@inproceedings{syed-etal-2023-citance,
title = "Citance-Contextualized Summarization of Scientific Papers",
author = "Syed, Shahbaz and
Hakimi, Ahmad and
Al-Khatib, Khalid and
Potthast, Martin",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.573",
doi = "10.18653/v1/2023.findings-emnlp.573",
pages = "8551--8568",
abstract = "Current approaches to automatic summarization of scientific papers generate informative summaries in the form of abstracts. However, abstracts are not intended to show the relationship between a paper and the references cited in it. We propose a new contextualized summarization approach that can generate an informative summary conditioned on a given sentence containing the citation of a reference (a so-called {``}citance{''}). This summary outlines content of the cited paper relevant to the citation location. Thus, our approach extracts and models the citances of a paper, retrieves relevant passages from cited papers, and generates abstractive summaries tailored to each citance. We evaluate our approach using **Webis-Context-SciSumm-2023**, a new dataset containing 540K computer science papers and 4.6M citances therein.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="syed-etal-2023-citance">
<titleInfo>
<title>Citance-Contextualized Summarization of Scientific Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shahbaz</namePart>
<namePart type="family">Syed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmad</namePart>
<namePart type="family">Hakimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Al-Khatib</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Potthast</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Current approaches to automatic summarization of scientific papers generate informative summaries in the form of abstracts. However, abstracts are not intended to show the relationship between a paper and the references cited in it. We propose a new contextualized summarization approach that can generate an informative summary conditioned on a given sentence containing the citation of a reference (a so-called “citance”). This summary outlines content of the cited paper relevant to the citation location. Thus, our approach extracts and models the citances of a paper, retrieves relevant passages from cited papers, and generates abstractive summaries tailored to each citance. We evaluate our approach using **Webis-Context-SciSumm-2023**, a new dataset containing 540K computer science papers and 4.6M citances therein.</abstract>
<identifier type="citekey">syed-etal-2023-citance</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.573</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.573</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>8551</start>
<end>8568</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Citance-Contextualized Summarization of Scientific Papers
%A Syed, Shahbaz
%A Hakimi, Ahmad
%A Al-Khatib, Khalid
%A Potthast, Martin
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F syed-etal-2023-citance
%X Current approaches to automatic summarization of scientific papers generate informative summaries in the form of abstracts. However, abstracts are not intended to show the relationship between a paper and the references cited in it. We propose a new contextualized summarization approach that can generate an informative summary conditioned on a given sentence containing the citation of a reference (a so-called “citance”). This summary outlines content of the cited paper relevant to the citation location. Thus, our approach extracts and models the citances of a paper, retrieves relevant passages from cited papers, and generates abstractive summaries tailored to each citance. We evaluate our approach using **Webis-Context-SciSumm-2023**, a new dataset containing 540K computer science papers and 4.6M citances therein.
%R 10.18653/v1/2023.findings-emnlp.573
%U https://aclanthology.org/2023.findings-emnlp.573
%U https://doi.org/10.18653/v1/2023.findings-emnlp.573
%P 8551-8568
Markdown (Informal)
[Citance-Contextualized Summarization of Scientific Papers](https://aclanthology.org/2023.findings-emnlp.573) (Syed et al., Findings 2023)
ACL