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Abstract

Sentiment analysis is a task that highly depends
on the understanding of word senses. Tradi-
tional neural network models are black boxes
that represent word senses as vectors that are
uninterpretable for humans. On the other hand,
the application of Word Sense Disambigua-
tion (WSD) systems in downstream tasks poses
challenges regarding i) which words need to be
disambiguated, and ii) how to model explicit
word senses into easily understandable terms
for a downstream model. This work proposes
a neurosymbolic framework that incorporates
WSD by identifying and paraphrasing ambigu-
ous words to improve the accuracy of sentiment
predictions. The framework allows us to under-
stand which words are paraphrased into which
semantically unequivocal words, thus enabling
a downstream task model to gain both accu-
racy and interpretability. To better fine-tune a
lexical substitution model for WSD on a down-
stream task without ground-truth word sense la-
bels, we leverage dynamic rewarding to jointly
train sentiment analysis and lexical substitution
models. Our framework proves to effectively
improve the performance of sentiment analysis
on corpora from different domains.

1 Introduction

To improve the accuracy of sentiment analysis,
it is crucial to disambiguate polysemous words
according to the context (Cambria et al., 2023).
A word may have senses that carry opposite
sentiments, e.g., “fine” has the positive meaning
of being delicate and refined, and the negative
meaning of monetary penalty. Additionally, words
may appear in positive, negative, or neutral senses
in different domains. For instance, the word

“bearish” is often used in a negative sense to
describe the stock market in the financial domain,
while more likely to be used neutrally to describe
hulking figures in other domains.

In traditional black-box sentiment analysis, the
representations of word meanings are generated by
neural networks (Mao and Li, 2021). As such, the
disambiguation process is implicit and opaque. It is
challenging to investigate what implicit senses are
assigned to ambiguous words by a neural network
model for it to make accurate predictions. Coupling
symbolism and sub-symbolism, a neurosymbolic
approach to sentiment analysis is transparent and
interpretable, regarding the extraction and distinc-
tion of word meaning as a sub-problem (Cambria
et al., 2017). However, research that explicitly
deals with ambiguous words in sentiment anal-
ysis is limited (Xia et al., 2014, 2015; Cambria
et al., 2015). Sense-annotated resources such as
SentiWordNet (Baccianella et al., 2010) have been
utilized, but only to detect and score sentimental
words in the input (Hung and Lin, 2013; Nassir-
toussi et al., 2015; Hung and Chen, 2016). The
disambiguation of polysemous words in sentiment
analysis inputs remains under-explored. Thus, we
are motivated to develop a neurosymbolic frame-
work for sentiment analysis with explicit Word
Sense Disambiguation (WSD).

Traditional WSD aims to classify which sense
of the target word is appropriate according to its
context (Huang et al., 2019; Blevins and Zettle-
moyer, 2020; Bevilacqua and Navigli, 2020; Song
et al., 2021; Barba et al., 2021a,b). However, the
limitations (ℓ) of their task setups are that (ℓ1) the
output of those WSD systems, whether sense la-
bel (Bevilacqua and Navigli, 2020) or gloss defini-
tion (Blevins and Zettlemoyer, 2020; Barba et al.,
2021a), is difficult to integrate into downstream
input; (ℓ2) the target words must be pre-defined for
WSD systems to disambiguate, making it difficult
to apply them directly to downstream tasks; and
(ℓ3) the reliability of sense distinction of the bench-
mark has been questioned (Ramsey, 2017; Maru
et al., 2022), as word senses are not discrete.
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Attempts have been made to incorporate the dis-
ambiguation of word senses into downstream ap-
plications. Nonetheless, they are either impractical
in real-world settings (Farooq et al., 2015; Pu et al.,
2018), or only applicable to a specific downstream
task, i.e., machine translation (Hangya et al., 2021;
Campolungo et al., 2022). To address these issues,
we leverage dynamic WSD in our neurosymbolic
framework. We regard WSD as a lexical substi-
tution task (for ℓ1), where ambiguous words in
sentiment analysis input are paraphrased into ones
that cause less sentiment confusion using a lexical
substitution model with dynamic WSD.

Our dynamic WSD method comprises two dis-
tinct aspects: the dynamic selection of the target
word for disambiguation, based on downstream
contextual information (for ℓ2); and the dynamic
learning of the most suitable lexical substitutions,
based on the prediction accuracy of the downstream
model (for ℓ3). To identify target words that need to
be substituted, we first adopt an attention-based ex-
plainable encoder to rank input words by the level
of influence they have on the output, motivated by
the assumption that not all polysemous words af-
fect sentiment predictions (Cao et al., 2015). Then,
the top-ranking words with the most diverse senses
are selected to be targets, based on our hypothesis
that an ambiguous word may coincide with signifi-
cant disparities in the semantic space between the
word itself and its potential substitution candidates.

As such, we can trace back which words are se-
lected as targets, and which substitute words are
used to disambiguate them, making our method in-
terpretable and transparent. Furthermore, we fine-
tune the lexical substitution model whilst training
the sentiment analysis model by adopting a dy-
namic rewarding mechanism that does not require
gold standard substitution labels. As such, the sub-
stitution model can be adjusted to provide more
appropriate output for the downstream task as well
as the target domain. Our model achieves more
accurate sentiment analysis with explicit lexical-
substitution-based WSD, despite not specifically
trained on WSD and sentiment parallel datasets.
Since the disambiguated word senses are repre-
sented as the lexical substitutions of the original
words and an explainable encoder is used for re-
trieving the most contributing words, the neurosym-
bolic sentiment inference process is more inter-
pretable for humans compared to black-box mod-
els.

Our model is examined with three publicly avail-
able datasets from movie review, finance, and Twit-
ter domains, outperforming strong baselines by
1.23% on average. The contributions of our work
are twofold: (1) We propose a neurosymbolic senti-
ment analysis framework that leverages WSD as an
auxiliary lexical substitution task, achieving state-
of-the-art performance on our examined sentiment
analysis datasets from different domains; (2) We
design a transparent mechanism to select WSD tar-
get words, based on a) the importance of words to
the learning and inference of a downstream task,
and b) word sense diversity.

2 Related Work

Word Sense Disambiguation is a task that assigns
the appropriate meaning to an ambiguous word
according to its context. Recent WSD systems at-
tained F1 scores higher than 80% on the benchmark
datasets (Song et al., 2021; Bevilacqua and Navigli,
2020; Barba et al., 2021a,b), which is regarded as
the estimated human performance since it is the
highest inter-annotator agreement (Edmonds and
Kilgarriff, 2002; Palmer et al., 2007). However,
research on the application of WSD systems on
downstream tasks is limited. Pu et al. (2018) uti-
lized clustering algorithms to obtain sense embed-
dings by inferring from the similarity of the context
vectors of a target word. The heavy requirement for
disambiguating every homographs prior to down-
stream applications makes their method less fea-
sible in many real-world situations. Campolungo
et al. (2022) achieved the disambiguation of word
sense in neural machine translation by leveraging
a multilingual WSD system to establish a sense-
tagged parallel corpus. Nonetheless, their approach
relied on cross-lingual word alignments for reliable
annotations, meaning that it cannot be adopted by
other types of downstream tasks.
Sentiment Analysis can be generally defined as
the task that determines if a piece of text expresses
positive, negative, or neutral opinion (Mao et al.,
2023c). Word sense information has been applied
in sentiment analysis in the form of sentiment-
annotated lexicons (Devitt and Ahmad, 2007;
Ohana and Tierney, 2009; Hung and Lin, 2013;
Nassirtoussi et al., 2015), such as SentiWordNet.
However, these methods incorporate the sentiment
information of a word without disambiguating its
word sense according to the context, but resort-
ing to the emotional score of the most frequent
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Figure 1: Architecture of the proposed disambiguation framework for sentiment analysis. A dotted line means
backpropagation. Green block means that the original word is replaced by a word provided by the lexical substitution
model. The darker the green, the higher probability it is assigned to by the model. Orange block indicates the words
with top ranking attention scores produced by HAN.

sense, or the average score of all senses. Addi-
tionally, the main objective of this approach is to
identify sentimental words in a sentence, instead
of disambiguating polysemous words that might
affect model predictions. Hung and Chen (2016);
Farooq et al. (2015); Liu et al. (2018) attempted
to disambiguate according to target domain and
context, but either costed extensive human labour,
or fail to incorporate word senses explicitly and
transparently.

To address these limitations, our neurosymbolic
framework aims to identify ambiguous target words
in the context and replace them with clarifying ones
automatically, making them interpretable. We also
leverage a dynamic rewarding mechanism so that
the substitutions can be fine-tuned to better serve
the downstream task and the text domain.

3 Task Definition

In this work, we regard word sense ambiguity as the
potential cause of errors in a downstream task, e.g.,
sentiment analysis. Inspired by the work of Mao
et al. (2023b), we reframe WSD as a lexical substi-
tution task, aiming to replace an ambiguous word
with a synonym that not only represents the true
sense of the original word in the context (Arthur
et al., 2015), but also reduces misclassifications
in the downstream task. Given an input sentence
w = (w1, w2, . . . , wL), we first aim to identify
the target word t that is likely troublesome for

the downstream prediction from w. To resolve
the potential ambiguity, we extract M of its syn-
onyms from WordNet (Fellbaum, 1998) as candi-
dates c = (c1, . . . , cM ), forming the input (s) as

s = <s>, w1, w2, . . . , t, . . . , wL, </s>,
c1, </s>, c2, </s>, . . . , cM , </s>.

(1)

<s> and </s> are special tokens that were defined
by our employed pre-trained language model. The
lexical substitution model should identify the best
candidate from c as the substitute ĉ which retains
the original meaning of t in the context by using
contrast learning. Thus, ĉ is the symbolic represen-
tation of t in context w. Then, the paraphrased in-
put wf = (w1, . . . , ĉ, . . . , wL) is fed into a neural
network classifier to predict a sentiment label. The
objective is that the paraphrased input wf increases
the probability of correct sentiment prediction.

4 Methodology

Our proposed neurosymbolic framework can be
viewed in Figure 1. There are two models in our
framework, namely sentiment analysis and lexical
substitution models. The sentiment analysis model
consists of an encoder, an interpretable attention
module, and multiple feedforward neural networks.
First, through Figure 1 (1) and (2), the original
input is fed into the encoder and the interpretable
attention module to obtain the top I tokens with
the highest attention weights, which contribute the
most to sentiment prediction.
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In (3), the sense diversity of each token is com-
puted as the average distance of the token’s hidden
state to those of its substitution candidates. Then,
through (4), top J tokens with the most diverse
senses are selected as disambiguation targets, be-
cause these target tokens may have very different
senses in different contexts. Subsequently, the pre-
trained lexical substitution model is applied to pro-
vide the best substitution to replace each target
token, as shown in (5) and (6)a. The new input sen-
tence is passed onto the sentiment analysis model
for final prediction ((7)a and (8)a), which is used
for the sentiment model backpropagation ((9)a).

In order to fine-tune the lexical substitution
model to provide better substitutions that improve
the accuracy of sentiment analysis, we adapt a dy-
namic rewarding mechanism (Ge et al., 2022) that
was proposed for multi-task learning. As shown
in Figure 1 (5) and (6)b, for each target word, we
choose the top N candidates. Each of them is seen
as a substitute candidate to calculate the probability
of correct sentiment prediction after the replace-
ment ((7)b and (8)b). Then, each probability is
used to dynamically compute the loss weight when
the corresponding candidate is learned by the lexi-
cal substitution model as a ground truth ((9)b and
(10)b). If the replacement by a candidate leads to a
higher chance of predicting the right sentiment, the
candidate is more likely given a higher rank by the
lexical substitution model. Otherwise, the model
would be less likely to select the candidate as the
best replacement. The important notations used in
this paper are summarized in Table 1. The detailed
training process can be seen in Algorithm 1.

4.1 Sentiment Analysis with Interpretability
Given input sentence w = (w1, . . . , wL), the goal
is to predict the correct sentiment label ỹ. The input
is first fed into a pre-trained encoder:

V = Encoder(w), (2)

where V is hidden states. Next, we aim to find
the tokens that contribute the most to sentiment
inference. We adopt an interpretable attention mod-
ule called Hierarchical Attention Network (HAN,
Han et al., 2022), which effectively encodes hid-
den states with multiple non-linear projections and
ranks the most influential tokens based on attention.
Following the setup of Han et al. (2022), we stack
two blocks of HAN to form our attention module.

q, a = HAN(HAN(V )), (3)

Table 1: Notation table.

Description
L Input sequence length

I
Number of words with top ranking attention
scores to be potential target words

J
Number of words with top ranking diversity
scores to be potential target words

N
Number of candidates used for finetuning lexical
substitution via dynamic rewarding

K
Number of candidates for training lexical
substitution model

w The original input sentence
V The hidden states of w
ỹ The ground-truth sentiment label of w

wf The final input sentence where ambiguous words
in w are substituted

ŷf The predicted sentiment label with wf as input
wl The l-th word in w
al The attention weight of the l-th word in w

watt
i

The word in w with the i-th highest attention
weight

vatti The hidden state of watt
i

M
The number of synonyms of watt

i with the same
part-of-speech that are provided by the WordNet

G The hidden states of the M WordNet synonyms

gm
The hidden state of the m-th WordNet synonyms
of watt

i

di
The average Euclidean distance between vatti

and g1, . . . , gm, . . . , gM
tj The j-th target word in w to be substituted
c A set of candidate words from WordNet.

ĉ
The top N candidates ranked by the lexical
substitution model

ĉj,n The top n-th candidate for replacing tj

wj,n The resulting sentence when replacing tj in w
with ĉj,n

θ̂j,n
The loss weight when ĉj,n is treated as the gold
standard substitution

s The formatted input to lexical substitution model
U The hidden state matrix of the input sentence in s
ul The hidden state of the l-th input word in s
R The hidden state matrix of the candidates in s
rk The hidden state of the k-th candidate in s

τ
The temperature hyper-parameter for training
the lexical substitution model

β
The hyper-parameter for balancing the sentiment
analysis loss and fine-tuning loss

L(sa) The sentiment analysis loss

L(tune)The loss for finetuning the pretrained language
model into a lexical substitution model

L(ls)
j,n

The lexical substitution loss when ĉj,n is treated
as the gold standard substitution

L(ls) The final weighted lexical substitution loss for
backpropagation

where vector q is the yielded hidden state. a is
the attention weights, indicating the contribution
of each token to the final sentiment prediction. To
obtain the sentiment prediction, q is passed on to
two layers of feed-forward neural networks (FNN)
to obtain the probability distribution of sentiment
prediction, with the first one being activated by
ReLU (Agarap, 2018), and the second by softmax.

8775



h = ReLU(FNN1(q)) (4)

ŷ = softmax(FNN2(h)) (5)

We denote the prediction of the sentiment analysis
model as ŷf when the input is wf , which denotes a
paraphrased w where all selected target tokens are
replaced by sense-clarifying substitutions. Thus,
the sentiment analysis loss is computed as:

L(sa) = CrossEntropy(ŷf , ỹ) (6)

4.2 Disambiguation by Lexical Substitution
To obtain a lexical substitution model, we fine-tune
the pre-trained language model ALM (Mao et al.,
2023a)1 with benchmark datasets from McCarthy
and Navigli (2007); Kremer et al. (2014). We use
the candidates from the datasets to formulate our
input s as in Formula 1. The candidate with the
highest score is set as the ground truth substitution
c̃. Given the input s, the model encodes it as:

U,R = ALM(s), (7)

where U = [u1, . . . , uL] is the hidden states of the
input sentence, and R = [r1, . . . , rK ] is the hidden
states of the candidates. We denote the representa-
tion of the target word as ut (t ∈ {1, . . . , L}).

Our training objective is to a) close the distance
between the representation of the ground truth
candidate rk, (k ∈ {1, . . . ,K}) with ut, and b)
push away incorrect candidates representations rj
(j ∈ {1, . . . ,K|j ̸= k}) from ut. Namely, (rk, ut)
will be regarded as a positive pair, while (rj , ut)
will be regarded as a negative pair. We follow the
InfoNCE loss (Oord et al., 2018) to achieve these
goals, which can be formulated as :

L(tune) = −
∑

i

log
exp(d(ut, rk)/τ)∑
j exp(d(ut, ri)/τ)

, (8)

where i ∈ {1, . . . ,K}, τ is a temperature hyper-
parameter, and d(·) is Euclidean distance.

1ALM employed a novel pre-training paradigm, termed
Anomalous Language Modeling. ALM was pre-trained to de-
tect anomalous substituted words from a sequence and retrieve
the original words from a set of candidates that contains a pos-
itive sample (an original word) and multiple hard negative
samples (the synonyms of the original word) via contrastive
learning. Thus, it is more suitable for fine-tuning a lexical
substitution model in our task, because we also aim to detect
appropriate substitution words from a set of candidates.

Algorithm 1: Sentiment analysis with word
sense disambiguation using a dynamic re-
warding mechanism.

1 Initialize sentiment analysis model as Φ, pre-trained
lexical substitution model as Ψ ;

2 Initialize hyperparameters β, I ,J , N ;
3 while not done do
4 Sample a sentence w = w1, w2, . . . , wL;
5 for l=1:L do
6 Compute the attention weight al of token

wl;
7 end
8 watt ← Top I of w ordered by attention weights

a = a1, a2, . . . , aL;
9 for i=1:I do

10 c← all possible candidates with the same
part-of-speech type as watt

i , provided by
WordNet;

11 Compute the average Eulidean distance di
between the hidden states of watt

i and c,
produced by the encoder in Φ;

12 end
13 t = (t1, t2, . . . , tJ)← Top J of watt ordered

by d = d1, d2, . . . , dI ;
14 wf ← w ;
15 for j=1:J do
16 Input w into Ψ to produce top N candidates

ĉj = (ĉj,1, . . . , ĉj,N ) for target word tj ,
ordered by probability;

17 Replace tj in wf with ĉj,1;
18 s← (<s>, w1, . . . , ti, . . . , wL, </s>,
19 ĉj,1, </s>, . . . , ĉj,N , </s>);
20 for n=1:N do
21 wj,n ← Replace tj in w with ĉj,n;
22 Input wj,n into Φ to obtain the

probability of correct sentiment
prediction P (ŷ = ỹ)j,n ;

23 θj,n ← βP (ŷ = ỹ)2j,n ;
24 Compute L(ls)

j,n by feeding s with ĉn
labeled as true substitute into Ψ ;

25 L(ls)
j,n ← θj,nL(ls)

j,n ;
26 end
27 end
28 L(ls) ← L(ls)

1,1 +· · ·+L(ls)
1,N+L(ls)

J,1 +· · ·+L(ls)
J,N ;

29 Compute sentiment analysis loss L(sa) using wf

as input;
30 L← L(sa) + L(ls) ;
31 end

During the inference stage, we choose the can-
didate ĉ whose corresponding hidden state rk is
the most similar to ut, measured by Euclidean dis-
tance:

ĉ = argmin(d(ut, rk)) (9)

We then use the resulting lexical substitution
model to find replacements for the selected target
words in sentiment analysis input. To determine
which words are selected as disambiguation tar-
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gets, we select the top I words in the input with
the highest a produced by Equation 3, forming the
set watt. We denote their corresponding representa-
tions as V att = {vatt1 , . . . , vattI }. For each vatti , we
compute its average Euclidean distance to all of its
candidates’ hidden states. The candidates consist of
WordNet synonyms of all of its possible senses un-
der the same part-of-speech type, which are trans-
formed into hidden states G = {g1, . . . , gM} using
Equation 2. M represents the number of candidates
provided by WordNet. The top J words in watt

with the largest corresponding average distance are
considered to be the ones with the most diverse
word meanings, and thus are more likely to require
disambiguation. We will demonstrate the success
of such an ambiguous word selection method in the
later ablation study (see Section 6.1).

Hence, target words t = (t1, . . . , tJ) are se-
lected by finding each corresponding vattj :

vattj = argmax
i

(
1

M

∑

M

d(vatti , gm)). (10)

Following the lexical substitution benchmarks,
only words whose part-of-speech tags fall under
the general categories of noun, verb, adjective, and
adverb are considered as targets.

4.3 Dynamic Rewarding Mechanism
To fine-tune the lexical substitution model on the
downstream sentiment analysis task without know-
ing WSD gold standard truth, for each target
word tj , we utilize the top N candidates ĉj =
{ĉj,1, . . . , ĉj,n, . . . , ĉj,N} produced by the lexical
substitution model. The new input resulting from tj
being replaced by candidate ĉj,n is denoted as wj,n.
Same with Equation 5, the probability distribution
of a sentiment prediction from wj,n is:

P (ŷ)j,n = softmax(FNN2(h
j,n)), (11)

where hj,n is the hidden states of wj,n outputted by
Equation 4 in the sentiment analysis model.

To adjust the model in such a way that a more
accurate sentiment prediction results in a higher re-
ward for the corresponding substitution output, we
compute the loss weight for ĉj,n being the correct
substitution prediction as:

θj,n = βP (ŷ = ỹ)2j,n, (12)

where β is a hyperparameter for balancing the sen-
timent analysis and lexical substitution losses, ỹ is
the ground truth sentiment label as defined above.

Dataset Split # Samples
SemEval 2007 Task 10 - 2,010
CoinCo - 15,629

Rotten Tomatoes
Train 8,530
Dev 1,066
Test 1,066

Financial PhraseBank - 4,846
STS-Gold - 2,026

Table 2: Datasets used for experiments.

We formulate the input sj to lexical substitution
model with sentence w and candidates ĉj , using
Formula 1. Similar to Equation 8, the loss (L(ls)

j,n )
of the lexical substitution model when ĉj,n is con-
sidered as gold standard is computed as follows:

L(ls)
j,n = −

∑

i

log
exp(d(ut, ĉj,n)/τ)∑
j exp(d(ut, ĉj)/τ)

. (13)

Finally, the total loss is computed as:

L = L(sa) + θ1,1L(ls)
1,1 + · · ·+ θJ,NL(ls)

J,N . (14)

5 Experiments

5.1 Datasets

To fine-tune the pretrained lexical substitution
model, we combined SemEval 2007 Task 10 (Mc-
Carthy and Navigli, 2007) and CoinCo (Kremer
et al., 2014). The former consists of 2,010 example
sentences for 201 polysemous words. The latter
contains 2,474 sentences with multiple words to
be substituted. We used 70% of the concatenated
dataset for training, 30% for testing.

For sentiment analysis, we used three datasets
from different domains: Rotten Tomatoes (Pang
and Lee, 2005) consists of 5,331 positive and 5,331
negative sentences collected from Rotten Toma-
toes movie reviews. Financial PhraseBank (Malo
et al., 2014) contains 4,846 sentences from English
financial news, each labeled as negative, positive,
or neutral. As the dataset has no standard split, We
adopted a split of 70% and 30% for the training and
testing sets. STS-Gold (Saif et al., 2013) contains
2,026 tweets, annotated as negative or positive. As
the dataset has no standard split, We adopted a split
of 90% and 10% for the training and testing sets.
Details of the datasets are listed in Table 2.

5.2 Baselines

Since we aim to improve a sentiment analysis clas-
sifier with explicit WSD in a neurosymbolic fash-
ion, vanilla RoBERTa-large (Liu et al., 2019) is
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considered as the most direct baseline, because we
also used it for sentiment classification. To put our
model’s performance into perspective, we further
include published baselines with the highest re-
ported accuracy on the experiment datasets, which
consist of various pre-trained language models fine-
tuned on the target dataset, i.e., FinBERT (Araci,
2019), DeBERTa (He et al., 2020; Sileo, 2023);
and ones trained with additional resources, namely,
DeBERTa+tarksource (Sileo, 2023) which is pre-
trained on a unified dataset for 500 English tasks,
and SenticNet 7 (Cambria et al., 2022) which is a
XLNet enhanced by sentiment knowledge.

5.3 Setups

To obtain the lexical substitution model, we fine-
tune ALM with the lexical substitution datasets for
20 epochs with a batch size of 20 and a learning
rate of 1e-8. The pre-trained model we used as the
encoder for sentiment analysis is RoBERTa-large.
The hidden size for both models is set to 1024. We
use the NLTK part-of-speech tagger (Bird, 2006)
to label the sentiment analysis input.

To train our proposed framework, we adopt
I = 5, J = 2, K = 15, N = 3, τ = 0.05,
and β = 0.0001. We set the learning rate to 1-
e6. The models are trained for 50 epochs with a
batch size of 10, using early stopping. We used
Adam (Kingma and Ba, 2014) as the optimizer. Ex-
periments are run on RTX A6000 GPU. Following
the setups in the baselines, we adopt accuracy as
an evaluation metric.

6 Results

We compare our model with the baselines in Ta-
ble 3. Our model outperforms existing models with
the best-published results, achieving state-of-the-
art performance on the three datasets. Compared
to the RoBERTa baseline, our model is able to
improve the accuracy of sentiment analysis on cor-
pora from different domains to varying extent. We
hypothesize that the extent of improvement is de-
pendent on domain types. For instance, Twitter
language is informal and brief, with frequent use
of short homographs. Thus, the integrated disam-
biguation model is able to obtain the most signifi-
cant increase of 1.91% accuracy on STS-Gold. In
the financial domain, metaphors and less common
word senses are commonly used, accounting for
our 1.23% gain on Financial PhraseBank.

Movie reviews, on the other hand, often use

Model RT FPB STS-Gold Avg
DeBERTa 90.42 84.48 - 87.45
+tasksource 90.99 85.20 - 88.10
FinBERT - 86.00 - -
SenticNet 7 - - 90.08 -
RoBERTa 91.31 87.09 97.14 91.85
Ours 91.87* 88.32* 99.05* 93.08

Table 3: Comparisons with baselines. RT stands for
Rotten Tomatoes. FPB stands for Financial PhraseBank.
Bold font denotes the best results. The RoBERTa base-
line was implemented by us. * denotes the improvement
is statistically significant (p < 0.01 on a two-tailed t-
test), against the highest baseline score. Our results are
averaged over 5 runs.

standard expressions that are semantically clearer.
Hence, our model obtains a marginal increase
of 0.56% on Rotten Tomatoes. Despite the im-
provement being marginal on average, i.e., 1.23%,
we would like to highlight that this improve-
ment is significant considering the context of error
propagation from the lexical substitution model.
Our framework consistently demonstrates improve-
ments across all datasets, substantiating its ability
to achieve higher gains in accuracy while minimiz-
ing any potential loss. Furthermore, we can inter-
pret the WSD outcomes and the sentiment analy-
sis decision-making process before and after lexi-
cal substitutions from the proposed neurosymbolic
framework. We will demonstrate the interpretabil-
ity of the framework in Section 6.2.

6.1 Ablation Study

To prove the effectiveness of each component in
our proposed framework, we compare with two
variations: w/o WSD, where sentiment prediction
is done by the sentiment analysis model without
any modifications to the input; w/o DR, where the
lexical substitution model is not fine-tuned during
sentiment analysis training. To prove our hypothe-
sis in WSD target word selection, we compare the
proposed framework with two variations: Top-2,
where the top 2 words in the input with the highest
attention weights are automatically chosen as target
words to be disambiguated; Rand, where 2 out of
the most attended 5 words are randomly selected
to be the target words. The comparison of perfor-
mance is shown in Table 4. It can be observed that
our full model outperforms w/o WSD by 0.28% on
Rotten Tomatoes, 1.03% on Financial PhraseBank,
and 1.43% on STS-Gold.

The extent of gains in different domains is in
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Model RT FPB STS-Gold Avg
w/o WSD 91.59 87.29 97.62 92.17
w/o DR 91.40 87.27 96.67 91.78
Top-2 91.60 87.81 97.62 92.34
Rand 89.72 86.30 97.14 91.05
Ours 91.87 88.32 99.05 93.08

Table 4: Ablation study results.

line with our hypothesis in the previous section. It
shows that our disambiguation framework is indeed
able to improve the accuracy of sentiment analysis
by selecting the appropriate ambiguous words and
paraphrasing them into semantically clearer ones.
Our model also achieves higher accuracy than w/o
DR on all three datasets, proving the validity and
effectiveness of our dynamic rewarding mechanism.
Noticeably, without dynamic rewarding and joint
fine-tuning, the performance of w/o DR is weaker
than w/o WSD, showing that dynamic rewarding-
based fine-tuning with data from another task can
effectively alleviate error propagation from lexical
substitution.

Our proposed framework outperforms the Top-2
selection method on all datasets. It proves our as-
sumption that words that are highly diverse in their
senses are more likely to cause ambiguity for sen-
timent prediction. Rand performs the worst on all
three datasets compared to w/o WSD, Top-2, and
our model, indicating i) the necessity of selecting
the appropriate target words to disambiguate so as
not to introduce noise, and ii) the validity of choos-
ing target words based on both their importance to
the decision and their sense diversity level.

6.2 Interpretability Demonstration

Since an interpretable encoder (HAN) is used in
our framework to learn sequential representations,
we can understand which words contribute the most
to a sentiment analysis prediction by visualizing
the attention weights of HAN.

As shown in Figure 2, we conduct a study on
the change of attention weights before and after
paraphrasing. In Figure 2 (a), the words that receive
the most attention in the original sentence are not, a,
sore, etc., among which not has significantly higher
weight. This indicates that the model is mostly
relying on negation to make inference. As not does
not have diverse meaning and a is an article, sore is
selected as target word and replaced with painful.
Our attention module assigns a much higher weight
to the negative adjective after paraphrasing.

This shows that our model is able to find suitable

(a) (b) (c)

Figure 2: The most attended word demonstration before
and after paraphrasing in sentiment analysis predictions.
The lighter the color, the higher the attention weight.

word substitutions that aid the correct sentiment
predictions. From Figure 2 (b), we can observe a
rather evenly distributed attention weights in the
original sentence, meaning that the attention mod-
ule cannot identify the words that significantly af-
fect sentiment. After our framework replaces the
word decreased to fell, the model is able to as-
sign higher weights to the sentiment-loaded phrase
profit fell. From Figure 2 (c), we can see that af-
ter replacing the word mediocre with average, the
sentiment related words including the paraphrased
word and unaware all received higher attention.
By attending to the straightforward paraphrases ex-
pressing opinions, the sentiment analysis model
can yield correct predictions for all three cases.

6.3 Case Study

In Table 5, we study the ability of our framework
to identify and paraphrase ambiguous words into
unequivocal ones. In the first instance, albeit not
affecting the prediction, the word delicious is dis-
ambiguated by our framework into its figurative
meaning delighted instead of its literal one. In the
second instance, the word succeeds has a more pos-
itive word sense equating to win, and a more neutral
one equating to follow. Our framework is able to
paraphrase it into the latter. In the last instance,
the word visibility falls under the word sense of
degree of exposure to public notice in this context.
Our framework correctly paraphrases it into pro-
file, which is the synonym under the same sense in
WordNet. It can be concluded that our framework
can disambiguate word senses in a transparent and
interpretable way for sentiment analysis.
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Setup Content

Original

a delicious and delicately funny look at the
residents of a copenhagen neighborhood
coping with the befuddling complications life
tosses at them.

Paraphrased

a delighted and delicately funny look at the
residents of a copenhagen neighborhood
coping with the befuddling complications life
tosses at them.

Original Le Lay succeeds Walter G++nter and will be
basedin Finland.

Paraphrased Le Lay follows Walter G++nter and will be
based in Finland.

Original
Strong brand visibility nationally and
regionally is of primary importance in home
sales, vehicle and consumer advertising.

Paraphrased
Strong brand profile nationally and
regionally is of primary importance in home
sales, vehicle and consumer advertising.

Table 5: Case study of disambiguation as paraphrasing.

6.4 Error Analysis

Finally, we perform a brief error analysis (Ta-
ble 6). In the first sentence, the model wrongly
paraphrases force into power, because it does not
recognize the multi-word idiom tour de force. It
shows the model’s limitation in understanding the
semantic meaning of infrequent multi-word idiom.
In the second sentence, the word just is wrongly
paraphrased as good, which negatively influenced
the sentiment prediction. This is mainly due to the
part-of-speech tagger wrongly classifying the word
just into a adjective, instead of an adverb. Thus, the
lexical substitution module might be subjected to
error propagation of the part-of-speech tagger and
introduce noise into the input. In the last sentence,
the word skills is paraphrased as science. It is likely
that the model mistakes the word major as a field
of study instead of a student studying a field. Thus,
the substitution makes sense in the local context
the science of calculus major, but not in the whole
context, meaning that the model fails to understand
the semantic meaning of the sentence.

7 Conclusion

In this work, we propose a neurosymbolic frame-
work for sentiment analysis that incorporates the
disambiguation of word senses by identifying and
paraphrasing ambiguous words in the input, which
is realized by leveraging a pre-trained lexical sub-
stitution model. The proposed framework not only
improves the accuracy of sentiment analysis, but
also achieves interpretability by enabling us to trace
back which words are paraphrased and what words
they are replaced with.

Setup Content Label

Original a tour de force of modern
cinema. Positive

Paraphrased
a tour de power of modern
cinema. Positive

Original
Is just at work for the day
-sigh- I have a headache Negative

Paraphrased
Is good at work for the day
-sigh- I have a headache Positive

Original

the skills of a calculus major at
m.i.t. are required to balance all
the formulaic equations in the
long-winded heist comedy who is
cletis tout?

Negative

Paraphrased

the science of a calculus major at
m.i.t. are required to balance all
the formulaic equations in the
long-winded heist comedy who is
cletis tout?

Positive

Table 6: Error analysis. Red indicates errors made by
our proposed framework.

Additionally, to fine-tune the lexical substitution
model to provide better disambiguating substitutes
for sentiment analysis with no ground-truth word
sense labels, we adopt the dynamic rewarding
mechanism to jointly train the sentiment analysis
and lexical substitution models. Experiments
show that our framework is indeed effective in
improving the performance of sentiment analysis,
obtaining state-of-the-art performance on three
corpora from different domains.

Limitations

The framework proposed in this paper have to
be seen in light of some limitations. First, the
performance of sentiment analysis to some extent
depends on a decent-performing pre-trained
lexical substitution model. Currently, polysemous
samples in lexical substitution data are not as
abundant as in WSD data, which might limit its
ability in disambiguating less common polysemies.
Second, the effectiveness of our proposed model
is only tested on English corpora, as it relies
on the sense knowledge from WordNet. The
disambiguation target selection and paraphrasing
methods might work on languages with more
complex segmentation or limited sense lexicon.
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