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Abstract

Previous work has established that a person’s
demographics and speech style affect how well
speech processing models perform for them.
But where does this bias come from? In this
work, we present the Speech Embedding Asso-
ciation Test (SpEAT), a method for detecting
bias in one type of model used for many speech
tasks: pre-trained models. The SpEAT is in-
spired by word embedding association tests in
natural language processing, which quantify
intrinsic bias in a model’s representations of
different concepts, such as race or valence—
something’s pleasantness or unpleasantness—
and capture the extent to which a model trained
on large-scale socio-cultural data has learned
human-like biases. Using the SpEAT, we test
for six types of bias in 16 English speech mod-
els (including 4 models also trained on multilin-
gual data), which come from the wav2vec 2.0,
HuBERT, WavLM, and Whisper model fami-
lies. We find that 14 or more models reveal
positive valence (pleasantness) associations
with abled people over disabled people, with
European-Americans over African-Americans,
with females over males, with U.S. accented
speakers over non-U.S. accented speakers, and
with younger people over older people. Beyond
establishing that pre-trained speech models con-
tain these biases, we also show that they can
have real world effects. We compare biases
found in pre-trained models to biases in down-
stream models adapted to the task of Speech
Emotion Recognition (SER) and find that in 66
of the 96 tests performed (69%), the group that
is more associated with positive valence as indi-
cated by the SpEAT also tends to be predicted
as speaking with higher valence by the down-
stream model. Our work provides evidence
that, like text and image-based models, pre-
trained speech based-models frequently learn
human-like biases when trained on large-scale
socio-cultural datasets. Our work also shows
that bias found in pre-trained models can prop-
agate to the downstream task of SER.

1 Introduction

Recent approaches to many speech tasks rely on
pre-trained models: large models trained to learn
speech representations (multi-dimensional matri-
ces referred to as embeddings) from large-scale
corpora, which can be adapted to a variety of tasks
(Feng and Chaspari, 2020; Niu et al., 2020; Yang
et al., 2021). In computer vision and natural lan-
guage processing, methods called Embedding As-
sociation Tests (EATs) have been used to evaluate
biases in the ways pre-trained models represent so-
cial groups, allowing researchers to identify bias
early in the machine learning pipeline, before it
propagates to downstream tasks (Wolfe et al., 2023;
Wolfe and Caliskan, 2022a,b; Steed and Caliskan,
2021; Guo and Caliskan, 2021; Toney-Wails and
Caliskan, 2021; Caliskan et al., 2016). In this paper,
we present the first intrinsic association and bias
evaluation method for pre-trained models in speech
processing: the Speech Embedding Association
Test (SpEAT).

A SpEAT measures bias related to two social
groups in a speech model, and produces an ef-
fect size d, which when positive indicates that the
speech model favors the social group that humans
also tend to favor. We evaluate the SpEAT first
by testing whether it reveals positive effect sizes,
(congruent with human stereotypes), for biases re-
lated to twelve social groups. The types of bias
that we study have been documented in large popu-
lations, and all involve associations with valence,
a term often used in psychology literature to de-
scribe emotions. Valence is frequently equated
with "pleasantness" or "pleasure," where positive
valence indicates something pleasant and negative
valence indicates something unpleasant (Russell,
1980; Morgan, 2019; Nielen et al., 2009). We study
associations with valence due to its role as a pri-
mary dimension of affect, strong signal in speech
and language, and determinant of how people form
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attitudes (Barrett, 2006; Sharot and Garrett, 2016).
Using the SpEAT, we find that 15 of 16 models
we test show bias for U.S. accented speakers over
non-U.S. accented speakers (where relative to non-
U.S. accented speakers, U.S. accented speakers are
more associated with positive valence than nega-
tive valence ), 15 of 16 models show bias for young
speakers over old speakers, 14 of 16 models show
bias for female speakers over male speakers, 14
of 16 models show bias for European-American
speakers over African-American speakers, and 14
of 16 models show bias for abled speakers over
disabled speakers. Our results indicate that, as with
models trained in other modalities, models trained
on large corpora of speech data also learn human-
like biases.

To understand the potential impact of these bi-
ases, we evaluate whether results found with the
SpEAT are indicative of downstream effects. We
do so by considering the task of Speech Emo-
tion Recognition (SER), which predicts emotions
based on speech (Mohammad, 2022). We compare
SpEAT scores for two social groups to disparities
in a downstream model’s predictions of valence for
speech from the groups.1 We find that social groups
that have positive associations with valence in pre-
trained models also tend to be predicted by down-
stream SER models as more positive in valence:
For 66 of 96 (69%) SpEATs performed, a down-
stream SER model tends to predict speech from the
social group favored in the SpEAT as more posi-
tively valenced than speech from the other group
considered.

As negative valence is associated with anger and
sadness (Morgan, 2019), this could potentially re-
sult in speech from one group of people being
translated as more frequently angry than speech
from another in a speech translation system that
considered emotion when performing translations,
or speech from one group being treated as more
frequently sad than speech from another in a diag-
nostic model used in a mental health setting, two
suggested applications for SER models (El Ayadi
et al., 2011). Beyond showing that biases found in
pre-trained models can propagate, our work adds
to the growing body of evidence showing bias in

1Previous work studying propagation between intrinsic
bias in models and bias in how they perform downstream has
suggested that upstream bias is more likely to be indicative of
downstream bias if the biases are conceptually similar (Steed
et al., 2022; Goldfarb-Tarrant et al., 2021). Because the SpEAT
relates to associations with valence, we choose SER as a
related downstream task.

Automated Emotion Recognition (AER), one of
many issues that have been raised concerning this
area of research (Mohammad, 2022).

Finally, we provide an approach for studying
how the number of stimuli (sample size) used in
an EAT can change its results. EATs performed in
other modalities have used fixed numbers of stimuli
to represent social groups and concepts when mea-
suring bias. To evaluate how an EAT score changes
when differing sample sizes are used, we calculate
bootstrap estimates of the Standard Error (SE) at
different sample sizes (Hesterberg, 2011). The SE
measures how much a statistic would change if it
were calculated repeatedly based on new data, and
lower SE values indicate that there is less uncer-
tainty associated with the statistic. We find that the
SE of the SpEAT decreases sharply as the number
of stimuli used to represent social groups increases,
for example that increasing the number of stimuli
from 2 to 10 can lead to an increase in precision by
a factor of two. Our results show that the number
of stimuli used in an EAT can have a large effect
on the uncertainty of its effect size d.2

2 Background and Related Work

We now survey related work on pre-trained models
in speech processing, as well as work measuring
bias in speech models and models in other modali-
ties.
Pre-Trained Models in Speech Processing Pre-
trained models initially learn from large quanti-
ties of unstructured data, for example corpora con-
taining hundreds of thousands of hours of speech,
and can then be adapted using smaller structured
datasets to a variety of specific tasks (Bommasani
et al., 2021). Pre-trained models used for speech
processing often train on speech samples that are of
variable lengths (Liu et al., 2022a). After initial pre-
training, a downstream model for a specific task
may then be created based on the pre-trained model,
using transfer learning. This is often done using
fine-tuning, whereby slight architectural changes
are made to the model before it is retrained on a
smaller dataset, or feature extraction, which treats
the pre-trained model as a pre-processing step for
a downstream task-specific model (Peters et al.,
2019). Pre-trained models are often transformer
based, and with feature extraction a user extracts
numerical representations of input data, (also called

2Code for this work is available at
https://github.com/isaacOnline/SpEAT
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embeddings), after each layer in the neural network.
The user then employs these embeddings as input
data when training a downstream model for a new
task (Yang et al., 2021; Peters et al., 2019).

Bias in Speech Models Previous research measur-
ing bias in speech processing models largely stud-
ies differences in performance on specific speech
tasks, for data sourced from people of differing so-
cial groups. Social group-based performance com-
parisons exist for Automated Speech Recognition
(ASR) (Tatman, 2017; Tatman and Kasten, 2017;
Koenecke et al., 2020; Feng et al., 2021; Liu et al.,
2022b; Riviere et al., 2021), Speaker Verification
or Speaker Identification (SID) (Hutiri and Ding,
2022; Fenu et al., 2021, 2020; Fenu and Marras,
2022; Chen et al., 2022b; Meng et al., 2022), as
well as a number of other speech tasks (Meng et al.,
2022; Hutiri et al., 2023). Differences in model
performance based on the gender (Tatman, 2017;
Tatman and Kasten, 2017; Chen et al., 2022b; Feng
et al., 2021; Liu et al., 2022b; Hutiri and Ding,
2022; Fenu et al., 2020, 2021; Fenu and Marras,
2022; Riviere et al., 2021), dialect (Tatman, 2017;
Tatman and Kasten, 2017), race (Koenecke et al.,
2020; Tatman and Kasten, 2017; Chen et al., 2022b;
Riviere et al., 2021), age (Fenu et al., 2020, 2021),
city (Koenecke et al., 2020), nationality (Hutiri
and Ding, 2022), and native language (Feng et al.,
2021) of the speaker have been tested. While these
works have established that some speech systems
perform worse for people of different social groups
(depending on the system and group), pre-trained
models have only been studied by testing for per-
formance differences across speech styles in down-
stream models, as by Meng et al. (2022).

Embedding Association Tests EATs are methods
for quantifying bias in representation learning mod-
els, first introduced by Caliskan et al. (2016, 2017).
EATs were originally adapted from Implicit As-
sociation Tests (IATs), extensively validated tests
used for indirectly measuring implicit associations
and bias in humans (Greenwald et al., 1998, 2022).
EATs measure the association of two sets of target
concepts (e.g., European American and African
American) with two sets of attributes (e.g., posi-
tively valenced and negatively valenced stimuli).
EATs often use positive and negative valence as
attributes, due to valence’s role in belief forma-
tion. EATs were originally used for measuring bi-
ases in word embeddings, but have since been used
to study biases in sentence encoders (May et al.,

2019), image encoders (Steed and Caliskan, 2021),
and multimodal vision-language models (Wolfe
and Caliskan, 2022a). These tests have shown that
large-scale socio-cultural data, such as text and im-
ages, can be a source of implicit associations and
biases.

3 Methodology

Building on EATs, the SpEAT measures how a
model’s embeddings of stimuli representing two
target concepts, (for example female and male),
relate to its embeddings of stimuli representing
two attribute concepts (for example positive and
negative valence). After extracting embeddings for
stimuli corresponding to the four different concepts
from a speech model, the SpEAT is carried out by
measuring the relative cosine similarities between
the speech models’ embeddings of samples repre-
senting the four concepts. Let X and Y be the sets
of embeddings representing the target concepts, for
example embeddings derived from speech samples
from female (X) and male (Y ) speakers respec-
tively, and A and B be the set of embeddings repre-
senting the attribute concepts, such as embeddings
derived from speech samples rated as being posi-
tive (A) and negative (B) in valence, respectively.
Similar to other EATs, we present an effect size
metric, the SpEAT d, which shows which of the
target sets, X or Y , is relatively more similar to
the first attribute set, A, than to the second, B. As
EATs were originally based on IATs, the SpEAT d
is based on the IAT D, an adaptation of Cohen’s
d that uses unified standard deviation rather than
pooled standard deviation (Greenwald et al., 2003).
Values of Cohen’s d of 0.20, 0.50 and 0.80 were
originally introduced as being small, medium, and
large (Cohen, 1977).

To calculate the SpEAT d, as for past EATs, first
the mean cosine similarity between a target embed-
ding w and each embedding a ∈ A is calculated,
followed by the mean cosine similarity between
w and each b ∈ B. The difference between these
means is the relative association between each em-
bedding w ∈ X ∪ Y and A and B:

s(w,A,B) = meana∈Acos(w, a)−meanb∈Bcos(w, b)

For example, if w were the embedding of a
speech sample from a male speaker, this differ-
ence in means s would measure how much more
associated the sample was with positive valence
than negative valence. These values for each of
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the target stimuli are then aggregated to construct
the effect size measurement, d. The SpEAT d is
given below, and shows how much closer the em-
beddings in X are to A than B, relative to the
embeddings in Y . The effect size is the same as
that used by Caliskan et al. (2017) and Steed and
Caliskan (2021):

d =
meanx∈Xs(x,A,B)−meany∈Y s(y,A,B)

std_devw∈X∪Y s(w,A,B)

Before cosine distances can be compared, how-
ever, embeddings of target and attribute stimuli
need to be extracted. Pre-trained speech mod-
els, like some of the sentence encoders studied
by May et al. (2019) with the Sentence Embed-
ding Association Test (SEAT), create dynamically
sized embeddings depending on the length of the
sequence fed to the model as input (Radford et al.,
2022; Hsu et al., 2021; Chen et al., 2022a; Baevski
et al., 2020). Because embeddings are compared
using cosine similarity in an EAT, which requires
operands to have the same dimensions, this means
that raw embeddings cannot be used directly. An-
other relevant feature of the pre-trained speech pro-
cessing models we consider, also similar to many
models tested with the SEAT, is that these models
are multi-layered, with different layers providing
information that is relevant to different downstream
tasks (Radford et al., 2022; Hsu et al., 2021; Chen
et al., 2022a; Baevski et al., 2020).

Recent approaches for adapting pre-trained mod-
els to specific tasks based on feature extraction rely
on embeddings from all layers in the pre-trained
model, rather than just a single layer (Yang et al.,
2021; Peters et al., 2018, 2019). Intuitively, embed-
dings from internal layers may contain information
not relevant to the task the model was pre-trained
for, but important for the task the model is being
adapted to. In speech, for example, embeddings
from later layers in HuBERT and WavLM mod-
els have been shown to be more useful for granular
tasks like ASR than embeddings from earlier layers,
while for more speaker-centric tasks such as SID,
embeddings from earlier in the models have been
shown to be useful as well (Chen et al., 2022a). Be-
cause of the similarities in the models they study, as
well as in the way that embeddings from the mod-
els are used, the SpEAT follows the SEAT in how it
handles variable-sized, multi-layered embeddings
(May et al., 2019). While the SEAT uses differing
methods for aggregating embeddings for different

sentence encoders, however, we elect to apply the
aggregation method they propose for ELMo (Peters
et al., 2018) to all models we test. For each stimuli,
this method involves taking the mean embedding
within a layer, then summing these averaged em-
beddings together. We elect to use this aggrega-
tion method because the methods that May et al.
(2019) propose for other models only use embed-
dings from a single layer in a model, which discards
a large amount of information that is sometimes
used when adapting pre-trained speech models to
downstream tasks and can potentially contain bias
(Yang et al., 2021; Chen et al., 2022a). We do test
alternative strategies for extracting embeddings in
Appendix D, however.

4 Data

We now describe the pre-trained models we focus
on, their training data, and relevant features of the
stimuli that we use for evaluating these models.
Pre-Trained Models and Their Training Data To
study pre-trained models, we chose model families
that are either widely used or achieve state-of-the-
art performance on relevant speech benchmarks.
We use multiple models from each family, rather
than merely the largest model, as it is not clear
that models from the same family encode the same
biases, and multiple models from a family are of-
ten used by practitioners—not necessarily just the
largest one. We use 16 models from these families:
three from wav2vec 2.0, three from HuBERT, three
from WavLM, and seven from Whisper. Further
details concerning the models we use appear in
Appendix B.

Of these models, wav2vec 2.0, HuBERT, and
WavLM use Self-Supervised Learning (SSL) and
train exclusively on speech, while models from
the Whisper family, which use Weakly Supervised
Learning (WSL), train on speech paired with tran-
scripts. The wav2vec 2.0, HuBERT, and WavLM
models we use are trained on either Librispeech
(Panayotov et al., 2015) or Libri-Light (Kahn et al.,
2020), speech datasets derived from readings of au-
dio books recorded by volunteers as part of the Lib-
riVox project. In addition to the Libri-Light train-
ing set, some WavLM models were also trained on
additional data: 10,000 hours of audio from the
GigaSpeech corpus (Chen et al., 2021), which is
derived from podcasts, YouTube, and audiobooks,
as well as 24,000 hours of audio from the VoxPop-
uli corpus (Wang et al., 2021a), which is derived
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Target Concepts X and Y Corresponding IAT Mean
IAT D

Data Source Speech Content N

Abled and Disabled
Visual IAT:
(Nosek et al., 2007)

0.45 (Rudzicz et al., 2012) Read Phrases 60

European-American and
African-American

Visual IAT:
(Nosek et al., 2007)

0.37
(Pitt et al., 2007),
(Kendall and Farrington, 2021)

Extemporaneous Speech from
Sociolinguistic Interviews

60

Female and Male
Audio IAT:
(Mitchell et al., 2011)

0.31 (Weinberger, 2015) Read Paragraph 60

Human and
Synthesized

Audio IAT:
(Mitchell et al., 2011)

0.33 (Weinberger, 2015),
Read or
Synthesized Paragraph

57

U.S. and Foreign
Audio IAT: (Pantos and
Perkins, 2012)

0.32 (Weinberger, 2015) Read Paragraph 59

Young and Old
Visual IAT:
(Nosek et al., 2007)

0.49 (Weinberger, 2015) Read Paragraph 58

Table 1: IATs used for evaluating whether the SpEAT captures human-like biases in pre-trained speech models. X and Y
indicate the target concepts, Data Source identifies the source of the speech data used for representing target concepts, and N
indicates the number of stimuli in each target group. Mean IAT D indicates the mean IAT effect size measuring bias in humans,
where a positive IAT D value indicates that the X concept is more associated with positive valence than the Y concept in humans.

from European Parliament events. The Whisper
models we use are either trained on a multilingual
corpus, which consists of 680,000 hours of audio
paired with transcripts in 97 distinct languages, or
on the subset of the multilingual dataset which is
in English.3

Weber (2021) performed an analysis of users
who both had contributed to LibriVox and had cat-
alog names that could be associated with gender,
and identified 45.3% as female and 54.7% as male.
Beyond this we are not aware of any information
documenting the extent to which different speech
styles are represented in the dataset, such as in-
formation on speaking styles. We note however
that similar speech datasets have relied on U.S.
speech. For example, of speech in the Common
Voice English (7.0) dataset (Ardila et al., 2020) la-
beled by accent, about 47% was identified as U.S.
English, compared to the next most frequent ac-
cent, England English, which made up about 16%
of labeled speech (Markl, 2022).4 The People’s
Speech dataset (Galvez et al., 2021), as another
example, is identified by its authors as being made
up primarily of American English. We hypothesize
that U.S. English is also more prominent in the
datasets that were used for training the models we
consider, and following best practices for IATs that
stimuli should be familiar to the entity being tested
(Greenwald et al., 2022), we choose to center our
work on U.S. English speech. We include results
for U.K.-based tests in Appendix G however.
Target and Attribute Stimuli Following previous

3Transcripts in the multilingual dataset are either in the
same language as the speech or in English.

4Common Voice has been used for training similar speech
models such as XLSR (Conneau et al., 2020) and UniSpeech
(Wang et al., 2021b).

EATs, we evaluate the SpEAT by testing for biases
that have been found in humans using IATs and
comparing the results in speech models to those
found in humans (Table 1). We do so using two
types of IATs: 1) foundational tests in the IAT liter-
ature, which were originally performed entirely
using visual stimuli, and 2) audio IATs, which
have explicitly established biases related to speech
styles in humans (Mitchell et al., 2011; Pantos and
Perkins, 2012). For visual IATs, we consider tests
performed by Nosek et al. (2007) due to the large
number of test participants (more than 20,000 peo-
ple each). We focus on tests that use positive and
negative valence as attribute concepts and that use
target concepts for which there are speaking style
differences between social groups, (for example we
adapt an IAT related to age bias, but do not adapt
the test related to weight bias). For audio IATs, we
consider work from Mitchell et al. (2011) and Pan-
tos and Perkins (2012). To our knowledge, these
are the only peer-reviewed publications performing
IATs that both use speech in Standard American
English (SAE) and use positive and negative va-
lence as attribute concepts.

Because Nosek et al. (2007) originally repre-
sented concepts visually, and because audio IATs
from Mitchell et al. (2011) and Pantos and Perkins
(2012) used short samples which may not fully
capture variations in accents (for example record-
ings of speakers saying individual words), we adapt
these tests by using alternate stimuli to represent
the intended concepts.5 To do so we follow guid-

5For audio IATs, in addition to SpEAT results for tests
based on the adapted stimuli, we also include results based
on the original stimuli that were tested on human subjects
in Appendix E. We include an alternate set of stimuli for
the Abled and Disabled test as well in Appendix E, which
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−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Young and Old

U.S. and Foreign

Human and Synthesized

Female and Male

EA and AA

Abled and Disabled SpEAT d for
Individ. Model

Mean SpEAT d

Mean IAT D

Figure 1: Each gray square corresponds to a bias test using embeddings from a single pre-trained model. Pink square refers to
mean across all models, and blue triangle refers to mean IAT D for bias measured in humans. A positive SpEAT d indicates
that in the model’s embeddings, speech samples from the first target group (e.g. abled speakers or European-American (EA)
speakers) are relatively more associated with positive valence over negative valence than samples from the second target group
are (e.g. disabled speakers or African-American (AA) speakers). A SpEAT d with the same sign as the IAT D indicates that the
speech model tends to favor the group that humans also tend to favor. 14 or more (out of 16) models show bias results that are
congruent with biases found in humans regarding ability, race, gender, age, and accent.

ance from Greenwald et al. (2022) by selecting
stimuli that are easily distinguishable. All stimuli
that we use are in U.S. English (excluding the stim-
uli used to represent the concept of foreign accent).
To ensure that differences between the stimuli rep-
resenting the target concepts in a test are only due
to differences in these concepts, and not due to
another factor, we ensure that speech samples be-
tween the two target groups are matched. Stimuli
are matched on gender as well as approximate age,
with the exception of the female and male test,
which is not matched on gender, the young and old
test, which is not matched on age, the human and
synthesized test, which is not matched on age,6 and
the abled and disabled test (for which age infor-
mation was not made available for speakers). All
tests, other than the test comparing speech from
European-American speakers and from African-
American speakers (which uses extemporaneous
speech) are also matched in speech content, and
involve phrases, sentences, or paragraphs that are
repeated across conditions. Further details on the
target stimuli chosen, as well as on the matching
procedures used, can be found in Appendix C.7

represents the target concepts using short phrases.
6Synthesized speech is generated with Microsoft SAPI 4.0,

which contains the synthetic voices originally employed for
evaluating bias in humans. We use this generator in order to
ensure that the biases we measure in speech models relate to
the same concepts as the biases we compare to in humans.
Each voice is Microsoft SAPI 4.0 is labeled with a gender or
a gendered name that the voice is intended to represent, and
we use these labels to ensure that the set of speech samples
we use is balanced on gender. As of submission, code for the
generator is available at https://github.com/TETYYS/SAPI4.

7To ensure that differences in associations with valence in
the European-American and African-American test are not due
to differences in semantics, we test whether the speech content
from one social group tends to show more positive valence

For attribute stimuli, we use speech from the
Morgan Emotional Speech Set (MESS) (Morgan,
2019), a corpus of 1,800 semantically neutral
recordings made by six Caucasian actors, aged 19-
21. The Morgan Emotional Speech Set is the only
publicly-available corpus of which we are aware
that contains SAE speech rated on valence. Voice
actors were native speakers of American English,
evenly split on gender, and were asked to read
sentences while portraying one of four categorical
emotions—happy, sad, angry, or calm. The record-
ings were then rated on valence by 10 listeners who
were aged 19-28 and evenly split on gender. To
ensure that differences in association with positive
and negative valence are not due to differences in
the speakers whose speech is used to represent the
valenced concepts, we ensure that each speaker is
represented equally in each valence pole. We se-
lect the 10 recordings from each speaker that have
the highest average valence ratings to represent
positively valenced speech, and the 10 recordings
from each speaker that have the lowest average
valence ratings to represent negatively valenced

than speech content from the other. We pass transcripts for
the speech from European-American and African-American
speakers through five commonly used sentiment analysis tools
(Barbieri et al., 2020, 2022; Loureiro et al., 2022; Hutto and
Gilbert, 2014; Elias, 2022), then use a Welch’s unequal vari-
ances t-test to evaluate whether the sentiment scores differ
by race on average (Delacre et al., 2017; West, 2021). Each
sentiment analysis tool gives three scores (negative sentiment,
neutral sentiment, and positive sentiment); VADER also gives
a compound score. Using the typical p = 0.05 threshold,
across all 16 scores output by these models, only one signifi-
cant difference is found: the positive sentiment score given by
the model from Loureiro et al. (2022) (p = 0.02). In this case,
however, the social group that is scored higher on positive
sentiment for semantics is not the one that tends to be favored
by the speech processing models.
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U.S. and Foreign

Human and Synthesized

Female and Male

EA and AA

Abled and Disabled Cohen’s d
for Individ.
Downstream
Model

Mean SpEAT d
for Upstream
Models

Mean Cohen’s d
for Downstream
Models

Figure 2: Comparison of bias found in pre-trained model using SpEAT to bias found in downstream SER model. Gray circles
correspond to a bias test using an individual downstream SER model, and yellow circles show mean bias across downstream
SER models. In 66 of the 96 (69%) tests performed, the group more associated with positive valence by the pre-trained model is
also more associated with positive valence by the downstream SER model.

speech. This results in 60 samples representing
positive valence and 60 samples representing nega-
tive valence.

5 Evaluation and Results

We provide three evaluations of the SpEAT. First,
we test whether it captures human-like biases in
speech models by comparing results found in pre-
trained models using the SpEAT to results found in
humans using IATs. Second, as the SpEAT is de-
signed for pre-trained models that are often adapted
to other tasks, we also evaluate the method by test-
ing whether these biases propagate, and whether
biases found in models using the SpEAT are in-
dicative of biases in downstream models. Third,
we measure how much uncertainty is associated
with the SpEAT effect size by studying how its SE
varies when different numbers of stimuli are used
to represent target concepts.
Comparison to Human Biases Similar to other
EATs, our first evaluation of the SpEAT is to test
whether it detects biases in speech models using
ground truth data from human biases (Caliskan
et al., 2017; Steed and Caliskan, 2021). We com-
pare the direction of the SpEAT d to the direction
of the mean IAT D among humans for a number
of well documented biases to check for stereotype-
congruence. For each speech model discussed in
Section 4, we calculate the SpEAT d for each bias
in Table 1. All IAT D values we compare to are
positive, meaning that humans showed more of
an association between the first target group and
positive valence than between the second target
group and positive valence. SpEAT d values for
the 16 models we test are displayed in Figure 1.
If the SpEAT were able to find human-like biases
in pre-trained models in speech, we would expect
SpEAT d values to be identical in sign to the mean

IAT D values given in Table 1. All IAT D values
that we compare to are positive, and range between
0.31 and 0.49. Of the tests we perform, 79 out of
96 (82%) have positive SpEAT d values, reflecting
the same biases recorded in society. Results vary
depending on the test, however: only 6 of 16 mod-
els show bias against synthetic voices, while 14 or
more models show stereotype-congruent biases for
all other tests.8

There does appear to be a slight model family
effect, with models in the same family having some-
what of a tendency toward similar SpEAT d values
concerning a given social group. Performing a
two-way ANOVA with the SpEAT d value as de-
pendent variable and social group and model family
as independent variables, we find that the interac-
tion between model family and social group is just
below the typical p=0.05 significance threshold,
(p=0.048). The main effect of model family is not
significant, however, suggesting that it is not the
case that SpEAT d values for a family tend to be
located in the same area across all social groups.
For example, Whisper SpEAT d values tend to be
similar to one another in the African-American
and European-American test, but Whisper SpEAT
d values for the African-American and European-
American test do not tend to be similar to Whisper
SpEAT d values from the Young and Old test.
Bias Propagation to Speech Emotion Recogni-
tion We further evaluate the SpEAT by testing
whether SpEAT d values for a pre-trained model
are related to bias in the downstream task of SER,
which involves predicting emotions associated with
speech (Mohammad, 2022). Using an architecture
from Yang et al. (2021) designed for adapting pre-

8Previous EATs have also reported p-values for a related
Null Hypothesis Significance Test, which we also report in
Appendix A.
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trained models to downstream tasks, we adapt each
of the 16 pre-trained models to predicting valence
in the full MESS dataset (consisting of 1,800 sam-
ples) which is the only publicly available corpus of
SAE labeled for valence of which we are aware. We
train three separate downstream models for each
pre-trained model.9 We then predict the valence of
speech stimuli that were introduced in Table 1, for
example stimuli from abled and disabled speakers,
and calculate Cohen’s d for the predicted valences
for each pair of target concepts. We consider dif-
ferences in standardized mean predicted valence
between the two groups to be a bias due to the
matched nature of the stimuli.

As shown in Figure 2, we find that SpEAT d
values favoring one target group tend to align with
speech from the favored target group being pre-
dicted as higher in valence: In 66 of the 96 (69%)
tests performed, the group more associated with
positive valence by the pre-trained model is also
more associated with positive valence by the down-
stream SER model. We also note that in all tests
excluding that related to human and synthesized
speech, the average Cohen’s d across all 16 speech
models is in the same direction as the average
SpEAT d across the models.
Uncertainty of SpEAT d Our final evaluation of
the SpEAT involves quantifying the uncertainty as-
sociated with SpEAT d values when different num-
bers of stimuli are used to represent target concepts,
in order to evaluate the extent to which SpEAT ef-
fect sizes might differ if they were recalculated
based on similar datasets. We do so by estimating
the SE for each SpEAT d value at varying sample
sizes. The SE of a statistic measures how much the
statistic will vary if it is calculated repeatedly based
on new data. Lower values indicate that the statis-
tic will vary less, and that there is less associated
uncertainty. We estimate the SE using bootstrap-
ping (Hesterberg, 2011), where we sample with
replacement from the original dataset, repeatedly
calculate the statistic, then calculate the sample
standard deviation of these bootstrapped statistics.
We perform resampling to match the original sam-
pling strategy used for each dataset, (for example,
in the abled and disabled test where each individual
stimuli from a disabled speaker was matched with
an individual stimuli from an abled speaker saying
the same phrase, we resample by pair) (Hesterberg,

9Full details on the training process for downstream mod-
els is provided in Appendix F.
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Figure 3: SE for SpEAT d when different numbers of stimuli
are used to represent each target concept. Lower SE indicates a
more precise estimate. Each point represents a single bootstrap
estimate based on a single number of target stimuli, type of
bias, and speech model. Orange line indicates average SE
at each number of stimuli (across types of bias and speech
models).

2011). For each bias test and speech model, we
calculate multiple bootstrap estimates of the SE,
using different numbers of target stimuli for each.
This allows us to study how the SpEAT’s uncer-
tainty changes when more or less stimuli are used
to represent the target concepts. Each SE estimate
is based on 10,000 bootstrap resamplings. Results
in Figure 3 show that the SE decreases sharply as
the sample size increases: the average standard er-
ror when two stimuli are used per target group is
0.75, the average standard error when 10 stimuli
are used is 0.33, and the average standard error
when 60 stimuli are used is 0.12.

6 Discussion

The results in Figure 1 show that pre-trained speech
processing models trained on large corpora of
speech data, like those trained on large corpora of
image or text data, can easily learn human-like bi-
ases related to gender, race, ability, age, and accent.
Work in computer vision has suggested that biases
detected by EATs may arise from co-occurrence
in the training data (Steed and Caliskan, 2021),
and we hypothesize that co-occurrence may con-
tribute here as well, for example if speakers who
use one speech style tend to more frequently ex-
press positive valence than speakers who use other
speech styles in the training set. We also hypothe-
size that the wide dispersion in the test comparing
human and synthesized speech may be related to
frequency as it is not clear that synthesized speech
is contained in any of the pre-training corpora that
the models we consider were trained on.
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Beyond just identifying that biases can be
learned from data in a new modality, however, this
work also identifies a new means of representing
target concepts. In using speaking styles to rep-
resent concepts, rather than names or words as in
text-based models, we’ve shown that not only do
models demonstrate bias based on language con-
tent, but also based on how, and by whom, it is
delivered. The data used for training models in
computer vision, natural language processing, and
speech processing is inherently multi-faceted—it
does not connect to social groups in just one way.
This data is produced by people who belong to cer-
tain social groups; it may be about people of certain
social groups; it may be recorded by people of cer-
tain social groups; and it may also have meaning
to people of certain social groups. Our results sug-
gest that, at least in speech processing, models are
able to learn associations beyond just content, and
raises the question of whether there are differential
associations related to the provenance of text and
image data as well. Would text of similar meaning,
but written by people of different social groups,
have different associations with valence?

Beyond adding further evidence for bias in AER
(Kiritchenko and Mohammad, 2018), our exper-
iment with SER models also adds evidence that
biases in pre-trained models can propagate down-
stream. The biases that we test for in upstream
and downstream models are connected in that they
both involve valence—in the upstream model the
SpEAT tests for associations with valence, while
in the downstream model we measure bias using
standardized differences in predicted valence be-
tween speech samples from people of differing so-
cial groups (which have been matched using the
procedure in Section 4). Studying the relationship
between intrinsic bias in embeddings measured us-
ing an EAT and performance bias in downstream
tasks using a variety of performance metrics, tasks,
and models, Goldfarb-Tarrant et al. (2021) find that
the relationship between the two biases is mostly
uncorrelated. They do, however, find that one of
two models they test shows a slightly positive rela-
tionship between intrinsic bias and bias in a concep-
tually related downstream task. Work by Steed et al.
(2022) similarly finds a slight connection between
upstream and downstream bias in one of the two
tasks they test, and Ladhak et al. (2023) find that
when considering name-nationality bias, abstrac-
tive upstream models can pass bias on to a down-

stream task. Considering these works together, our
results add more evidence that there can be a rela-
tionship between upstream and downstream bias
when the two biases are related in concept.

Our work calls attention to the need for detailed
study of bias mitigation techniques in pre-trained
speech processing models. While we are not aware
of any technical solutions for mitigating implicit
bias in pre-trained speech models, work by Meng
et al. (2022) has tested the effect of the makeup
of the training set on performance biases observed
in downstream tasks. Their results suggest that al-
tering dataset composition is likely not a complete
solution to bias in pre-trained models, however.
It is possible that methods that have previously
been proposed for mitigating bias in other modali-
ties may be useful for managing the bias that has
been shown in speech. Strategies that have been
explored in computer vision and natural language
processing include oversampling the training set
to make it more representative of social groups;
adversarial training, whereby in learning a task
the model also learns to explicitly ignore demo-
graphic information; and embedding modification,
whereby the geometry of the embeddings is altered
in an attempt to remove information related to de-
mographics (Wang et al., 2020; Sun et al., 2019).

7 Conclusion

In this paper we contributed the SpEAT, a novel
method for measuring bias in pre-trained speech
processing models. We used the SpEAT to study
state-of-the-art pre-trained speech models which
are likely to have a wide impact on a variety of
speech processing tasks. We tested for six cate-
gories of bias in 16 pre-trained models, and found
consistent biases in how speech samples from
speakers of different ages, races, genders, and abil-
ities were associated with speech samples rated on
valence by human listeners. We also showed that
biases detected with the SpEAT propagated to the
downstream task of SER, as a pre-trained model
displaying bias toward a group was correlated with
bias in downstream models adapted to SER. These
findings imply, first, that association-based biases
are present in a larger number of modalities than
had previously been known, and second, that up-
stream bias may propagate to downstream bias,
when the two biases are connected.
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8 Limitations

In designing our work, we elected to focus on state-
of-the-art and popular speech processing models,
and to validate the SpEAT using biases relating
to speech styles that have previously been doc-
umented in humans with IATs. The biases we
studied concern social characteristics with wide
applicability, such as race, gender, age, and abil-
ity, however they do not capture the full extent
of biases that may be contained in speech models.
While the SpEAT does allow for the future study of
biases related to a wider set of social groups, more
consideration and data will be needed for adapting
the test to quantify biases related to, for example, a
wider range of gender identities or ethnicities.

Our results may be impacted by the 120 speech
samples that were used to represent positive and
negative valence, which, while balanced on gender,
was provided entirely by six younger Caucasian
speakers and rated entirely by 10 younger listeners
whose race information was not given (Morgan,
2019). As positive and negative valence were both
represented by speech from the same speakers (and
rated by the same listeners), it is at least clear that
race and age-based associations are not due to dif-
ferences in the races and ages of speakers used for
each valence pole. While we are not aware of a
publicly-available dataset of SAE with the neces-
sary information to evaluate whether the SpEAT
d is affected by the demographics of people used
to create the attribute stimuli, we look forward to
future work in this direction.

9 Ethics Statement

The central focus of this work is evaluating the
extent to which pre-trained speech processing mod-
els contain intrinsic biases and if these biases may
propagate downstream. We recognize that metrics
are not solutions in and of themselves, and can even
be used to propagate bias if deployed in a harm-
ful manner (for example if practitioners measure
bias and then purposefully select biased models for
downstream applications). We believe, however,
that detecting and measuring bias plays an impor-
tant role in raising awareness, avoiding harmful
impacts, and studying the science of bias.

While we study the connection between bias
in a pre-trained model and bias after the model
has been adapted to SER, we would like to note
that bias is just one of many potential issues with
SER. SER may purport to capture the inner state

of the speaker, but is at best only able to capture
the emotion being conveyed, or the emotion being
perceived by the annotator (Mohammad, 2022).
Furthermore, even well defined and accurate SER
runs the risk of setting and enforcing norms for
how emotions should be expressed, being used for
emotional manipulation, and degrading privacy and
autonomy.
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A Statistical Significance of SpEATs

Along with an effect size metric d, many prior
works concerning EATs also include results from
a Null Hypothesis Significance Test (NHST)
(Caliskan et al., 2017; Steed and Caliskan, 2021;
May et al., 2019). This NHST tests the null hypoth-
esis that the EAT d for a model and set of concepts
is equal to 0 (or equivalently that stimuli represent-
ing the first target concept and stimuli representing
the second target concept are equal in terms of their
relative distances to stimuli representing the two
attribute concepts). The NHST tests this null hy-
pothesis against the alternate hypothesis that the
EAT d is greater than 0 for a model and set of
concepts.

We include results from this NHST in Figure 4.
We find that 63 of 96 tests (66%) are significant
at the α = 0.01 level. Because performing such
a large number of NHSTs in unison increases the
probability of accidentally rejecting a true null hy-
pothesis at least once, we also perform a Bonferroni
correction for multiple comparisons. Bonferroni
corrections make the threshold required to claim
significance in individual tests more strict, lower-
ing the probability of accidentally rejecting a true
null hypothesis in any individual test. We find that
46 of the 63 tests (73%) that were significant at the
α = 0.01 level remain significant after the correc-
tion.

B Further Details of Pre-Trained Speech
Models

Below, we provide further details concerning the
pre-trained speech models that we evaluate bias in.

B.1 wav2vec 2.0
We test wav2vec 2.0 (Baevski et al., 2020), a speech
representation learning framework originally pub-
lished in 2020, due to its wide usage. As of submis-
sion in June of 2023, wav2vec 2.0-based models
make up seven of the ten most downloaded ASR
models over the last month in HuggingFace’s trans-
formers library. In the wav2vec 2.0 family, we use
the non-finetuned wav2vec 2.0 Base and wav2vec
2.0 Large (both trained on Librispeech (Panayotov
et al., 2015)), as well as the non-finetuned wav2vec
2.0 Large (LV-60), (which was trained on Libri-
Light (Kahn et al., 2020)). During the pre-training
phase, wav2vec 2.0 models are trained using a con-
trastive loss to identify continuous sequences of
audio. The model takes wav files as input, splits
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Figure 4: Statistical significance of SpEATs. We find that 63 of 96 tests (66%) are significant at the α = 0.01 level.
Of the tests significant at the α = 0.01 level, 46 (73%) are also significant after a Bonferroni correction for multiple
comparisons.

them into a sequence of chunks, embeds each of
the chunks in latent space using a set of feature
encoding layers, then masks some elements in the
sequence of latent representations. The latent rep-
resentations are contextualized using a set of se-
quence encoding layers, and the model is then
tasked with identifying the correct masked chunk
of sound from a set of random distractor samples,
using the chunks that came prior in the sequence
as context.

Architecturally, the feature encoding portion of
the model, which operates on each element in the
sequence of audio chunks individually, contains
seven blocks. Each block contains a temporal
convolution step, a layer normalization step, and
a Gaussian Error Linear Unit (GELU) activation,
which use 512 channels, strides of (5,2,2,2,2,2,2)
and kernel widths of (10,3,3,3,3,2,2). The sequence
encoder portion contains transformer blocks - 24
blocks in the largest version of the model, each
with 16 attention heads. We take embeddings from
the end of each transformer block (as well as from
before the first transformer block).

B.2 HuBERT

Hidden-Unit BERT (Hsu et al., 2021) (HuBERT)
is a current open source state-of-the-art framework
for learning representations of speech data. A
fine-tuned HuBERT model achieves the first-best
and third-best score of all open source models on
two widely-used benchmarks for measuring per-
formance in ASR, according to Papers With Code.
These benchmarks, the LibriSpeech (Panayotov

et al., 2015) test-other and test-clean datasets, mea-
sure the Word Error Rate (WER) for a clean speech
set and a noisy speech set, respectively. (WER
being the mean edit distance, at the word level,
between predicted and true transcriptions). In the
HuBERT family we use all available pre-trained
models that were not finetuned: Base, Large, and
Extra Large. The Base version of HuBERT was
trained using Librispeech, while the larger versions
were trained using Libri-Light. In addition to its
performance on LibriSpeech, HuBERT Large is
currently ranked only beneath WavLM models in
the public SUPERB Challenge, which measures
speech representation models on how well they
adapt to a battery of downstream tasks, including
ASR, ST, and speaker diarization.10

HuBERT inherits much of its architecture from
prior unsupervised speech models, but also incor-
porates a pseudo-labeling component adopted from
the vision model DeepCluster (Caron et al., 2018).
Like its predecessors wav2vec (Schneider et al.,
2019) and wav2vec 2.0 (Baevski et al., 2020), Hu-
BERT contains a feature encoder portion, for learn-
ing individual representations of sequenced snip-
pets of sound, followed by a sequence encoder
portion, used to build contextualized representa-
tions from the individual representations. Rather
than try to predict masked representations directly,
HuBERT’s loss involves the prediction of psuedo-
labels, which it creates itself, using k-means clus-
tering. Unlike wav2vec and wav2vec 2.0 models,

10The leaderboard can be found at
https://superbbenchmark.org/leaderboard
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HuBERT uses cross-entropy loss for pre-training,
to predict the psuedo-label that the next snippet be-
longs to. It alternates between generating clusters
and predicting those clusters.

Each layer in the feature encoder blocks of Hu-
BERT consists of a temporal convolution, a layer
normalization (Ba et al., 2016), and a GELU acti-
vation (Hendrycks and Gimpel, 2016). There are 7
layers in the feature encoder portion, each of which
has 512 channels. The sequence encoder portion
of HuBERT models contain between 12 and 48
transformer blocks and between 8 and 16 attention
heads, depending on the model size (Hsu et al.,
2021). During pre-training, a projection layer is
applied to the output from the sequence encoder
portion of the model, as well as a code embedding
layer. For extracting representations from HuBERT
models, we take embeddings from the end of each
transformer block, relying on the embedding ex-
traction implementation published with the original
paper.

B.3 WavLM

WavLM (Chen et al., 2022a) is another family of
state-of-the-art representation learning models for
speech data. As of this paper’s submission WavLM
is ranked first on the public SUPERB Challenge,
implying that its pre-trained weights adapt well
to a wide variety of speech tasks. In the WavLM
family, we also use all available versions: Base,
Base+, and Large. WavLM Base uses Libri-Light
for training, however the WavLM Base+ and Large
versions extend the training data to GigaSpeech
and VoxPopuli. WavLM is based on HuBERT, but
uses a different training setup and slightly different
architecture. In addition to the extended dataset,
WavLM models also employ a data pre-processing
technique whereby 20 percent of pre-training in-
puts are mixed with other noise, while their labels
from the k-means portion of the model are left
untouched, to make the model more robust. Archi-
tecturally, WavLM models involve gated relative
position biases that are incorporated into their trans-
former blocks, whereas HuBERT models use con-
volutional relative position embeddings. We take
embeddings from the end of each transformer block
(as well as from before the first transformer block).
We use the embedding extraction implementation
published with the original paper.

B.4 Whisper

The final model family we test is Whisper (Rad-
ford et al., 2022). While Whisper does not outper-
form wav2vec 2.0 on the LibriSpeech test-clean
benchmark, it does outperform wav2vec 2.0 at tran-
scribing a wide array of other datasets, implying
Whisper may be more robust. Whisper models can
be used directly for ST, spoken language identifi-
cation, voice activity detection, and multilingual
ASR. In the Whisper model family, we use the
Base, Small, Medium, and Large versions, as well
as any English-only variants used for these models.
We use the 1.0 versions of these models, which
were the only versions available when our experi-
ments were run.

A difference between Whisper and the other
model families tested is that Whisper uses
a sequence-to-sequence encoder-decoder trans-
former architecture. Log-mel spectrograms are
first created from audio inputs, which are then fed
into convolutional layers and a GELU activation
layer (Hendrycks and Gimpel, 2016), before being
passed on to between four and 32 transformer en-
coder blocks (Vaswani et al., 2017), depending on
the model size. The decoder portion of the model
contains between four and 32 transformer decoder
blocks as well. We take embeddings from after
each of the transformer encoder blocks. We test
both the multilingual and English-only variants of
the Base, Small, and Medium versions, as well
as the multilingual Large version (which does not
have an English-Only variant).11

C Further Details on Target Stimuli

We now provide details on the stimuli used for
representing target concepts.

C.1 Abled and Disabled Speakers

We adapt the test performed by Nosek et al. (2007),
originally using images representing abled and dis-
abled people, to speech. We elect to represent dis-
ability and ability using speech from dysarthric and
non-dysarthric speakers, respectively. Dysarthria
is a speech condition caused by muscle weakness,
that is considered to be noticeably low in valence
to human listeners (Lass et al., 1988). While
dysarthric speakers do not represent all disabled
people, IAT stimuli should be easily distinguish-
able across target groups (Greenwald et al., 2022),

11For clarity, despite using the multilingual versions of the
models, we only use English stimuli for our tests.
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and we choose dysarthria as one relevant speech
condition, for which speech data is readily avail-
able. We leave testing of other forms of disability
that manifest in speech to future work.

We use speech from the TORGO Database to
represent speech from disabled and abled speakers.
The database contains speech samples from eight
dysarthric and seven non-dysarthric speakers, who
are approximately equal in mean age across con-
ditions. Speakers were given a variety of prompts
for different stimuli, including single words, sen-
tences designed to elicit accent differences, as well
as images used to elicit natural and unrestricted
sentences. In order to capture speech style differ-
ences, we use speech samples that contain two or
more words. We match samples in gender and
speech content across conditions, but are unable to
match in age, as ages of individual speakers were
not included with the dataset.

To test the extent to which results from the
TORGO Database extend to other datasets, we also
carry out the SpEAT using speech from the Univer-
sal Access Speech (UASpeech) dataset (Kim et al.,
2008) and present the results in Appendix E. We
use the most recently cleaned version of UASpeech,
which was processed in 2020 using noisereduce.
UASpeech consists of recordings of words read
by dysarthric and non-dysarthric speakers. The
UASpeech set is the largest dataset of which we
are aware that contains matched English speech
from dysarthric and non-dysarthric speakers, how-
ever because recordings in the UASpeech are of
single words or phrases, rather than complete sen-
tences, which may not fully capture accent differ-
ences across conditions, we elect to only present
results from the TORGO database in the main body
of the paper. Speakers were paired across condi-
tions based on approximate age in UASpeech (be-
ing within three years in age of each other), as well
as by gender. As the corpus contains more than
100,000 recordings in total, we elect to sample the
number of recordings to be on par with the sample
sizes used for EATs performed in other modalities.
We randomly sample five words per speaker pair,
which gives 55 samples to represent each group.

C.2 European-American Speakers and
African-American Speakers

We also adapt the test by Nosek et al. (2007) of
the concepts of European-American and African-
American to the speech modality. We take speech

data from two separate datasets to do so: The first
is the Buckeye Corpus (Pitt et al., 2007), which
contains speech entirely from Caucasian speakers,
and the second is the Corpus of Regional African
American Language (CORAAL) (Kendall and Far-
rington, 2021), which contains speech entirely from
speakers of African-American Language. Both
datasets consist of sociolinguistic interviews of
variable length, recorded on high quality equip-
ment.

We start with the full Buckeye Corpus, which
was published in 2007, as well as with all CORAAL
components that were recorded after the year 2000
and available in October of 2022. We process the
datasets by isolating speech from the interview sub-
jects, removing any non-speech noises, and remov-
ing any clips from speakers who are younger than
18 years of age. We match by speaker gender, in-
terviewer gender, and speaker age. (The Buckeye
Corpus does not contain an exact age, only infor-
mation on whether the speaker is younger than 30
or older than 40, so we calculate the same feature
in CORAAL and use this as our age feature.)

Like UASpeech, CORAAL and Buckeye both
contain many more recordings than have been used
in EATs in other modalities, so to conserve re-
sources we again sample the datasets. We match by
gender and approximate age, then take a balanced
stratified sample, (by speaker age and speaker gen-
der), to ensure that no age or gender groups are
over or under represented in our sample, and the
SpEAT scores do not pertain to speakers of any
specifc age or gender group more than another. We
take 15 samples per cell, which gives us 60 sam-
ples from speakers of each ethnicity. We perform a
paired samples t-test to ensure that audio clips do
not differ in length on average, in order to establish
that any potential differences in association are not
simply due to differences in audio clip length. A
t-test is appropriate due to the sample size of the
dataset, and a paired samples test is required due to
the matched relationship between the audio clips.
We do not find evidence that clips between the two
groups differ in length on average (t(59) = −0.12,
p = 0.90), which implies that differences in asso-
ciation are not attributable to differences in length
of the input audio clips.

C.3 Female and Male Speakers

We also adapt audio IATs from (Mitchell et al.,
2011) for comparing female and male speech. We
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use speech from the Speech Accent Archive (SAA),
a corpus containing over 2,800 samples of English
speech from unique speakers, as well as metadata
on the speakers’ ages (Weinberger, 2015). Data
in the archive consists of high quality recordings
of speakers reading an identical elicitation para-
graph, and range between 10 and 80 seconds long.
While the SAA does not contain a label indicating
whether speech is in SAE, it does contain informa-
tion on speakers’ places of birth, and in order to
ensure that the speech we use is representative of
SAE, (which was used for the original tests per-
formed on humans), we limit our sample to speak-
ers whose place of birth is in the United States.
(Speakers must also have English listed as their na-
tive language.) We match by age across conditions.

To test the extent to which results from the SAA
generalize to other datasets, we also perform the
female and male test using the speech samples that
were originally shown to humans in the audio IATs
performed by Mitchell et al. (2011). We present
these results in Appendix E. The data for these
tests come from four distinct human speakers and
four distinct synthesized voices: two human female
speakers, two human male speakers, two synthetic
female voices, and two synthetic male voices. The
synthetic voices come from Microsoft and Read-
Please. Each speaker or synthetic voice is used
to generate speech from the same 16 short neu-
tral phrases, such as "candle holder" or "cardboard
box." We test 64 samples per target group.

C.4 Human Speakers and Synthesized Speech

We also adapt the test from Mitchell et al. (2011)
comparing human and synthesized speech using
speech from the SAA. Text to Speech technol-
ogy has changed significantly since Mitchell et al.
(2011) carried out IATs using synthetic voices, and
to ensure that the synthetic voices that we use
are similar to the synthetic voices that were orig-
inally played for humans, we use similar Text to
Speech systems to those used originally. The orig-
inal voices used were Microsoft Mary, Microsoft
Mike, as well as the ReadPlease Male and Female
voices. These voices are included in Microsoft
Speech API 4.0 (SAPI4.0), from which we also
include 15 other synthetic voices in our tests. We
generate speech using the same elicitation text as
that used for human speakers in the SAA, using an

online generator.12 In addition to samples created
using the default speeds provided by the generator,
we also create fast and slow versions of each voice,
where the fast version has a speed parameter 1.25
times the default value, and the slow version has a
speed parameter 0.75 times the default. These syn-
thetic samples do not have associated ages, but do
have associated genders, which we are able to use
for matching the synthetically generated samples
to speech from the SAA. (Because human speakers
in the original IAT were speakers of U.S. English,
we filter to only include speakers whose native lan-
guage is English and who were born in the United
States.)

To test whether results from the SAA general-
ize to other datasets, we also perform the human
speaker and synthesized speech test using the same
stimuli as (Mitchell et al., 2011). We present these
results in Appendix E. Stimuli are the same samples
consisting of single words or phrases as those used
in Appendix C.3, however now split by whether the
sample contains speech from a human speaker or
from a synthetic voice, rather than by gender. We
test 64 samples per target group.

C.5 United States and Foreign Accented
Speakers

We also adapt the audio IATs performed by Pan-
tos and Perkins (2012), which compare English
language speech from a native speaker of United
States English to speech from a native speaker of
Korean. Korean was originally chosen to repre-
sent the concept of foreign accent in order to min-
imize the associations that listeners might have
with stereotypes, as prior work had found that Ko-
rean accents were difficult to identify in the United
States (Lindemann, 2003). We use speech from the
SAA to represent both U.S. and Foreign speakers,
and use similar filtering criteria to those used by
Pantos and Perkins (2012) to select speakers. We
use speakers whose native language is English and
whose place of birth is in the United States to rep-
resent U.S. accented speech, and speakers whose
native language is Korean and whose place of birth
is in Korea to represent Korean accented speech.
Samples were matched on age and gender across
conditions.

To evaluate whether results from the SAA ex-
tend to other datasets, we validate the test results

12As of submission, code for the generator is available at
https://github.com/TETYYS/SAPI4.
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Layer Agg.

Sum Min Max First Second Q1 Q2 Q3 Penultimate Last

Mean 0.82 0.72 0.70 0.52 0.69 0.80 0.92 0.88 0.76 0.73
Min 0.66 0.66 0.71 0.61 0.80 0.77 0.74 0.65 0.64 0.57

Temporal
Agg.

Max 0.66 0.56 0.68 0.47 0.70 0.82 0.69 0.65 0.68 0.59

Table 2: Proportion of SpEAT ds that are positive, and therefore congruent with biases that tend to be found in
humans, when different strategies are used for aggregating raw embeddings. Temporal Agg. refers to the first step
of aggregation—summarizing across the variably-sized sequence dimension of the raw embeddings (whose length
depends on the duration of the input speech sample). Layer Agg. refers to the second step—aggregating across
Transformer layers. For aggregation across layers, aggregation strategies other than sum, min, and max involve
taking only embeddings from an individual layer, for example Q2 refers to selecting embeddings from the median
layer in the model (e.g., layer 24 in the 48 layer HuBERT XL). Layer aggregation strategies that involve selecting
from a single layer are denoted in italics.

using the original stimuli played to humans. The
original tests use speech samples read by two sim-
ilarly aged male actors in their native accents as
target stimuli. The actors read the same eight neu-
tral phrases, for example "at this point", and the
phrases are repeated three times for human listen-
ers. We use the exact samples shown to humans,
(i.e. those that repeat the phrases three times).

C.6 Young and Old Speakers
We also adapt the IATs performed in (Nosek et al.,
2007) comparing the concepts of young and old.
We use speech from the SAA, and limit ourselves to
speakers whose birth place is in the United States.
We take the oldest and youngest speakers to repre-
sent the concepts of young and old. To ensure that
our results are not more applicable to male or to
female speakers, we balance the samples based on
gender. We take 58 speakers per target group (29
young male speakers, 29 young female speakers,
and so on). The young category consists of speak-
ers between ages 18 and 19, while the old category
consists of speakers between ages 57 and 93.

D Other Embedding Aggregation
Strategies

Similar to work from May et al. (2019), who test
various sequence and layer aggregation in text-
based models, we evaluate whether our results
would have changed had a different strategy been
used for summarizing embeddings, (other than us-
ing the mean across the temporal dimension then
the sum across layers). The proportion of SpEAT
ds that are positive are shown in Table 2. All but
one of the aggregation strategies result in more
positive SpEAT d values than negative, however

there is some variability between strategies. Taking
the mean across the temporal dimension tends to
result in more alignment with human biases than
taking the min or max, for example, and selecting
embeddings from early to middle layers also tends
to result in more alignment with human biases.

E SpEAT Results Using Alternate Stimuli
Sets

As described in Appendix C, we also perform
EATs using alternate stimuli, to test the extent to
which the results we find would generalize to other
datasets. The SpEATs comparing U.S. and For-
eign speech using the stimuli originally used by
Pantos and Perkins (2012) are opposite in mean
from the tests comparing U.S. and foreign speech
using speech from the SAA, however other tests
are similar in mean when comparing original to
alternate stimuli sets. We hypothesize that this
may be related to the number of stimuli used by
Pantos and Perkins (2012) to represent each target
concept—8 stimuli, rather than the more than 50
stimuli that were used for all other tests performed—
or related to the fact that speech samples are from
two speakers (one to represent U.S. speech and one
to represent Foreign speech), and contain single
words or phrases repeated three times, rather than
lengthy and fluid samples such as that contained in
the SAA.

F Downstream Speech Emotion
Recognition Models

Here we describe the training process for the mod-
els used for the downstream task of SER, which
is taken from Yang et al. (2021). After extraction
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Figure 5: SpEAT d values showing the extent to which results extend to other datasets that can represent the same
concepts. Speech samples in original datasets (TORGO and SAA) are longer and include more words, and were
hypothesized to better capture differences in speaking style. Three of four tests using alternate stimuli show similar
mean SpEAT values to original tests, while the fourth (which uses a small number of samples, only includes speech
from a single speaker to represent each target concepts, and contains speech samples consisting of single words or
phrases repeated three times) does not.

from the upstream pre-trained model, each embed-
ding starts as shape (N Layers, Seq Len, Embd
Dim). The first dimension (N Layers) corresponds
to the number of layers in the pre-trained model.
The second dimension (Seq Len) corresponds to
the length of the input speech sample. The third
dimension (Embd Dim) corresponds to the width of
the pre-trained model. The downstream model first
takes a weighted average over the first dimension
of the embeddings, where the weights are tuned in
the process of training the downstream model, al-
lowing the downstream model to give more weight
to layers that are more relevant to valence predic-
tion. The downstream model then makes a first
linear projection to a fixed size of 256, before tak-
ing an unweighted average over the audio sequence,
and then a second linear projection down to a sin-
gle number. We train the downstream model us-
ing mean squared error loss, Adam optimization
(Kingma and Ba, 2014), and for a maximum of
20,000 steps. These hyperparameters, as well as the
model’s architecture, are based on those used for
the emotion recognition task by Yang et al. (2021),
although we decrease the total number of steps, as
our valence datasets are significantly smaller than
those used originally, and switch to an MSE loss,
as we are predicting continuous ratings of valence
rather than categorical emotions. We train three
downstream models for each pre-trained model,
one using a learning rate of 10−3, one using a learn-

ing rate of 10−4, and one using a learning rate of
10−5. We then use predictions from all downstream
models when calculating Cohen’s d.

G Embedding Association Tests for U.K.
English

To test the extent to which our results extend be-
yond U.S. English, we also perform tests using U.K.
English.

G.1 Stimuli

We now describe the stimuli used for tests concern-
ing U.K. English.

G.1.1 Target Stimuli
British and Foreign Accented Speakers We
adapt the audio IAT performed in (Romero-Rivas
et al., 2021) comparing speech from a native
speaker of British Received (BR) English with
speech from a speaker of Spanish accented En-
glish. The original test uses speech samples read
by two female actors, one using BR English, and
the other using Spanish accented English. The ac-
tors each read 16 neutrally-valenced phrases, for
example "table." Some participants in the original
IAT receive versions of the audio stimuli with back-
ground noise added, while others received stimuli
free of background noise, giving two versions of
each sample. We therefore test 32 samples for each
group.
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Figure 6: SpEAT d values showing that results do not appear to generalize to U.K.-accented speech. The overall
mean IAT D value for the British and Foreign test was not provided by Romero-Rivas et al. (2021), however they
calculate a D value related to British accents of 0.60 and a D value related to Foreign accents of -0.46.

Young and Old Speakers We also perform a
test of age for U.K. English, and use a similar tar-
get dataset as for U.S. English, sourced from the
SAA (Weinberger, 2015). There are 82 speech
samples in the dataset from speakers born in the
United Kingdom. A tradeoff needed to be made be-
tween larger group sizes, which can provide more
precision in tests, and smaller group sizes, which
provide better representations of the categories of
young and old. The value of 12 is within typical
ranges for sample sizes of past EATs. The young
category consists of speakers between ages 18 and
21 while speakers in the old category are between
ages 38 and 72. As in the U.S. dataset, we balance
our sample on gender.

G.1.2 Attribute Stimuli: EU-Emotion
Stimulus Set

When performing the SpEAT using stimuli based
on U.K. accents, we use EU-Emotion Stimulus Set
(EUESS) rather than the MESS to represent pos-
itive and negative valence (O’Reilly et al., 2016;
O’Reilly et al., 2012). The EUESS is a corpus of
695 recordings made by actors and rated by listen-
ers in the United Kingdom. Actors were speakers
of British English, and were asked to read sets of
sentences each portraying one of twenty categor-
ical emotional states. The corpus contains both
255 semantically emotional sentences and 440 se-
mantically neutral sentences, of which we only use
the semantically neutral sentences, in order to cen-
ter our work on acoustics. (Semantically neutral
sentences were those that were possible to read in
multiple emotional states, for example "I knew it
would happen.") A minimum of 20 listeners pro-
vided ratings of valence for each recording. Actors
varied in age and gender, and so we again sample
positive and negative valence within speaker to min-
imize the influence of speaker-based confounders.
We take three recordings from each speaker for

each of the valence poles, giving us 54 recordings
for positive valence and 54 recordings for negative
valence. To establish that any potential differences
in association between gender and valence mea-
sured by the SpEAT are not due to how the samples
were rated by humans, we ensure that human rat-
ings of valence do not differ based on the speaker’s
gender. We perform a Welch’s unequal variances
t-test to evaluate whether the ratings of valence
differ by gender on average. A t-test is appropri-
ate due to the sample size of the dataset, and we
use a Welch’s t-test rather than a Student’s t-test
due to its robustness (Delacre et al., 2017; West,
2021). We do not find evidence that clips from
male and female speakers are rated differently on
valence on average (t(437) = 0.81, p = 0.42),
implying that any differences in association with
valence between gender are not due to differences
in how the audio clips were rated by humans. We
also establish that potential differences in associ-
ation between age and valence measured by the
SpEAT are not due to how the samples were rated
by humans. We test whether age has a bivariate
relationship with valence using a simple linear re-
gression model fit using ordinary least squares. A
regression is appropriate due to the continuous na-
ture of both variables. We do not find evidence
for a relationship between speaker age and valence
(t(438) = −0.90, p = 0.37), implying that differ-
ences in association with valence by age are not
due to differences in how the audio clips were rated
by humans. Analysis does not indicate any depar-
tures from the linear regression model, implying
that it is not inappropriate for the data. A residual
plot for the model between age and valence in the
EUESS is shown in Figure 7. Based on the lack of
pattern in the local average line (in red), we do not
see evidence for a nonlinear relationship between
the independent and dependent variables. We also
do not see evidence for heteroscedasticity in the
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Figure 7: Residual plot for regression between age and
valence in EUESS dataset, which contains speech from
speakers of U.K. English rated on valence. We do not
see evidence for heteroscedasticity or for non-linearity,
suggesting that assumptions from the regression model
are not violated.

residuals. Due to the sample size (440), an assump-
tion of normality is not necessary for use of the
t-test, and we therefore do not perform a test for
normality of the residuals.

G.2 Test Results
G.2.1 British and Foreign Accented Speakers
10 of 16 models show a positive SpEAT d value.
We note the British and Foreign Accented samples
are based on only 16 unique recordings from each
of the two unique speakers, and for this reason may
not be fully representative of the intended concepts.
The locality of the speech (being from a British
speaker) may also affect the results.

G.2.2 Young and Old Speakers
Only two models show bias against speech from
older speakers from the United Kingdom. We note
that due to the data available in the SAA, the U.K.
test only involves twelve speech samples to repre-
sent each concept. We also note that the speech
samples used to represent older speakers in the U.K.
also have a much lower age cutoff than older speak-
ers in the United States, which may mean the target
concepts are not as differentiated from each other.
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