
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 9026–9039
December 6-10, 2023 ©2023 Association for Computational Linguistics

Semi-Structured Object Sequence Encoders
Rudra Murthy V1, Riyaz Bhat1, Chulaka Gunasekara1, Siva Sankalp Patel1

Hui Wan1, Tejas Indulal Dhamecha2∗, Danish Contractor1, Marina Danilevsky1

1IBM Research AI
2Microsoft India Development Center

rmurthyv@in.ibm.com,{riyaz.bhat,chulaka.gunasekara,siva.sankalp.patel}@ibm.com,
hwan@us.ibm.com, tdhamecha@microsoft.com,

danish.contractor@ibm.com, mdanile@us.ibm.com

Abstract

In this paper we explore the task of modeling
semi-structured object sequences; in particu-
lar, we focus our attention on the problem of
developing a structure-aware input represen-
tation for such sequences. Examples of such
data include user activity on websites, machine
logs, and many others. This type of data is
often represented as a sequence of sets of key-
value pairs over time and can present model-
ing challenges due to an ever-increasing se-
quence length thereby affecting the quality of
the representation. We propose a two-part ap-
proach, which first considers each key inde-
pendently and encodes a representation of its
values over time; we then self-attend over these
value-aware key representations to accomplish
a downstream task. This allows us to learn bet-
ter representation while being able to operate
on longer object sequences than existing meth-
ods. We introduce a novel shared-attention-
head architecture between the two modules
and present an innovative training schedule that
interleaves the training of both modules with
shared weights for some attention heads.1 Our
experiments on multiple prediction tasks using
real-world data demonstrate that our approach
outperforms a unified network with hierarchical
encoding, as well as other methods including
a record-centric representation and a flattened
representation of the sequence.

1 Introduction

Semi-structured object sequences comprise a sig-
nificant portion of the myriad of data created daily.
This data usually has a temporal aspect, with the
data created sequentially and representing events
happening in some order. More generally, the data
is a sequence of structured objects, each repre-
sented by a set of key-value pairs that encode the

∗Work carried out when the author was an IBM employee
1Code at https://github.com/murthyrudra/

SemiStructuredEncoders

attributes of the object (Figure 1(a)). Examples in-
clude recordings of user interactions with websites,
logs of machine activity, shopping decisions made
by consumers, and many more (Figure 1(b)). The
data is usually stored in semi-structured formats
such as JSONs, or tabular forms.

In this paper, we explore the task of modeling
semi-structured object sequences; in particular, we
focus our attention on the problem of developing
a structure-aware input representation for such se-
quences. If we think of the parallel to natural lan-
guage data, we could treat each sentence of a text
(Figure 1(c)) akin to the set of key-value pairs at a
particular time step.

The challenge of sequence length: A trivial
method of representing such sequences would be
to flatten each structured object and view its con-
stituents as individual words for tokenization in
natural language (Figure 1 (d)).2 However, this
causes the sequence length to become extremely
large (thousands of tokens) when operating on real-
word semi-structured sequences. For instance, in
our study of semi-structured objects from user-
interaction sessions on software from a large cloud-
based service provider, we found these objects
could contain 60 fields on average. The values
of these fields include timestamps, identifiers, log
messages, etc., with an average of 5 words each.
A session length of 15 minutes results in 105 such
session objects, amounting to nearly 31, 500 words
which would further increase the sequence length
after sub-words are created.

Record-centric representation: In contrast, to
flattening structured objects, one could also create
record-centric representations (Figure 1(f)) where
the set of key-value representations at each time
step are considered in sequence. As our experi-
ments in Section 3.3 demonstrate, such represen-

2with markers to indicate boundaries for each structured
object

9026

https://github.com/murthyrudra/SemiStructuredEncoders
https://github.com/murthyrudra/SemiStructuredEncoders


!!! , !"! , !#! , … !$%
event:delete_node
color: null
text: null
node_id: 2301
time_stamp: …
…

event:add_node
color: blue
text: null
node_id: 2301
time_stamp: …
…

k1:!!!, k2:!!", k3:!!#, … kK:!!%

(e)

k1:

…

(f)

…

k1:!"!, k2:!"", k3:!"#, … kK:!"%

k1:!$!, k2:!$", k3:!$#, … kK:!$%

(d) t1-tN:

“t1: k1:!!!, k2:!!", k3:!!#, …
kK:!!%. t2: k1:!"!, k2:!"", k3:!"#, 
… kK:!"%. …… tN: k1:!$!, k2:!$", 
k3:!$#, … kK:!$%.” 

(a)

k1:!!!
k2:!!"
k3:!!#
…
kK:!!%

t1 t2 t3 tN

(b)

t1 t2 t3
event:add_text
color: white
text: “Node 1”
node_id: 2301
time_stamp: …
…

…

text:”The
river Yamuna 
flows through 
the city.”

text:”New Delhi 
is the capital 
of India.”

(c)

t1 t2 t3

text:”As of 
2022, it has a 
population of 
21 million.”

…

k2:

kK:

t1:

…t2:

tN:

!!" , !"" , !#" , … !$"

!!% , !"% , !#% , … !$%

k1:!"!
k2:!""
k3:!"#
…
kK:!"%

k1:!#!
k2:!#"
k3:!##
…
kK:!#%

k1:!$!
k2:!$"
k3:!$#
…
kK:!$%

Figure 1: Semi-Structured Object Sequences: (a) Generic representation of a sequence of semi-structured objects,
consisting of multiple key-value pairs at time steps t1 . . . tN . (b) Example object: a sequence of events triggered by
the use of a graphical user interface. (c) Viewing a text paragraph as a sequence of sentences. (d) Encoding the
example object in (a) by flattening. (e) Encoding (a) by encoding a representation of the values for each key (to be
followed by a key aggregation step, not shown). (f) Encoding (a) using a record-centric representation for each time
step.

tations do not work well when operating on long
sequences. We hypothesize that this could be be-
cause the record-representation does not adequately
model the dependencies between the constituent
values of the same key across different time steps
(records).

Key-centric representation: To address these
challenges we use a modular, two-part hierarchical
encoding strategy. First, we decompose the se-
quence of semi-structured objects into independent
sets of sequences based on keys. This allows us
to consider each key separately (Figure 1(e)), and
encode a representation of how the values of that
key evolve over time (we refer to this as Temporal
Value Modeling – TVM). This may be achieved
using any encoder.3 We then self-attend over the
set of the key encodings to create a representation
of the entire structured object sequence (referred to
as Key Aggregation – KA).

Advantages: This key-centric perspective of en-
coding semi-structured sequences has many advan-
tages as compared to flattening and record-centric
representations (Figure 1(f)).

Decoupling the keys allows us to support an ar-
bitrary number of keys4 since each key-sequence is
encoded independently. So, the key-representations
created during Temporal Value Modeling can sup-

3We use BERT and Longformer in our experiments
4Real-world data can have hundreds of keys in each object.

port longer sequences than what would have been
impossible with flattening (due to memory con-
straints). Moreover, this encoding strategy also
accommodates input sequences that may be con-
sidered non-structured – e.g, natural language text
as sequences of words in sentences (Figure 1(c)).
Specifically, if we consider a sequence of structured
objects where each structured object consists of
only one key, whose values contain a sentence, then
our TVM effectively encodes the text sequence us-
ing whichever encoder has been employed.5

The decoupling of keys and the use of two
independent encoders - TVM for value-aware
key representations, and KA for aggregating key-
representations for a downstream task - requires
that information be shared between the two net-
works so that the key-representations generated by
TVM can be optimized for downstream tasks via
the KA. To facilitate this, we share a few sets of at-
tention heads between the two networks. First, we
pre-train the TVM network with shared attention
heads in place. We then use the frozen represen-
tations from this network to initialize the KA net-
work, which has its own untrained attention heads,
and the shared attention heads from the TVM net-
work as part of its trainable parameters. We utilize
a training schedule that interleaves the training of
both modules to iteratively train them. Doing so
allows the TVM and KA modules to create richer

5The key aggregation step, in this case, is redundant.

9027



representations of keys, informed by their impor-
tance for the downstream task. We find that this
novel iterative two part-training results in better
performance compared to a unified network with
hierarchical encoding (with no attention-head shar-
ing) as well as other methods, that either use a
flattened representation or a record-centric repre-
sentation of the sequence (Veličković et al., 2018;
Mizrachi and Levin, 2019; de Souza Pereira Mor-
eira et al., 2021; Padhi et al., 2021).
Contributions: Our work addresses the challenges
of encoding semi-structured object sequences: (i)
we propose a two-part approach that separately
encodes the evolution of the values for each key,
followed by aggregation over key-representations
to accomplish downstream tasks; (ii) we present a
novel approach for sharing attention heads between
the components; (iii) we compare our approach
against baselines such as sequence flattening, joint
encoding, and record-centric sequence represen-
tations; and (iv) we present detailed experiments
on several datasets and tasks to demonstrate the
advantages of our approach.

2 Modeling

We now describe our approach for modeling key-
value semi-structured object sequences.

Let a sequence of semi-structured objects be
denoted as J = [J1, J2, J3, . . . , JN ] corre-
sponding to N time steps. Further, let Ji =
{k1 : v1i , k2 : v2i , . . . , kj : vji , . . . , kK : vKi } denote
a structured object Ji, containing K key-value pairs
< kj : v

j
i >, j = 1 . . .K. The goal of our mod-

eling is to learn a representation of a sequence
of structured objects J ; and subsequently, learn
f : Embd(J ) → {1, 2, . . . , C} for an end task,
such as a C-way classification task.

We develop a modular two-part modeling strat-
egy to represent a sequence of structured objects.

1. The first module, called the Temporal Value
Modeler (TVM), is used to learn a com-
bined representation (referred to as the key-
representations) for the different values that
each key takes in the sequence.

2. The second module, called the Key-
Aggregator (KA), uses the key-representations
corresponding to each key, to create an overall
representation for J .

Temporal Value Modeling: Let k be a key from
the universe of all the keys K in the sequence. Then,

for each key k we encode the value-aware key-
representation Vk, by considering the value of the
key k at each timestamp, as a sequence. Formally,
Vk is given by:

Vk = [CLS] k[VAL_SEP]vk1 [VAL_SEP] vk2 [VAL_SEP] . . . vkN
(1)

where [VAL_SEP] and [CLS] are special tokens.
Note that each value vkj for a key k at time step j
can itself consist of many tokens and those have
not been shown for ease of presentation. With
any choice of a transformer-based (Vaswani et al.,
2017) language encoder (TextEncoder – TE), an
embedding for Vk, termed the key-representation
(KR), can be obtained as:

KRk = TextEncoder(Vk) (2)

We use the output embedding representation at the
first position (corresponding to [CLS] ) as the key-
representation. It is easy to see that this formu-
lation allows us to accommodate the modeling of
natural language text as in Figure 1 (c). For il-
lustration, if the TextEncoder is based on BERT
(Devlin et al., 2019), Eq. 2 reduces to the encod-
ing scheme typically employed in BERT for text
paragraphs, where the [VAL_SEP] corresponds to
the [SEP] token.

Key-Aggregation: Once we create key-
representations we utilize them for an end-task.
We encode the key-representations using the same
model architecture as the TVM TextEncoder but
do not use positional embeddings since we encode
a set of position-invariant key representations.
Note that the weights of the KA are randomly
initialized. This network is directly optimized for
an end-task.

Embd(J ) = KA ({KR(k) | k ∈ K}) (3)

Key-centric vs. Record-centric Representation:
As an alternative to the key-centric representation
used by the TVM, one could construct a record-
centric view to model the sequence (de Souza
Pereira Moreira et al., 2021; Padhi et al., 2021).
Instead of modeling the evolution of keys in a semi-
structured object sequence using Vk for each key,
one could treat the sequence as a series of Ji (Fig-
ure 1(f)). However, the record-centric representa-
tion requires the network to compress information
present in multiple keys and values of a record (Ji)
which can create an information bottleneck for the
downstream task. We compare and contrast these
alternative views in Section 3 and Section 5.

9028



encode independently 

!! !" !$

Key representations

Temporal Value Modeling

Key Aggregator

Layer 12

…

Text Encoder

Layer 11

Layer i

Layer 1

…

Layer 12

…
Layer 11

Layer i

Layer 1
…

…

Text Encoder

Shared Attention Heads

k1:!!"

k2:!!#

kK:!!$
…

k1:!""

k2:!"#

kK:!"$
…

k1:!%"

k2:!%#

kK:!%$
…

……

End-Task Training 
Objective

MLM Objective

interleaved 
training

Figure 2: The TVM-KA network architecture consisting of a set of shared attention heads (weights) between the
Temporal Value Modeler and the Key Aggregator. Each key is encoded independently to create a corresponding key
representation.

Challenges of Scalable Training: The training
of the hierarchical two-part network, which first
obtains the key-representations (Eq. 2) and then
the structured object sequence representation (Eq.
3), could be done end-to-end where the network
parameters are directly trained for the downstream
task. However, end-to-end training of the hierar-
chical two-part network is often difficult due to the
constraints imposed by the limited GPU memory.
The GPU memory usage is affected by two fac-
tors: (1) the length of the semi-structured object
sequence; and (2) the number of keys in an object.
The end-to-end model architecture operating over
a batch of J sequences would exceed the memory
of most commodity GPUs. By a conservative es-
timate, even for n = 11 and N = 512, a typical
120M parameter model would exceed 40GB RAM
limit with a batch-size of 2. To address this, we
use an iterative training paradigm, described below,
which interleaves the training of the TVM and KA
components by relying on attention heads that are
shared between the two components.

Sharing Attention Heads: Recall that the TVM
network first creates a representation for each key
by attending to the values that occur in the sequence
for each of them. The KA network then uses these
representations to learn the end task. However, if
the KA network could influence how these repre-
sentations are created for each key, it could perhaps

help improve the performance of the KA on the
downstream task. We, therefore, introduce hard-
parameter sharing between the TVM and KA com-
ponents. We hypothesize that by sharing a few at-
tention heads (weights) between the two networks,
the KA will be able to utilize the shared attention
heads. Specifically, as training progresses and up-
dates the parameters used in these heads, it will
have an effect of adjusting the key-representations
from the TVM in a way that could help improve
overall end-task performance.

Interleaved Task Training: As mentioned
above, we use an iterative task training paradigm
where we interleave the training of the TVM and
KA components. Note that our training paradigm
is different from traditional training schedules for
sequential task training where one network is fully
trained before the next module, or from fine-tuning
approaches where a part of the network may be
initialized with a pre-trained model and additional
layers of the network are initialized randomly and
then updated for an end-task. We use the Masked
language modeling (MLM) objective (Devlin et al.,
2019) to train the TVM component and an end-
task-specific objective for training the KA. The use
of interleaved training, as outlined in Algorithm
1, prevents the problem of catastrophic forgetting
(French, 1999; McCloskey and Cohen, 1989; Mc-
Clelland et al., 1995; Kumaran et al., 2016; Ratcliff,

9029



1990) when the KA is trained. Further, it is possi-
ble that when the TVM is trained for the first time
it may rely heavily on the heads that are shared.
Thus, any change to the representation from these
heads could lead to poorer key-representations and
attention sharing, and would therefore would be
counter-productive. To address this problem, we
apply DropHead (Zhou et al., 2020) on the shared
attention heads in TVM and pre-train the model
before beginning the interleaving schedule.

Algorithm 1 Interleaved training

1: Initialize Temporal Value Modeler Mv , Key Aggregator
Mk parameters randomly.

2: Prepare the dataset Dv consisting of value sequences
3: for i = 1,2,. . . ,p do
4: ▷ TVM training
5: Update TVM Mv model parameters with MLM ob-

jective on Dv .
6: Prepare the dataset Dk consisting of key-

representations KRk as per Eq. 2
7: ▷ KA training
8: Update Key Aggregator Mk model parameters with

cross-entropy loss for downstream task.
9: end for

3 Experiments

Our experiments are designed to answer the fol-
lowing questions: (i) How helpful is the TVM-KA
architecture over the baseline that involves flatten-
ing semi-structured object sequences? (ii) How
does the model compare to existing approaches
based on record-centric representations? (iii) How
important is the use of shared attention heads for
fine-tuning KA? (iv) Does the interleaved training
procedure help train the network effectively?

3.1 Data
We experiment using two application/cloud logs
datasets and one e-commerce purchase history
dataset. The first logs dataset, referred to as ‘Cloud
Service Logs,’ is an internal dataset consisting of
interaction traces typically used for product us-
age analysis. We also use the publicly available
LogHub (He et al., 2020) dataset, comprising sys-
tem log messages from the Hadoop distributed
file system, and a publicly available e-commerce
dataset, which consists of product purchase infor-
mation (Stanley et al., 2017). We include additional
details about the datasets in the appendix.

Cloud Service Logs Data – Application event
traces from a large cloud provider: In the
Cloud Service Logs dataset, application event

traces are logged by the cloud provider website.
Event types include login, browsing, account cre-
ation/maintenance/update, UI navigation, search,
service creation/deletion, app interactions, and oth-
ers. Each event has an associated payload that
provides context around the event. Our raw data is
a snapshot of application event traces spanning 3
months and comprising about 450M events, from
which we build our user sessions. A user session
is essentially a temporal sequence of event traces
for that user. While the raw data has over 60 keys
in each event, we experiment with a smaller set
of manually selected 11 keys, so that existing ap-
proaches and baselines can be meaningfully used
for comparison. We constructed user sessions for
100k users. The application events corresponding
to 1) plan upgrade, and 2) opening chatbot (to seek
help) are considered as milestone events. These
milestone events are chosen to represent revenue
generation and user experience, respectively. The
case of 3) no milestone event occurring is treated
as third class. From the traces, temporal sequences
of 300 events are extracted to predict if a milestone
(or no-milestone) event will occur in next 50 time
steps. We report Macro F1-Score, as the dataset
exhibits class imbalance.

Instacart eCommerce Data: The publicly avail-
able Instacart dataset6 contains 3 million grocery
purchase orders of nearly 200, 000 users of the ap-
plication. Each order consists of multiple products
and each structured object associated with a prod-
uct contains meta-data such as day of the week,
product category, department, aisle, etc. We re-
process this dataset to create sequences of product
purchases and evaluate models on the task of the
next product prediction. We predict the product
name given the sequence of product orders,7 which
is effectively a classification task over a universe
of 3212 products. Existing work on this dataset has
focused on a simpler binary prediction task where
models are asked to predict if a particular item is
likely to be purchased again.8

LogHub Data: We use the HDFS-1 from
LogHub (He et al., 2020) for the log anomaly de-
tection task. As the dataset originally consisted of
lines of log messages, we use the Drain log parser

6https://tech.instacart.com/3-million-instacart-orders-
open-sourced-d40d29ead6f2

7We use the complete structured object.
8https://www.kaggle.com/competitions/instacart-market-

basket-analysis/leaderboard

9030



Dataset Train Dev Test # Classes Task # Keys # Time Steps

Median Maximum

Cloud Service Logs 12,833 1,605 1,604 3 Milestone Prediction 11 112 (17061) 300 (177340)

LogHub 402,542 57,506 115,012 2 Anomaly Detection 46 19 (1176) 298 (18530)

Instacart 780,003 97,501 97,500 3,212 Next Product Prediction 10 134 (9842) 3598 (267025)

Table 1: Dataset Statistics including the median and maximum length of sequences reported in number of time-steps.
Values in parentheses report the sequence length after sub-word tokenization using the BERT tokenizer.

(He et al., 2017) to identify 48 log templates. Using
a semi-automated approach, we assign key names
to the value slots of the templates. Thus, each log
line is converted to a structured object with 46 key-
value pairs. The original dataset splits the log lines
into blocks, and the binary prediction task is to pre-
dict whether a particular block is anomalous. The
dataset is highly imbalanced, with around 3% of
the instances belonging to the anomalous class. We
therefore report F1-Score for the anomalous class.

3.2 Encoders

Baselines: We flatten each key-value pair in a struc-
tured object and encode them with special markers
indicating boundaries for objects and timesteps.
We fine-tune the pre-trained encoders for each
downstream task and report their performance. We
experiment with BERT (Devlin et al., 2019) and
Longformer (Beltagy et al., 2020) as the pre-trained
encoders.

We also compare our model with popular ap-
proaches for creating record-centric representa-
tions. These approaches first obtain the representa-
tions for each object Ji, and then feed them to an
inter-object transformer to create the representation
of the whole sequence of objects. We experiment
with three popular methods, where each object rep-
resentation is obtained from the key-value pair rep-
resentations by 1) point-wise summation, 2) con-
catenation then project-down (Mizrachi and Levin,
2019; de Souza Pereira Moreira et al., 2021), and
3) self-attention then averaging (Zhang et al., 2019;
Gu et al., 2021). Note that the record-centric base-
line can be viewed as an adaptation of the TabBERT
model originally designed for tabular data (Padhi
et al., 2021). Padhi et al. (2021) use a field trans-
former (a transformer encoder similar to BERT)
to encode all rows in the table independently to
obtain row embeddings. These row embeddings
are later passed through another encoder to obtain
a representation for the entire table. We use self-
attention instead of a field transformer to encode

the key-value pairs of a JSON object.
Pre-trained models for tokens cannot be mean-

ingfully used to initialize record-centric baselines
as these create sequences over sets of key-value
pairs. On the other hand, identifying a custom pre-
training objective for baselines is challenging as the
downstream task of predicting the next event/prod-
uct involves predicting a value for a very specific
key at a future time step (which is very similar to
an objective one might think of for pre-training).
Hence, we randomly initialize the weights of the
record-centric models.

Encoders for TVM-KA: One of the advantages
of the TVM-KA architecture is that it is agnostic to
the choice of the encoder. We employ the same en-
coder architectures used in our baselines to enable
a direct performance comparison. Recall that the
TVM module and KA module share attention heads
to facilitate sharing of information between them.
To pre-train the TVM, we mask 15% of the tokens
in every Value Sequence, and the objective is to
predict the masked tokens. We do not mask value-
separator and key aggregator tokens; we only mask
the values. Details on hyper-parameter tuning and
the iterative training schedule are in the appendix.

3.3 Results

Table 2 reports the primary results from our experi-
ments. We include the results on three datasets and
for each dataset, we report the overall performance
along with the performance of the models on slices
of the dataset where the length of the sequence is
greater than the median length for that dataset.

Comparison with Flattened encoding: As seen
in the ‘overall’ scores for each dataset in Table
2, flattening (first four rows) yields a significantly
lower performance compared to our approach in-
volving the use of interleaved training for TVM-
KA (last row). For instance, on the cloud service
logs, there’s an increase of 3.9%-58.5% compared
to flattened encodings in macro F1 scores. Similar

9031



Configuration Cloud Service Logs (Macro F1) Instacart (Recall@10) Loghub (Binary F1-Score)

L >Median
(50%)

Overall L >Median
(50%)

Overall L >Median
(51.37%)

Overall

Flattened Encoding
(BERT)
(Devlin et al., 2019)

Random
(bert-base-uncased)

49.55 50.22 9.6 9.4 0.00 53.62

Pre-Trained
(bert-base-uncased)

77.30 74.77 20.10 18.70 23.32 61.63

Pre-Trained
(bert-large-uncased)

80.06 76.59 21.07 19.11 58.30 75.86

Flattened Encoding
(Longformer)
(Beltagy et al., 2020)

Pre-Trained 75.83 73.71 16.94 16.08 97.71 98.54

Record-centric
Representation
(de Souza Pereira Moreira et al., 2021)
(Gu et al., 2021)

Summation 78.97 77.33 7.11 5.10 99.22 99.51

Concat 77.76 75.99 7.18 5.11 99.29 99.57

Self-Attention 79.18 77.73 7.98 6.34 99.08 99.42

TVM-KA
Joint Modeling 80.15 77.68 17.04 16.0 46.78 70.72

No Interleaving 73.19 73.22 18.32 17.5 99.05 98.64

Interleaving 81.26 79.60 23.44 22.54 98.79 99.32

Table 2: Comparison of TVM-KA model with the baseline approaches on various datasets. In our proposed approach,
both TVM and KA components have the same architecture and the number of parameters as bert-base-uncased. We
additionally report results on a subset of the test set whose sequence length (L) (post-tokenization) is greater than
the median length for each dataset. The values in parenthesis indicate the percentage number of instances where the
length of a sequence is greater than the median sequence length. The results from our approach are statistically
significant with respect to all other approaches on both cloud service logs and instacart datasets (p-value < 0.03).

trends are reported on the Instacart dataset. We find
that on the LogHub dataset, the Longformer model
(Beltagy et al., 2020) is able to obtain a comparable
performance (98.54 vs 99.32).

Comparison with Record-centric representa-
tions: Unlike flattened encoding, the record-
centric representation does not suffer from the mod-
eling limitations associated with the maximum se-
quence length limit. These representations can en-
code sequences in their entirety, since most datasets
have fewer than 300 objects (time-steps), and the
sequence length is equal to the number of time
steps. However, the record-centric view may not
adequately model the dependencies between val-
ues of the same key across different time steps.
We find that our approach outperforms all record-
centric representation baselines on the Cloud Ser-
vice Logs dataset as well as the Instacart dataset.
As before, the performance of TVM-KA on the
LogHub data is similar to that of different record-
centric baselines (99.32 vs 99.57) - this perhaps
indicates that the prediction task is relatively sim-
pler on this dataset.

While the poor performance of record-centric
baselines over flattened encoding on the Instacart
dataset may appear counter-intuitive at first glance,
the reason this can happen is that the record-centric
approach creates a combined representation for

each time-step before it processes a sequence (See
Figure 1). This combined representation can be
lossy and it does not allow interaction across keys
or time steps, which the flattening baseline permits
(thanks to n2 attention across each token). Further,
not only is the number of classes for prediction in
the Instacart data in the thousands (while it is <5
for the other datasets), but it also exhibits longer se-
quences than other datasets, all of which are factors
that likely contribute to this result.

Importance of interleaved training: As seen in
the last two rows of Table 2, using our interleaving
training method outperforms training the model
with no interleaving. This supports our hypothesis
that sharing a few attention heads helps the TVM-
KA model uncover better key-representations for
the downstream task as training progresses. We
illustrate the increase in performance with each
stage of interleaving on all three datasets in the
appendix.

Joint Modeling vs Interleaved Training of TVM-
KA: In the joint modeling approach, we do not
use shared attention heads and instead train the
TVM and KA networks end-to-end (jointly). We
observe that joint modeling performs poorly com-
pared to our interleaving approach. We found
this surprising as we had expected it to be at par

9032



with our approach when the joint models fit in
memory.9 We hypothesize that by interleaving
and sharing attention heads between TVM and
KA, the fine-tuning of the KA on the downstream
task introduces a task-specific bias to help im-
prove the key-representations. This in-turn, ben-
efits the pre-trained representations of the TVM
via shared-attention weights and further improves
performance in the next round of training. In the
absence of this bias, the joint model perhaps con-
verges at an alternative minima that is not as good.

Effect of varying the number of shared attention
heads: In general, we observe that sharing of 4
and 6 attention heads helps the most. Sharing too
few or too many attention heads results in an aver-
age drop of 2%-43% in performance. We include
further details in the appendix.

Effect of parameter size/model capacity: We
investigate if the model capacity could be a bot-
tleneck for the approaches based on flattened rep-
resentations. We fine-tune a bert-large-uncased
model, which has 3x the parameters of the bert-
base-uncased model and approximately 1.5x the
parameters of the TVM-KA network. We find that
our model performs better, suggesting that the im-
proved performance is primarily due to the value-
aware key representations and the model’s resultant
ability to accommodate longer sequences due to
the decoupling of keys.

4 Related Work

Our work is related to several areas of research.

Modeling Tabular and Timeseries Data: As
we explicitly model the value sequence for each
key, the data object we work with is reminiscent
of tabular data where each row is a time-step and
each column comprises the values for a particular
field. On the surface, the modeling of data may
appear related, but the actual tasks and models de-
veloped for tasks on tabular data cannot be applied
to semi-structured object sequences. This is be-
cause the work on modeling textual tabular data
often involves developing specialized models fo-
cused on retrieving information from cells (Zayats
et al., 2021; Wang et al., 2021; Iida et al., 2021;
Yang et al., 2022), multi-hop reasoning across in-
formation in different cells across parts of the table
(Chen et al., 2021; Zhao et al., 2022a), combining

9We trained our joint models on 80GB A100 GPUs.

information present in tables and unstructured text
for information seeking tasks (Li et al., 2021; Zhu
et al., 2021; Zayats et al., 2021; Luetto et al., 2023;
Cholakov and Kolev, 2022), etc. In addition, work
on modeling time-series tabular data has focused
on numerical data (Zhou et al., 2021; Zerveas et al.,
2021; Zhao et al., 2022b) with purpose-built task-
specific architectures that cannot be easily adapted
to other tasks (Wu et al., 2021; Padhi et al., 2021).

Modeling Temporal Graph Sequences and Rec-
ommender Systems: Our approach is also re-
lated to a rich body of work on modeling temporal
graphs and recommendation systems (Xu et al.,
2021b; Grigsby et al., 2021; de Souza Pereira Mor-
eira et al., 2021). Temporal graph evolution prob-
lems involve constructing representations to enable
tasks such as link prediction (Sankar et al., 2020;
Xu et al., 2021a), item recommendation in user ses-
sions (Hsu and te Li, 2021), answering queries on
graphs and sequences (Saxena et al., 2022), clas-
sifying graph instances in a sequence,(Xu et al.,
2021a,b) etc. Our findings suggest that such ap-
proaches do not scale for long sequences for the
tasks we experimented with. However, our record-
centric model baselines (de Souza Pereira Moreira
et al., 2021; Mizrachi and Levin, 2019) are similar
in approach to these methods.

Parameter sharing in neural network models:
Deep neural networks are usually trained to tackle
different tasks in isolation. Networks that cater to
multiple related tasks (multi-task neural networks)
seek to improve generalization and process data ef-
ficiently through parameter sharing and joint learn-
ing. Traditional hard-parameter sharing uses the
same initial layers and splits the network into task-
specific branches at an ad hoc point (Guo et al.,
2018; Lu et al., 2017). On the other hand, soft-
parameter sharing shares features via a set of task-
specific networks (Liu et al., 2019; Maninis et al.,
2019). More recently adaptive sharing approaches
have been proposed that decide what parameters
to share across tasks to achieve the best perfor-
mance (Vandenhende et al., 2019; Sun et al., 2020).
The parameter sharing utilized in this work is dif-
ferent from the aforementioned approaches, as we
share some attention head weights between the two
networks (as compared to shared layers), in a way
that could improve overall end-task performance.

9033



5 Discussion and Conclusion

In this paper, we have presented a two-part encoder
to model structured object sequences. The choice
of a key-centric representation enables us to encode
larger objects as well as long sequences. Our exper-
iments show that by using the two-part TVM-KA
architecture we are able to inject downstream task
information into the temporal value modeler net-
work to generate key representations that are more
relevant.

We additionally present a novel interleaving
scheme to train our two-part encoder. We induce
task bias into the model by sharing attention heads
between the Temporal Value Modeler and Key Ag-
gregator components. Our proposed approach out-
performs both the baseline approaches that flatten
structured object sequences and those based on
record-centric representations.

Limitations

The benefits of our approach are best highlighted
in datasets that have a large number of keys in each
object when sequences are long and have a chal-
lenging prediction task. In such cases, the joint
modeling of TVM-KA becomes too big to fit in
memory and record-centric approaches suffer a lot
of deterioration due to lossy record-representations.
In our experiments, the Instacart data exhibits some
of these characteristics and we see a significant im-
provement in performance as compared to record-
centric baselines.

We note that the key-centric representation does
not allow the model to support tasks such as se-
quence tagging of the structured objects. Nor does
it allow to modeling of graph sequences effectively,
as it does not use a global view of the structured
objects. Thus, it may not be able to learn patterns
across fields at different time steps. For such tasks,
a record-centric representation is perhaps more
helpful. Both key-centric and record-centric repre-
sentations have their strengths and weaknesses, and
the choice should be made with the downstream
task in mind. Further, while our experiments have
been reported on real-world datasets they do not
represent the full spectrum of existing sequence
modeling tasks.

Acknowledgements

We would like to thank Vignesh P for his work
during internship at IBM and helping us with the
processing of LogHub data.

References
Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.

Longformer: The long-document transformer. ArXiv,
abs/2004.05150.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan Routledge, and
William Yang Wang. 2021. FinQA: A dataset of nu-
merical reasoning over financial data. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3697–3711, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Radostin Cholakov and Todor Kolev. 2022. The gat-
edtabtransformer. an enhanced deep learning ar-
chitecture for tabular modeling. arXiv preprint
arXiv:2201.00199.

Gabriel de Souza Pereira Moreira, Sara Rabhi,
Jeong Min Lee, Ronay Ak, and Even Oldridge. 2021.
Transformers4rec: Bridging the gap between nlp and
sequential/session-based recommendation. In Fif-
teenth ACM Conference on Recommender Systems,
pages 143–153.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Robert M. French. 1999. Catastrophic forgetting in con-
nectionist networks. Trends in Cognitive Sciences,
3(4):128–135.

Jake Grigsby, Zhe Wang, and Yanjun Qi. 2021. Long-
range transformers for dynamic spatiotemporal fore-
casting. arXiv preprint arXiv:2109.12218.

Xiaodong Gu, Kang Min Yoo, and Jung-Woo Ha. 2021.
DialogBERT: Discourse-aware response generation
via learning to recover and rank utterances.

Michelle Guo, Albert Haque, De-An Huang, Serena
Yeung, and Li Fei-Fei. 2018. Dynamic task prioriti-
zation for multitask learning. In ECCV (16).

Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R
Lyu. 2017. Drain: An online log parsing approach
with fixed depth tree. In 2017 IEEE international
conference on web services (ICWS), pages 33–40.
IEEE.

Shilin He, Jieming Zhu, Pinjia He, and Michael R
Lyu. 2020. Loghub: a large collection of system
log datasets towards automated log analytics. arXiv
preprint arXiv:2008.06448.

9034

https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/2021.emnlp-main.300
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/https://doi.org/10.1016/S1364-6613(99)01294-2


Cheng-Mao Hsu and Cheng te Li. 2021. Retagnn: Rela-
tional temporal attentive graph neural networks for
holistic sequential recommendation. Proceedings of
the Web Conference 2021.

Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit
Iyyer. 2021. Tabbie: Pretrained representations of
tabular data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 3446–3456.

Dharshan Kumaran, Demis Hassabis, and James L Mc-
Clelland. 2016. What learning systems do intelligent
agents need? complementary learning systems the-
ory updated. Trends in cognitive sciences, 20(7):512–
534.

Alexander Hanbo Li, Patrick Ng, Peng Xu, Henghui
Zhu, Zhiguo Wang, and Bing Xiang. 2021. Dual
reader-parser on hybrid textual and tabular evidence
for open domain question answering. In ACL-
IJCNLP 2021.

Shikun Liu, Edward Johns, and Andrew J Davison. 2019.
End-to-end multi-task learning with attention. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 1871–1880.

Yongxi Lu, Abhishek Kumar, Shuangfei Zhai,
Yu Cheng, Tara Javidi, and Rogerio Feris. 2017.
Fully-adaptive feature sharing in multi-task networks
with applications in person attribute classification.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 5334–5343.

Simone Luetto, Fabrizio Garuti, Enver Sangineto,
Lorenzo Forni, and Rita Cucchiara. 2023. One trans-
former for all time series: Representing and train-
ing with time-dependent heterogeneous tabular data.
arXiv preprint arXiv:2302.06375.

Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas
Kokkinos. 2019. Attentive single-tasking of multiple
tasks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
1851–1860.

James L McClelland, Bruce L McNaughton, and Ran-
dall C O’Reilly. 1995. Why there are complementary
learning systems in the hippocampus and neocortex:
insights from the successes and failures of connec-
tionist models of learning and memory. Psychologi-
cal review, 102(3):419.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109–165. Else-
vier.

Sarai Mizrachi and Pavel Levin. 2019. Combining con-
text features in sequence-aware recommender sys-
tems. In RecSys.

Inkit Padhi, Yair Schiff, Igor Melnyk, Mattia Rigotti,
Youssef Mroueh, Pierre Dognin, Jerret Ross, Ravi
Nair, and Erik Altman. 2021. Tabular transformers
for modeling multivariate time series. In ICASSP
2021-2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
3565–3569. IEEE.

Roger Ratcliff. 1990. Connectionist models of recog-
nition memory: constraints imposed by learning
and forgetting functions. Psychological review,
97(2):285.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang,
and Hao Yang. 2020. Dysat: Deep neural represen-
tation learning on dynamic graphs via self-attention
networks. In Proceedings of the 13th International
Conference on Web Search and Data Mining, WSDM
’20, page 519–527, New York, NY, USA. Association
for Computing Machinery.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.
2022. Sequence-to-sequence knowledge graph com-
pletion and question answering. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2814–2828.

Jeremy Stanley, Meg Risdal, sharathrao, and Will
Cukierski. 2017. Instacart market basket analysis.

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate
Saenko. 2020. Adashare: Learning what to share
for efficient deep multi-task learning. Advances in
Neural Information Processing Systems, 33:8728–
8740.

Simon Vandenhende, Stamatios Georgoulis, Bert
De Brabandere, and Luc Van Gool. 2019. Branched
multi-task networks: Deciding what layers to share.
Proceedings BMVC 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Fei Wang, Kexuan Sun, Muhao Chen, Jay Pujara, and
Pedro A Szekely. 2021. Retrieving complex tables
with multi-granular graph representation learning. In
SIGIR.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng
Long. 2021. Autoformer: Decomposition transform-
ers with Auto-Correlation for long-term series fore-
casting. In Advances in Neural Information Process-
ing Systems.

9035

https://doi.org/10.1145/3336191.3371845
https://doi.org/10.1145/3336191.3371845
https://doi.org/10.1145/3336191.3371845
https://kaggle.com/competitions/instacart-market-basket-analysis


Dongkuan Xu, Junjie Liang, Wei Cheng, Hua
Wei, Haifeng Chen, and Xiang Zhang. 2021a.
Transformer-style relational reasoning with dynamic
memory updating for temporal network modeling.
Proceedings of the AAAI Conference on Artificial
Intelligence, 35(5):4546–4554.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng
Long. 2021b. Anomaly transformer: Time series
anomaly detection with association discrepancy. In
International Conference on Learning Representa-
tions.

Jingfeng Yang, Aditya Gupta, Shyam Upadhyay,
Luheng He, Rahul Goel, and Shachi Paul. 2022.
Tableformer: Robust transformer modeling for table-
text encoding. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 528–537.

Victoria Zayats, Kristina Toutanova, and Mari Osten-
dorf. 2021. Representations for question answering
from documents with tables and text. In EACL.

George Zerveas, Srideepika Jayaraman, Dhaval Patel,
Anuradha Bhamidipaty, and Carsten Eickhoff. 2021.
A transformer-based framework for multivariate time
series representation learning. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 2114–2124.

Xingxing Zhang, Furu Wei, and Ming Zhou. 2019. HI-
BERT: Document level pre-training of hierarchical
bidirectional transformers for document summariza-
tion. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
5059–5069, Florence, Italy. Association for Compu-
tational Linguistics.

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang.
2022a. Multihiertt: Numerical reasoning over multi
hierarchical tabular and textual data. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6588–6600.

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang.
2022b. MultiHiertt: Numerical reasoning over multi
hierarchical tabular and textual data. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6588–6600, Dublin, Ireland. Association for
Computational Linguistics.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai
Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
2021. Informer: Beyond efficient transformer for
long sequence time-series forecasting. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 11106–11115.

Wangchunshu Zhou, Tao Ge, Furu Wei, Ming Zhou, and
Ke Xu. 2020. Scheduled drophead: A regularization
method for transformer models. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 1971–1980.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021. TAT-QA: A question answering
benchmark on a hybrid of tabular and textual con-
tent in finance. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3277–3287, Online. Association for
Computational Linguistics.

A Dataset Details

We provide additional details about the datasets
used in our experiments.

A.1 Cloud Service Logs Data: Application
event traces from a large cloud provider

In the Cloud Service Logs (CSL) dataset, applica-
tion event traces are logged in the cloud provider
website. Each user is assigned a unique identi-
fier. Event types range from login, browsing,
account creation, account maintenance,
account update, UI navigation, search,
service creation, service deletion, app
interactions, among several others. We have
about 638 unique event types. Each event has an
associated payload that provides context around the
event. For example, if a user performed a search,
the payload captures the search query and the page
where the search was performed. If a user inter-
acted with a service, the payload captures the ser-
vice ID and action performed on the service, among
other information.

Our raw data is a snapshot of application event
traces spanning 3 months comprising about 450M
events. Using these, we build our user sessions. A
user session is essentially a temporal sequence of
event traces for that user. If there is a difference of
greater than 15 minutes between two consecutive
events, we break the session. We constructed user
sessions for 100k users. The application events
corresponding to 1) plan upgrade, and 2) opening
chatbot (to seek help) are considered as milestone
events. These milestone events are chosen as they
represent revenue generation and user experience,
respectively. The case of no milestone event occur-
ring is treated as the third class.

From the traces, we identify user sessions con-
taining any of the aforementioned milestone events.
We consider the temporal sequences of events 350
time-steps before the milestone event occurs. To
construct the data, we consider the sequence of
events till 300 time-steps and the task is to predict

9036

https://doi.org/10.1609/aaai.v35i5.16583
https://doi.org/10.1609/aaai.v35i5.16583
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/2022.acl-long.454
https://doi.org/10.18653/v1/2022.acl-long.454
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254


if a milestone (or no milestone) event will occur in
the next 50 time steps.

A.2 Instacart eCommerce Data
The publicly available Instacart dataset10 contains 3
million grocery purchase orders of nearly 200, 000
users of the application. Each order consists of
multiple products and each structured object asso-
ciated with a product contains meta-data such as
the day of the week, the product category, depart-
ment, aisle, etc. We reprocess this dataset to create
sequences of product purchases and evaluate mod-
els on the task of the next product prediction. We
create variable-length training instances from each
user’s order history by sampling between 50 to
200 previous product purchases for a certain target
product. Additionally, we only sample a training
instance if the target product has been ordered at
least 50 times across users.

As per our task formulation, we predict the prod-
uct name given the sequence of product orders11,
which is effectively a classification task over a
universe of 3212 products. Existing work on this
dataset has focused on a simpler binary prediction
task where models are asked to predict whether a
particular item is likely to be purchased again.12

A.2.1 LogHub Data
HDFS-1 from LogHub (He et al., 2020) is utilized
for the log anomaly detection task. The dataset
consists of log lines. A sample log message is
shown below:

081109 203519 29 INFO d f s .
FSNamesystem : BLOCK*
NameSystem . a d d S t o r e d B l o c k :
blockMap u p d a t e d :
1 0 . 2 5 0 . 1 0 . 6 : 5 0 0 1 0 i s added t o
blk_ −1608999687919862906 s i z e
91178

We now convert the log message to a JSON object.
We utilize Drain log parser (He et al., 2017) to ex-
tract the static template, dynamic variables, and
header information from log messages. We obtain
around 48 templates. All the log messages fall into
one of the 48 templates. In a semi-automated fash-
ion, we define keys for the templates. We populate
key names with the value slots of the templates.

10https://tech.instacart.com/3-million-instacart-orders-
open-sourced-d40d29ead6f2

11We use the complete structured object.
12https://www.kaggle.com/competitions/instacart-market-

basket-analysis/leaderboard

Thus, each log line is converted to a structured ob-
ject. The log message after conversion to a JSON
object would look as follows,

{
"status": "addStoredBLock:
Blockmap updated",
"port": "10.250.10.6:50010",
"block_ID": "blk_ -160899968791986290

6",
"size": "91178",
"LineId": "11",
"Date": "81109",
"Time": "203519",
"Pid": "29",
"Level": "INFO",
"Component": "dfs.FSNamesystem",
"EventId": "5d5de21c"

}

A block consists of a sequence of such structured
objects. The task is to classify the given block as
anomalous or not.

B Hyperparameters and Training
schedule

We perform a grid search for the learning rate and
batch size for all the models in our experiments.
We select the hyper-parameter configuration which
gives the best validation set performance on each
dataset’s metric. We now list the range of values
considered for each hyper-parameter.

• Learning Rate:
{1e−4, 3e−4, 5e−4, 1e−5, 3e−5,
5e−5, 1e−6, 3e−6, 5e−6},

• Batch Size: 2, 4, 8, 16, 32

• Shared Heads (p): 2, 4, 6, 8

The drophead mechanism is only activated dur-
ing TVM training, with drophead probability set to
0.2.

For all the baseline models, we train till conver-
gence. For the TVM training in the first iteration,
we vary learning rates and observe model conver-
gence (in terms of train and dev loss) after a fixed
100K steps. The best learning rate for TVM is
identified from this exercise. A similar approach is
used for identifying the best learning rate for the
KA training stage too, albeit for a smaller number
of update steps. In the first iteration, TVM train-
ing is done for 1 epoch. Then we proceed with
the interleaving step. We alternate between TVM

9037



Figure 3: Effect of sharing different numbers of atten-
tion heads between TVM and KA

training and KA training with their number of train-
ing steps in 2:1 proportion. For the cloud service
logs dataset, the number of TVM training steps is
50K and the number of KA training steps is around
100K.

C Class-wise Results on Cloud Service
Logs

Table 3 reports the detailed class-wise results on
the Cloud Service Logs dataset. As seen in the
‘Macro F1’ score column in the Table 3, flatten-
ing (first four rows) yields a significantly lower
performance compared to our approach involving
the use of interleaved training for TVM-KA (last
row). Specifically, the flattened encoding with ran-
domly initialized BERT model suffers the most on
the Open Chatbot class. We believe that seman-
tic understanding of the event names is crucial for
identifying the sequences leading to Open Chatbot
milestone event.

In general, we observe improvements from our
TVM-KA approach on all class labels compared
to the baseline models. This indicates the perfor-
mance gain from our model is not due to improve-
ments in a single class or subset of classes, but, on
all the classes present in our dataset.

D Influence of shared attention heads

We use BERT encoder (Devlin et al., 2019) to
model both TVM and KA components in our
model. This allows us to share attention heads
between the TVM and KA components. bert-base-
uncased has 12 attention heads at each encoder
layer. We experiment with sharing 0, 2, 4, 6, 8 at-
tention heads between TVM and KA components.

Figure 3 presents the performance of our TVM-
KA approach with different numbers of shared at-
tention heads between TVM and KA components.

Figure 4: TVM-KA model performance for each in-
terleaving stage. The red, green, and blue lines, along
with their respective colored y-axes, indicate the per-
formance of the Loghub, Instacart, and Cloud Service
Logs datasets, respectively.

In general, we observe that sharing of 4 and 6 atten-
tion heads helps the most. Either not sharing any
attention heads or sharing more than that results in
poorer performance.

E Training schedule

As shown in Table 2, using our interleaving train-
ing method outperforms training the model with
no interleaving. This supports our hypothesis that
sharing a few attention heads helps the TVM-KA
model uncover better key-representations for the
downstream task as training progresses. Figure 4
illustrates the increase in performance with each
stage of interleaving on all three datasets.

9038



Comments Macro F1 Micro F1 Browsing/
Upgrade Account No MileStone Open Chatbot

Flattened Encoding
(BERT)
(Devlin et al., 2019)

Random
(bert-base-uncased)

50.22 72.38 70.14 80.50 0.0

Pre-Trained
(bert-base-uncased)

74.77 80.31 79.39 84.12 60.79

Pre-Trained
(bert-large-uncased)

76.59 81.57 80.72 85.13 63.93

Flattened Encoding
(Longformer)
(Beltagy et al., 2020)

Pre-Trained 73.71 79.91 79.31 84.26 57.57

Record-centric
Representation
(de Souza Pereira Moreira et al., 2021)
(Gu et al., 2021)

Summation 77.33 85.66 84.91 90.59 56.50

Concat 75.99 85.12 84.47 90.15 53.36

Self-Attention 77.73 85.66 84.78 90.48 57.92

TVM-KA
Joint Modeling 69.61 80.54 80.04 86.82 41.97

No Interleaving 73.22 84.14 83.03 90.32 46.31

Interleaving 79.60 86.49 85.47 91.24 62.11

Table 3: Comparison of TVM-KA model with the baseline approaches on Cloud Service Logs datasets. In our
proposed approach, both TVM and KA components have the same architecture and the number of parameters
as bert-base-uncased. We additionally report class-wise results. The results from our approach are statistically
significant with respect to all other approaches (p-value < 0.03).

9039


