allowing the GNN to
gradually aggregate information from more and
more distant nodes in its upper layers. Empirical
results in Section 5 show that increasing VDCs
have indeed better performance than constant
VDCs (e.g., [2,2,2,2,2,2,2,2,2,2,2,2]) or decreasing
VDCs (e.g. [3,3,3,2,2,2,1,1,1,0,0,0]). Here, our
baseline model uses heuristically defined VDCs,
referred to as “heuristic-VDC” in this paper.

Dependency-aware aggregation (DAA) VDC
allows the [g] token to distinguish tokens with dif-
ferent syntactic distances. However, the model
is unaware of the dependency edge labels which
could contain valuable information. To consider
this information in SIR-ABSC, we re-formulate
the update of the [g] token (Eq. 2) by including
learnable embedding vectors corresponding to the
dependency label to each token as follows:

X l
out,i=g = softmax

(
Ql

gK̃
lT

√
d

+md=dl
g

)
Ṽ l

where X l
in ,K

l and V l in equation 2 are modified
to X̃ l

in , K̃
l and Ṽ l to consider the dependency in-

formation as below:

X̃ l
in = f(X l

in +XdepW
l
dep)

K̃ l = X̃ l
inWK , Ṽ l = X̃ l

inWV

f is the activation function, Xdep is the dependency
label embedding of the input tokens, W l

dep is a
learnable weight matrix that maps dependency la-
bel embeddings to the size of the PLM’s embed-
ding. This allows SIR-ABSC to leverage the de-
pendency label information for better aggregation.

Automatic VDC learning (Auto-VDC) In Sec-
tion 5, Table 2 shows the significance of the VDC
configuration in SIR-ABSC, with up to 1.1% dif-
ference in model performance. This result naturally
gives rise to a challenging question: How can we
decide the ideal VDC configuration?

Given numerous possible configurations for
VDC, it is inefficient to rely on heuristics such as
grid search. We therefore define a learning-based
approach to finding the ideal VDC configuration
by computing multiple [g] embeddings based on
different VDC values and then merging them into
one using a learnable weighted sum.

We first create multiple [g] candidates X l
{g,i}’s

where each uses the attention mask of VDC=i as
follows. First, the Ql

g vector is transformed to
Ql

{g,i} by a weight W l
i and an activation f :

Ql
{g,i} = f(Ql

gW
l
i )

Then, X l
{g,i} is generated using attention mask of

VDC of i:

X l
{g,i} = softmax

(Ql
{g,i}K̃

lT

√
d

+md=i
g

)
Ṽ l

Then, we use a learnable weighted sum to create
our final [g] vector X l

g:

X l
g = αl

0 ·X l
{g,0} + · · ·+ αl

k ·X l
{g,k}

where the weights are computed as follows. First, a
vector c is computed by averaging X l

{g,i} followed
by a weight W l and an activation function f :

c = f

(
1

k + 1

( k∑

i=0

X l
{g,i}

)
W l

)

Then, the weights are computed by applying the
softmax over the dot products with c :
(
αl
0, ..., α

l
k

)
= softmax

(
X l

{g,0}c
T , ..., X l

{g,k}c
T
)
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Auto-VDC is illustrated in Figures 3 and 4. this ap-
proach has the following advantages: First, due to
the attention pooling, the ideal VDC of each layer
can be automatically learned by the attention scores.
That is, X l

{g,n} with the ideal VDC = n for layer l
will be automatically assigned a higher weight. Fur-
thermore, unlike heuristic-VDC, where the model
must attend tokens up to a distance of max(VDC),
Auto-VDC can adjust which distances to focus on
based on the input, thereby reducing the noise from
the redundant distances.

4 Experimental Results

Datasets and Experimental Settings We use
the most widely used ABSC data sets: the Lap-
top and Restaurant datasets from SemEval-2014
task 4 (Pontiki et al., 2014), the Twitter dataset
of Dong et al. (2014), and the MAMS-ATSA
dataset (Jiang et al., 2019). Table 5 in Appendix
A shows the statistics of the ABSC datasets. For
SIR-ABSC, we use the pre-trained RoBERTa-base
model provided by huggingface. We use spaCy2’s
en_core_web_sm model version 3.3.0 as the depen-
dency parser. Finetuning uses a batch size of 32,
dropout rate of 0.1, learning rate of {1.0e-5, 1.5e-5,
2.0e-5} using the AdamW optimizer, and 300 for
the dependency embedding dimension. We run the
experiments with five random seeds and report av-
erage accuracy and macro-F1. We used the same
set of random seeds for each ablation experiment.
All experiments are conducted on a single Tesla
A100 GPU.

Baselines We compare SIR-ABSC with previ-
ous (PLM+Dependency graph) models in Table 1.
Specifically, (1) DGEDT-BERT (Tang et al., 2020)
proposes a biaffine module that deepens the inter-
action of semantic and syntactic representations;
(2) kumaGCN (Chen et al., 2020) utilizes depen-
dency graph along with a latent graph induced from
self-attention neural networks; (3) dotGCN (Chen
et al., 2022) uses GNN over an induced tree trained
by reinforcement learning; (4) CHGMAN (Niu
et al., 2022) uses a three-channel multi-view learn-
ing model on the dependency graph for better repre-
sentation learning; (5) R-GAT (Wang et al., 2020)
applies relational graph attention networks over
the dependency graph to incorporate edge label in-
formation into the model; (6) DGNN (Xiao et al.,
2022) uses dependency graph and an additional

2spaCy parsers: https://spacy.io/

adjacency matrix generated based on the syntactic
distance from the target; (7) MWM-GCN (Zhao
et al., 2022) uses masking based on the syntactic
distance from the target and additional multi-head
self-attention layers for better performance; (8) SG-
GCN (Veyseh et al., 2020) applies a regulation gate
on the tokens based on their similarity to the target;
(9) RoBERTa-RGAT, PWCN (Dai et al., 2021) re-
produces the baseline RoBERTa model with using
dependency graph in two different approaches (re-
lational GAT and point-wise convolution network);
(10) AM-RoBERTa (Feng et al., 2022b) applies
target-relevant masking to the self-attention mech-
anism in the PLM to focus more on target-related
contexts; (11) RoBERTa-DLGM (Mei et al., 2023)
proposes a supervision-based approach to incorpo-
rate syntax information into PLM.

Note that baselines that use external knowledge
sources in addition to dependency graphs (e.g.,
Sentic GCN-BERT (Liang et al., 2022b), KGAN
(Zhong et al., 2023), SGAN (Yuan et al., 2022)) are
not direct competitors to SIR-ABSC, although SIR-
ABSC still outperforms all these methods except
for KGAN on Twitter (which is not a fair compari-
son since KGAN relies on an external knowledge
source, WordNet). BERT4GCN (Xiao et al., 2021)
is excluded since it uses a different experiment set-
ting while no public code is available. It is also
worth noting that all these baseline models use
GNN-based modules to aggregate syntactic infor-
mation. SIR-ABSC, on the other hand, presents a
new aggregating approach via the syntax aggrega-
tor token without resorting to GNNs.

Overall Results Table 1 compares SIR-ABSC
against all competitive RoBERTa+GNN or
BERT+GNN combination models that use depen-
dency graphs extracted from parsers 234 (Tang et al.,
2020; Wang et al., 2020; Xiao et al., 2022; Zhao
et al., 2022; Liang et al., 2022a; Veyseh et al.,
2020; Xiao et al., 2021; Dai et al., 2021; Feng
et al., 2022a; Mei et al., 2023). Notably, SIR-
ABSC outperforms all previous models on Lap-
top14, Restaurant14, and MAMS-ATSA datasets,
establishing a new state-of-the-art record. On Twit-
ter, SIR-ABSC clearly outperforms RoBERTa-
based models and is competitive with the (overall
better performing) BERT-based models. Signifi-

3Stanford CoreNLP: https://stanfordnlp.
github.io/CoreNLP/

4Biaffine Parser (Dozat and Manning, 2016) from the Al-
lenNLP package https://allenai.org/allennlp
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Figure 3: With Auto-VDC, the [g] token automatically learns the ideal VDC configuration. For example, in the
lower layers, the [g] token’s attention scores focus on the target aspect ("touch screen functions") and the [s] token.
As it moves to the upper layers, the [g] token shifts its focus to the critical phrase “did not enjoy” for the final
prediction. This shows that Auto-VDC progressively consolidates information from increasingly distant nodes in
the upper layers, just like heuristic VDCs and GNNs, but in an automatic way, thereby diminishing the need for
manual heuristic adjustments.

Base PLM Models Syntax External Resource Lap14 Rest14 Twitter MAMs
Acc. F1 Acc. F1 Acc. F1 Acc. F1

BERT

DGEDT-BERT2 Dep. Graph x 79.8 75.6 86.3 80.0 77.9 75.4 – –
kumaGCN Dep. Graph x 82.0 78.8 86.4 80.3 77.9 77.0 – –
dotGCN x x 81.0 78.1 86.2 80.5 78.1 77.0 85.0 84.4
CHGMAN Dep. Graph x 81.5 77.7 86.9 81.6 – – 85.1 84.3
RGAT-BERT4 Dep. Graph x 78.2 74.1 86.6 81.4 76.2 74.9 – –
DGNN (BERT)4 Dep. Graph x 81.4 79.0 87.2 81.7 76.2 75.0 – –
MWM-GCN (BERT)3 Dep. Graph x 82.8 79.5 88.5 82.6 78.9 77.4 – –
Sentic GCN-BERT2 Dep. Graph ✓(SenticNet) 82.1 79.1 86.9 81.0 – – – –
SGGCN-BERT Dep. Graph x 82.8 80.2 87.2 82.5 – – – –
Ours: SIR-ABSC (BERT) 2 Dep. Graph x 82.2(±0.4) 79.1(±0.4) 87.3(±0.7) 81.6(±0.8) 77.7(±0.8) 76.6(±0.7) 84.6(±0.4) 83.3(±0.5)

RoBERTa

RoBERTa-RGAT4 Dep. Graph x 83.4 80.3 87.4 80.6 74.4 72.9 84.5 83.7
RoBERTa-PWCN2 Dep. Graph x 84.2 81.2 87.4 81.1 76.6 75.6 – –
AM-RoBERTa2 x x 83.0 80.2 88.1 82.5 – – 84.2 83.7
RoBERTa-DLGM2 Dep. Graph x 84.4 82.0 88.6 83.6 75.5 74.6 84.8 84.3
KGAN Dep. Graph ✓(WordNet) 83.9 81.1 88.5 84.1 80.6 79.6 – –
Ours: SIR-ABSC 2 Dep. Graph x 85.0(±0.5) 82.1(±0.6) 89.7(±0.6) 84.8(±0.9) 77.5(±0.6) 76.4(±0.6) 85.0(±0.3) 84.5(±0.3)

Table 1: SIR-ABSC outperforms all prior works on Laptop and Restaurant, and is competitive on Twitter and
MAMS.

cance tests following Dror et al. (2019) result in
minimum epsilon values of 0 using p-value of p
< 0.01, indicating that SIR-ABSC’s performance
is “stochastically greater” than the baselines (de-
tails in Appendix E). We also conducted experi-
ments using BERT (SIR-ABSC (BERT)) instead
of RoBERTa and it shows comparable performance
with the state-of-the-art BERT models (details in
Appendix G).

Twitter and multi-sentence items Table 6 in
Appendix A shows that the Twitter dataset has a
large proportion of multi-sentence items. Since
multi-sentence items have multiple dependency
graphs, it requires us to combine them by adding
a dummy root node that links to the heads of each
sentence. This, as well as RoBERTA’s generally
lower performance on Twitter, maybe one reason
why we do not achieve state-of-the-art on Twitter.
We have also not attempted to examine how parser
accuracy contributes to performance differences.

5 Analysis

We now examine the effect of the design decisions
that distinguish SIR-ABSC from RoBERTa.

Does [g] require syntactic distances? To under-
stand the impact of syntax on SIR-ABSC, we now
compare it to a variant that uses surface distance
instead of syntactic distance. The surface (or posi-
tion) distance of a token is computed simply by the
number of tokens between the closest target aspect
token and the corresponding token following previ-
ous works (Zeng et al., 2019; Phan and Ogunbona,
2020). Focusing on words near the target aspect
is known to be effective in the ABSC task (Zeng
et al., 2019). But syntactic distance is often very
different from surface distance (see Figures 1 and
2.)

Table 2 shows results for all three VDC types
(decreasing, constant, and increasing) under both
metrics that indicate that syntactic distances yield
generally better performance than surface distances,
especially in the increasing VDC configuration.
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Variable Distance Control (VDC) Lap14 Rest14 Twitter MAMs (Val.)
Acc. F1 Acc. F1 Acc. F1 Acc. F1

RoBERTa-ASC 82.1(±0.9) 78.9(±1.1) 87.6(±0.8) 81.7(±0.8) 75.6(±0.6) 74.5(±0.7) 84.4(±0.4) 83.9(±0.5)

SIR-ABSC (Position Distance)
• Decreasing-VDC 83.4(±0.7) 80.4(±0.8) 88.5(±0.6) 83.2(±0.6) 76.5(±0.8) 75.3(±0.7) 84.7(±0.4) 84.3(±0.4)
• Constant-VDC 83.7(±0.7) 80.7(±0.7) 88.6(±0.6) 83.3(±0.5) 76.4(±0.7) 75.4(±0.8) 84.9(±0.4) 84.4(±0.5)
• Increasing-VDC 83.7(±0.9) 80.5(±0.8) 88.6(±0.7) 83.2(±0.7) 76.9(±0.9) 76.0(±1.0) 84.8(±0.3) 84.4(±0.2)

SIR-ABSC (Dependency Graph)
• Decreasing-VDC 83.8(±0.6) 80.8(±0.7) 88.2(±0.6) 82.9(±0.6) 76.5(±0.7) 75.4(±0.8) 84.8(±0.4) 84.3(±0.4)
• Constant-VDC 83.9(±0.6) 80.7(±0.6) 88.9(±0.7) 83.7(±0.8) 76.4(±0.8) 75.2(±0.7) 84.8(±0.4) 84.5(±0.3)
• Increasing-VDC 84.1(±0.8) 81.1(±0.8) 89.3(±0.6) 84.1(±0.8) 77.2(±0.9) 76.3(±0.9) 85.0(±0.3) 84.6(±0.3)

Table 2: Empirical results on the effectiveness of VDC. The results show that SIR-ABSC generally shows better
performance in the order of decreasing < fixed < increasing VDCs. This result matches our intuition of [g] imitating
GNN as described in Section 3. A more detailed result table is in the Appendix C.

SIR-ABSC Lap14 Rest14 Twitter MAMs (Val)
Auto-VDC DAA Acc. F1 Acc. F1 Acc. F1 Acc. F1

✓ ✓ 85.0(±0.5) 82.1(±0.6) 89.7(±0.6) 84.8(±0.9) 77.5(±0.6) 76.4(±0.6) 85.4(±0.4) 84.9(±0.4)
✓ x 84.7(±0.6) 81.9(±0.7) 89.5(±0.5) 84.4(±0.7) 77.3(±0.6) 76.2(±0.7) 85.2(±0.3) 84.8(±0.2)
x ✓ 84.6(±0.8) 81.8(±0.8) 89.4(±0.4) 84.4(±0.8) 77.2(±0.6) 76.3(±0.6) 85.2(±0.5) 84.7(±0.5)
x x 84.1(±0.8) 81.1(±0.8) 89.3(±0.6) 84.1(±0.8) 77.2(±0.9) 76.3(±0.9) 85.0(±0.3) 84.6(±0.3)

Table 3: Ablation study results. The first row is equivalent to our final SIR-ABSC model and the last row is
equivalent to our baseline SIR-ABSC model using increasing heuristic-VDC.

Consistency with general GNNs SIR-ABSC
is inspired by how GNNs gradually aggregate in-
formation from nodes that are more and more
distant in their upper layers. As mentioned
in section 3, increasing VDC hyperparameters
can be used to mimic this behavior. As men-
tioned above, Table 2 summarizes experiments
conducted on three different types of VDCs: in-
creasing (e.g., [0,0,0,1,1,1,2,2,2,3,3,3]), constant
(e.g., [2,2,2,2,2,2,2,2,2,2,2,2]), and decreasing (e.g.,
[3,3,3,2,2,2,1,1,1,0,0,0]).

From the table, we can observe the followings.
First, the VDC hyperparameter is crucial for SIR-
ABSC’s performance, verifying [g]’s effectiveness.
Also, it can be seen that SIR-ABSC has the highest
performance with increasing VDCs (i.e. when it
is most similar to typical GNNs), and the lowest
performance with decreasing VDCs (i.e. when
it is the least similar to GNNs). More detailed
experiment results are provided in Appendix C.

How does SIR-ABSC alleviate the suboptimal
interaction issue? Existing (PLM+GNN) models
in ABSC work in an asynchronous fashion (i.e., one
after the other), which results in a weak interaction
between the semantic and syntactic information
(Tang et al., 2020). SIR-ABSC, on the other hand,
is a fully-integrated model where [s] (=semantic
aggregator) and [g] (=syntactic aggregator) inter-
act with each other in every layer. To verify the
strength of this fully-integrated characteristic, we
conducted an ablation study (Table 4) where we

intentionally block the attention masks between [s]
and [g] in every layer. Consequently, the [s] and
[g] tokens cannot attend to each other during the
self-attention layers, weakening their interaction.
By comparing SIR-ABSC with Table 4 Variant
1 (w/o s↔g interaction), we can observe that the
drop in performance is considerable, verifying our
hypothesis that more integrated models can allevi-
ate the suboptimal interaction issue and yield more
significant performance improvements.

How does SIR-ABSC alleviate the suboptimal
aggregation issue? We conducted an ablation
study to verify the effectiveness of DAA and Auto-
VDC, and the results are summarized in Table 3.
From the table, we can observe that each method
improves the performance over our baseline model
(using increasing heuristic-VDC), and both applied
together further enhances the performance. These
results verify that SIR-ABSC can effectively uti-
lize the dependency labels and learns to identify
and focus on specific distances based on the input,
alleviating the suboptimal aggregation issue. We
also include two case studies, Figures 3 and 4, for
qualitative analysis. In Figure 3, SIR-ABSC’s [g]
focuses on the target aspect (“touchscreen func-
tions”) in the early layers and then gradually cap-
tures the key phrase “did not enjoy” in the later
layers, showing some consistency with increasing
heuristic-VDC results. Also, from Figure 4 we
can see that SIR-ABSC learns to focus more on
VDCs of 0,1, and 2 and less on 3 (see Figure 4
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Figure 4: A case study on the effect of the Auto-VDC mechanism. Target aspect is “resolution”. Auto-VDC learns
to focus more on the key distances (VDCs of 1 and 2) and less on the redundant distance (VDC of 3). As a result,
the model successfully focuses on the key phrase “has higher resolution” at the last layers.

[g] token Lap14 Rest14 Twitter MAMs
Acc. F1 Acc. F1 Acc. F1 Acc. F1

SIR-ABSC 85.0(±0.8) 82.1(±0.9) 89.7(±0.6) 84.8(±0.9) 77.5(±0.6) 76.4(±0.6) 85.2(±0.4) 84.8(±0.4)

Variants
1. w/o s ↔ g interaction 84.2(±0.8) 81.5(±0.9) 89.3(±0.4) 84.1(±0.6) 77.2(±0.9) 76.1(±0.9) 85.0(±0.3) 84.5(±0.3)
2. [g] init. = aspect embed. 84.7(±0.8) 81.6(±0.7) 89.3(±0.6) 84.3(±0.6) 77.2(±0.8) 76.0(±0.9) 85.0(±0.4) 84.6(±0.4)
3. SIR-ABSC-[g] (Appendix F) 83.5(±0.6) 80.5(±0.6) 88.3(±0.4) 82.9(±0.4) 75.6(±0.8) 74.3(±0.8) 84.6(±0.3) 84.2(±0.3)

Table 4: Empirical results on the fully-integratedness and the inherent strength of the pre-trained [s] token embedding.

b) where VDC=3 tokens are indeed redundant (in-
cludes “fonts are small” where the target is “res-
olution”), verifying that SIR-ABSC can capture
important distances based on the input. We provide
more detailed ablation and case study results in
Appendix D.

Inherent strength of the pre-trained [s] token as
an aggregator There seems to be an inherent ad-
vantage in using the pre-trained embedding of the
[s] token also for [g]. Table 4 (Variant 2) compares
SIR-ABSC (in which the dictionary embedding
of [g] is initialized with [s]’s embedding), with a
variant in which we use the actual aspect word’s
dictionary embeddings as the [g] embedding (if the
aspect consists of several words, we average their
embeddings). Initializing [g] with the [s] embed-
ding yields better performance, perhaps because
the [s] embedding is better suited to aggregate in-
formation than the embeddings of other tokens,
providing a better starting point for a sequence ele-
ment that is also intended to aggregate information
(albeit of a slightly different nature). Erase later:
(Chen et al., 2020), (Chen et al., 2022), (Niu et al.,
2022), (Wang et al., 2020), (Xiao et al., 2022),
(Zhao et al., 2022), (Liang et al., 2022b), (Veyseh
et al., 2020), (Dai et al., 2021), (Feng et al., 2022b),
(Mei et al., 2023), (Xiao et al., 2021), (Liang et al.,
2022a), (Yuan et al., 2022), (Zhong et al., 2023)

6 Conclusion

This paper has proposed a novel framework, SIR-
ABSC, that effectively incorporates syntactic in-
formation directly into a pre-trained large language
model (PLM) such as RoBERTa for tasks like
Aspect-Based Sentiment Classification (ABSC), in
which the desired output depends on specific words
in the input, and where syntactic distance to the
relevant input words may be important. In contrast
to prior work, where a separate GNN was added
to the output of the PLM, in our model, attention
masks for new [g] token capture syntactic informa-
tion, and a new hyper-parameter, named variable
distance control (VDC), captures graph structure
in a similar fashion. Dependency-aware aggrega-
tion (DAA) mechanism allows SIR-ABSC to use
the dependency labels effectively, and finally, the
Auto-VDC mechanism learns a mixture of multiple
distances, allowing the model to identify and focus
on important syntactic distances for a given input.

To the best of our knowledge, SIR-ABSC is the
first model to incorporate syntactic knowledge into
RoBERTa for ABSC without resorting to GNNs.
Experiments show we achieve state-of-the-art per-
formance in SemEval-2014 task 4. This demon-
strates the efficiency of our approach and suggests
a new paradigm for augmenting PLM with syntax.

Limitations

In this section, we summarize the limitations of our
model that can be improved in the future. First, we
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did not explore various types of dependency parsers
as mentioned in Section 4, which could result in dif-
ferent performances. Similarly, we did not examine
how accurate the parser we used was and how much
performance difference it could make, as men-
tioned in Section 4. Second, we did not consider
other types of syntactic information besides de-
pendency trees, such as phrase dependency graphs,
which could also be effective for ABSC. Lastly, our
method might be limited to single-sentence items.
Although we inserted a dummy root node to merge
multiple dependency graphs within a single input
sentence, our model does not achieve state-of-the-
art results on the Twitter dataset, which consists
primarily of multi-sentence items. Therefore, it
would be crucial to investigate more effective meth-
ods for merging multiple dependency graphs in a
given input sentence.
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A Details on datasets

Our model SIR-ABSC is evaluated on four differ-
ent datasets from SemEval-2014 Task 4, Twitter,
and MAMS datasets. Table 5 shows the statistics of
the datasets. Table 6 shows the percentage of mul-
tiple sentences per item and the average number of
sentences per item on each dataset.

Dataset Train Test Val

Restaurant (SemEval-2014) 3608 1120 -
Laptop (SemEval-2014) 2328 638 -
Twitter 6248 692 -
MAMS-ATSA 11186 1336 1332

Table 5: Dataset Overview

Datasets Distribution Train Test Val

Lap14 % of multiple sent./item 7.86 7.84 -
Avg. sent./item 1.09 1.09 -

Res14 % of multiple sent./item 4.02 4.38 -
Avg. number of sent./item 1.04 1.05 -

Twitter % of multiple sent./item 59.44 60.55 -
Avg. number of sent./item 1.99 1.96 -

MAMS-ATSA % of multiple sent./item 2.12 0.82 0.60
Avg. number of sent./item 1.02 1.01 1.01

Table 6: Prevalence of multi-sentence items in the
ABSC datasets.

B Comparing different pooler types

The [s] and [g] token outputs are combined after
the last layer of SIR-ABSC encoders as described
in Section 3. We conduct experiments on three
different types of poolers for combining [s] and
[g] token embeddings at the final layer: average,
max, and attention pooling. Table 7 summarizes
the results of using different pooler types for SIR-
ABSC. The result shows that attention pooling
shows better results in general.

C Detailed variable distance control
results

Our variable distance control (VDC) is a unique
hyper-parameter which consists of 12 non-negative
integers, where each integer represents the dl value
of the l-th layer. Theoretically there are exponen-
tially many possible values for VDC but we use
three representative types: increasing, constant,
and decreasing VDCs.

We heuristically chose specific values for each
type of VDCs and the detailed results are summa-
rized in Table 8. The table shows that SIR-ABSC
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Pooler types
Lap14 Rest14 Twitter

Acc. F1 Acc. F1 Acc. F1

SIR-ABSC
w/ max pooling 83.2 80.0 88.7 83.3 74.8 73.7
w/ avg pooling 83.8 80.6 88.8 83.5 76.5 75.5
w/ att pooling 84.1 81.1 89.3 84.1 77.2 76.3

Table 7: Comparing different pooler types for SIR-
ABSC. We used VDC = [0,0,0,1,1,1,2,2,2,3,3,3] with
the default full-interaction for the experiment.

has the highest performance with increasing VDCs.
Increasing VDCs are designed to work as the most
similar to the typical GNN by aggregating informa-
tion from the closest nodes to farther nodes based
on the target aspect. On the other hand, decreasing
VDCs has the lowest performance where the de-
creasing VDCs are designed to work as least similar
to a GNN in the opposite order (i.e., aggregating in-
formation from farther nodes to closer nodes based
on the target aspect). From these results, we can
conclude that SIR-ABSC successfully imitates the
typical GNN mechanism through increasing VDC
configuration.

D Detailed ablation and case study results
on DAA

We provide a more detailed ablation and case study
results regarding DAA in Table 9 and Figure 5. We
experiment two additional variants of the proposed
DAA mechanism: DAA (w/o edge label) and DAA
(w/o edge direction), to verify the effectiveness of
different kinds of syntactic information. Specifi-
cally, DAA (w/o edge direction) ignores the direc-
tion of the edges and assign the embeddings solely
based on the dependency label. DAA (w/o edge la-
bel) ignores the edge labels (e.g., nsubj) and assign
the embeddings solely based on the edge direction.
By comparing #1 and #2 from Table 9, we can ob-
serve that employing the VDC mechanism with the
[g] token to replace GNNs leads to significant im-
provement in performance (average accuracy gain
of 1.475% and average f1-score gain of 1.775). By
further supplementing the model with missing in-
formation, such as edge direction and edge label
information, DAA yields additional average gains
of 0.2% on accuracy and 0.275 on f1-score over
[RoBERTa+VDC] (#2 vs #5). The DAA ablation
results (#3 and #4) show that the performance de-
creases for both DAA (w/o edge direction) and
DAA (w/o edge label), indicating their importance
in DAA performance. Consistent with our intuition,

we can observe that the edge label information is
relatively more important than edge direction infor-
mation in DAA. Another interesting finding is that
DAA is more effective on BERT than RoBERTa.
We speculate that this is because RoBERTa already
utilizes the information contained in the depen-
dency edge label to some extent, which is probably
one of the reasons why RoBERTa shows better
overall baseline performance than BERT.

Additionally, we incorporate two case studies
to illustrate the effectiveness of DAA in Figure 5.
From the above examples, we can observe that the
attention scores of words (pretentious, and, inappro-
priate) and (anywhere, else) get much higher when
DAA is applied. Our speculation is that this occurs
because DAA learns the significance of "advcl" and
"advmod" labels, resulting in high attention scores
being assigned to expressions such as (pretentious
advcl−−−→ claim, be advmod−−−−−→ else, and else advcl−−−→ any-

where) thereby leading to correct predictions. This
is also consistent with our intuition since adverbial
modifiers are related to adjectives which is highly
likely to be important for deciding the sentiment.

E Significance tests

Following the proposed significance test designed
for comparing deep learning models from (Dror
et al., 2019), we ran their official code with our SIR-
ABSC and the baseline models. Specifically, we
compared (1) SIR-ABSC with RoBERTa-baseline
and (2) SIR-ABSC (BERT) with BERT-baseline.

This test takes three components (results from
method A, results from method B, and a confidence
level) as input, and the purpose of this test is to
answer the question: “Is A almost stochastically
greater than B?” This test is based on the relatively
new concept of “Almost Stochastic Order” which
is a relaxed version of “Stochastic Order”. The
test outputs a minimum ϵ value where the result is
interpreted as follows:

• If ϵ > 0.5: We can’t say A is almost stochas-
tically greater than B.

• If ϵ ≤ 0.5: We can say A is almost stochasti-
cally greater than B.

• If ϵ = 0: We can say A is “stochastically
greater” than B not just “almost stochastically
greater” which is the best result we can get in
this test. Mathematically meaning inf{x : t ≤
F (x)} ≥ inf{x : t ≤ G(x)} for ∀t ∈ (0, 1),
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Sentiment: Negative [s] [g] How pretentious and inappropriate for mj grill to claim that it provides power lunch and dinners

Sentiment: Neutral 0.01 1.84 0.39 0.08 0.05 0.04 0.40 X X 0.2 1.58 2.22 5.21 13.65 14.76 17.82 32.86 3.71
Sentiment: Negative 0.22 6.14 0.39 5.56 1.50 5.07 2.44 X X 6.20 5.90 7.73 10.67 23.74 8.58 1.65 9.28 0.08

conj

cccompound

dobj

nsubj

mark

ccomp

aux

advcl

prep

pobj compoundconj

ccadvmod

Sentiment: Positive [s] [g] Anywhere else the prices would be 3x high

Prediction: Negative 0.23 4.50 0.13 0.32 12.80 3.20 14.41 8.87 7.10 26.66
Prediction: Positive 0.49 9.40 4.01 5.56 9.08 4.44 13.38 11.07 15.44 10.59

aux attr

advmodnsubj

advmod

detadvmod

Figure 5: Two case studies employing DAA. The targets (dinners, prices) are marked in bold. The first and second
rows below the sentence depict the attention scores of the [g] token without and with DAA, respectively. Attention
scores that increase more than ten-fold when DAA is applied are also marked in bold. In these examples, DAA
enables the [g] token to place greater emphasis on critical sentiment words like "pretentious," "inappropriate,"
"anywhere," and "else," which contributes to accurate predictions.

where F and G are the (empirical) CDFs of A
and B.

Please refer to the paper for further details.
Applying the test on our models with a confi-

dence level (1-α) of 0.99 (in other words, signifi-
cance level (α) of 0.01), both tests (1) and (2) re-
sulted in minimum ϵ values of 0. This indicates that
SIR-ABSC and SIR-ABSC (BERT) are stochas-
tically greater than RoBERTa-baseline and BERT-
baseline with a confidence level of 0.99, respec-
tively, verifying the superiority of our method.

F Additional analysis: does [g] need to be
a separate token?

We now compare SIR-ABSC to a variant that does
not use a [g] token, but instead uses the target to-
kens at the end of the input sequence (recall that
the input sequence has the form of ‘[s] sentence
[/s] [/s] aspect sequence [/s]’). We call this the
SIR-ABSC-[g] variant. As Table 4 shows, the loss
in performance is considerable compared to using
an independent [g] token as in the original SIR-
ABSC. We speculate the drop in performance is
due to the original input sentence getting corrupted
when we modify the aspect token’s attention mask.
This indicates the importance of using an additional

and independent [g] token for the GNN role as in
SIR-ABSC.

G SIR-ABSC (BERT) results

We chose RoBERTa as our baseline PLM due to
its better overall performance in ABSC tasks (Dai
et al., 2021). However, to verify the generality
of our method, we also conducted experiments on
SIR-ABSC (BERT) which uses BERT instead of
RoBERTa. The results are summarized in Table 10.
We can see that our method is effective on BERT as
well and the significance test results in “stochastic
greateness” under significance level of α = 0.01,
verifying the general effectiveness. The amount of
improvement in performance could differ depend-
ing on the PLM and we can notice that the amount
of enhancement when using RoBERTa (+1.93 on
average) is relatively larger than when applied to
BERT (+1.60 on average).
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Variable Distance Control (VDC)
Lap14 Rest14 Twitter MAMS

Acc. F1 Acc. F1 Acc. F1 Acc. F1

GoBERTA (Position Distance)

• Decreasing-VDC 83.4 80.4 88.5 83.2 76.5 75.3 84.7 84.3
• VDC = [222211110000] 83.3 80.2 88.2 82.7 76.0 74.8 84.7 84.2
• VDC = [333222111000] 82.0 78.8 88.4 82.8 76.5 75.3 84.7 84.3
• VDC = [444422220000] 83.4 80.4 88.4 83.1 75.6 74.4 84.7 84.2
• VDC = [554433221100] 83.1 79.9 88.5 83.2 75.2 73.7 84.6 84.2
• VDC = [666444222000] 83.2 80.0 87.8 82.0 76.0 74.8 84.7 84.2

• Constant-VDC 83.7 80.7 88.6 83.3 76.4 75.4 84.9 84.4

• Increasing-VDC 83.7 80.5 88.6 83.2 76.9 76.0 84.8 84.4
• VDC = [000011112222] 83.5 80.3 87.8 82.1 76.9 76.0 84.7 84.3
• VDC = [000111222333] 83.5 80.5 88.5 83.2 75.5 74.4 84.7 84.3
• VDC = [000022224444] 83.6 80.4 87.9 82.2 75.7 74.4 84.8 84.4
• VDC = [001122334455] 83.3 80.3 88.6 83.1 76.1 74.9 84.8 84.4
• VDC = [000222444666] 83.7 80.5 88.3 82.5 76.6 75.8 84.7 84.2

GoBERTA (Dependency Graph)

• Decreasing-VDC 83.7 80.6 88.2 82.8 76.5 75.4 84.8 84.3
• VDC = [222211110000] 83.5 80.4 88.1 82.7 75.4 74.2 84.7 84.3
• VDC = [333222111000] 82.6 79.6 87.1 81.1 76.1 75.1 84.5 84.0
• VDC = [444422220000] 83.4 80.5 87.9 82.2 76.5 75.4 84.8 84.3
• VDC = [554433221100] 83.8 80.8 88.2 82.9 75.3 74.2 84.6 84.1
• VDC = [666444222000] 83.2 80.0 88.2 82.7 75.6 74.3 84.5 84.0

• Constant-VDC 83.7 80.4 88.9 83.7 76.4 75.2 85.0 84.5

• Increasing-VDC 83.8 80.8 89.1 83.8 77.1 75.9 85.0 84.6
• VDC = [000011112222] 84.1 81.1 88.3 82.8 77.2 76.3 84.6 84.2
• VDC = [000111222333] 83.8 80.8 89.1 83.8 76.7 75.5 84.7 84.3
• VDC = [000022224444] 83.5 80.5 88.9 83.5 75.7 74.6 84.8 84.3
• VDC = [001122334455] 83.2 80.2 89.3 84.1 74.7 75.9 85.0 84.6
• VDC = [000222444666] 82.5 79.4 88.9 83.8 76.9 75.9 84.8 84.5

Table 8: Detailed experimental results on the effect of VDC. The results show that SIR-ABSC generally shows
better performance in the order of decreasing < fixed < increasing VDCs. This result matches our intuition of [g]
token imitating GNN as described in Section 3.

8549



Ablations (Validation)
Lap14 Rest14 Twitter MAMS

Acc. F1 Acc. F1 Acc. F1 Acc. F1

1. SIR-ABSC (RoBERTa)

#1: RoBERTa baseline 82.1 78.9 87.6 81.7 75.6 74.5 84.4 83.9
#2: #1+[g] token+VDC 84.1 81.1 89.3 84.1 77.2 76.3 85.0 84.6
#3 (DAA Ablation #1): #2+DAA (w/o edge label) 84.2 81.3 89.3 84.3 77.2 76.0 84.8 84.3
#4 (DAA Ablation #2): #2+DAA (w/o edge direction) 84.4 81.5 89.4 84.3 77.3 76.5 84.9 84.4
#5 (DAA Ablation #3): #2+DAA (proposed) 84.6 81.8 89.4 84.4 77.2 76.3 85.2 84.7
#6 (SIR-ABSC): #5+Auto-VDC 85.0 82.1 89.7 84.8 77.5 76.4 85.4 84.9

2. SIR-ABSC (BERT)

#1: BERT baseline 79.2 75.1 85.8 79.3 76.4 74.8 84.0 82.7
#2: #1+[g] token+VDC 80.8 77.1 86.7 80.6 77.1 75.9 84.3 83.1
#3 (DAA Ablation #1): #2+DAA (w/o edge label) 81.1 77.5 86.9 80.9 77.2 75.9 84.3 83.2
#4 (DAA Ablation #2): #2+DAA (w/o edge direction) 81.6 78.2 87.0 81.1 77.4 76.1 84.4 83.5
#5 (DAA Ablation #3): #2+DAA (proposed) 81.8 78.6 87.0 81.2 77.6 76.4 84.5 83.5
#6 (SIR-ABSC (BERT)): #5+Auto-VDC 82.2 79.1 87.3 81.6 77.7 76.6 84.7 83.6

Table 9: A detailed ablation study results.

SIR-ABSC (BERT) Lap14 Rest14 Twitter MAMs
Acc. F1 Acc. F1 Acc. F1 Acc. F1

BERT baseline 79.2(±0.6) 75.1(±0.5) 85.8(±0.7) 79.3(±0.7) 76.4(±0.7) 74.8(±07) 84.0(±0.3) 82.7(±0.4)

SIR-ABSC (BERT) 82.2(±0.4) 79.1(±0.4) 87.3(±0.7) 81.6(±0.8) 77.7(±0.8) 76.6(±0.7) 84.6(±0.4) 83.3(±0.5)

Table 10: Empirical results on using BERT as the PLM. Note that our technique is effective on BERT as well
(significance test resulting in “stochastic greateness”) showing comparable results with BERT-based state-of-the-art
results. However, the improvement is generally less than when applied to RoBERTa.
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