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Abstract

Recent advances in machine translation (MT)
have shown that Minimum Bayes Risk (MBR)
decoding can be a powerful alternative to beam
search decoding, especially when combined
with neural-based utility functions. However,
the performance of MBR decoding depends
heavily on how and how many candidates are
sampled from the model. In this paper, we ex-
plore how different sampling approaches for
generating candidate lists for MBR decoding
affect performance. We evaluate popular sam-
pling approaches, such as ancestral, nucleus,
and top-k sampling. Based on our insights
into their limitations, we experiment with the
recently proposed epsilon-sampling (Hewitt
et al., 2022) approach, which prunes away all
tokens with a probability smaller than epsilon,
ensuring that each token in a sample receives
a fair probability mass. Through extensive hu-
man evaluations, we demonstrate that MBR de-
coding based on epsilon-sampling significantly
outperforms not only beam search decoding,
but also MBR decoding with all other tested
sampling methods across four language pairs.

1 Introduction

MBR decoding has recently gained attention in
Machine Translation (MT) as a decision rule with
the potential to overcome some of the biases of
beam search decoding in NMT (Eikema and Aziz,
2020; Müller and Sennrich, 2021; Eikema and Aziz,
2021; Freitag et al., 2022a; Fernandes et al., 2022).
While most prior work on MBR decoding for MT
is based on k-best lists obtained via beam search,
Eikema and Aziz (2020) proposed to use an approx-
imation of MBR decoding based on unbiased sam-
pling to overcome the shortcomings of MAP de-
coding. They demonstrated that samples from the
NMT model are faithful to the training data statis-
tics, while beam search is not. Freitag et al. (2022a)
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Figure 1: Sorted next token prediction probabil-
ities for an example sentence from newstest2021
English→German. For simplicity, we plot only the top
30 tokens (out of 32k). The correct token is the second
most likely token (with 19.3% probability). All but five
tokens have a probability of less than 0.02. However,
in aggregate, these low-probability tokens have 21.4%
probability.

experimented with different utility functions and
showed that the sampling-based MBR decoding
approach works well with neural metrics that are
fine-tuned on human judgment, such as BLEURT

and COMET (Sellam et al., 2020; Rei et al., 2020),
significantly outperforming beam search decoding
in an expert-based human evaluation.

In this work, we continue this exploration while
focusing on the sampling approach used for gen-
erating the candidate lists for MBR decoding. We
compare MBR decoding using BLEURT on pop-
ular sampling approaches such as ancestral sam-
pling, nucleus sampling, or k-best sampling and an-
alyze their advantages and disadvantages. Based on
these insights, we explore MBR with the recently-
proposed epsilon-sampling (Hewitt et al., 2022) ap-
proach, which instead of considering only tokens
that fall within an aggregated probability mass (nu-
cleus sampling) or a fixed amount of tokens (k-best
sampling), prunes away all tokens with a probabil-
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ity smaller than epsilon. By doing so, it ensures that
every token in each sample gets a decent amount
of probability mass from the model. This is not
always the case when sampling with nucleus or
top-k sampling and the incorrect samples can hurt
MBR decoding performance especially for long
sequences. In addition, we also explore the rela-
tionship between the underlying sampling approach
and the sampling’s temperature.

Our contributions can be summarized as follows:

• We conduct experiments with MBR decoding
based on candidate list generated by ancestral,
nucleus, top-k and epsilon sampling.

• We run extensive human evaluations directly
verifying the effects of different sampling
methods on the model generation quality.

• We demonstrate that MBR decoding based
on epsilon sampling significantly outperforms
not only beam search, but also MBR decoding
on all other tested sampling approaches on 4
tested language pairs.

• We conduct expert-based MQM evaluation to
verify the quality of our translations.

2 Methods

2.1 Sampling Approaches
In this section, we provide a brief overview of
sampling methods considered in this study. In
our analysis, we denote random variables with
bold upper-case letters and their realizations with
lower-case plain letters. Let Pmodel(Yt = yt|X =
x,Y1:t−1 = y1:t−1) denote the probability as-
signed by the model to token yt at time t, condi-
tioned on the source (X = x) and the target tokens
generated so far (Y1:t−1 = y1:t−1). To simplify
the notation, when there is no room for misinter-
pretation, we often omit the random variables and
simply write Pmodel(yt|x, y1:t−1). We consider the
following strategies for generating samples from
the model:

Ancestral Sampling: Ancestral sampling sim-
ply draws yt from Pmodel(yt|x, y1:t−1)

1/τ . Here,
τ is the sampling temperature hyper-parameter
which determines the peakedness of the distribu-
tion. While this approach is simple and faithful
to the model, it is highly sensitive to biases and
errors present in the estimated model distribution
Pmodel. In particular, the tail of the distribution

(low-probability tokens) is often believed to be
highly unreliable. Other sampling strategies at-
tempt to alleviate this issue by systematically trim-
ming the tail.

Top-k Sampling: Top-k sampling is a simple
modification of ancestral sampling that steers the
generation towards high probability tokens. Let
St,k be the set corresponding to k highest probabil-
ity tokens at time t. Then top-k sampling chooses
token y at time t with probability proportional to

{
Pmodel(y|x, y1:t−1)

1/τ if y ∈ St,k,

0 otherwise.

Nucleus Sampling: Similar to top-k sampling,
nucleus sampling (Holtzman et al., 2019) also
steers the generation away from the lower trail of
the model distribution. Let Qt,p be the smallest
possible set of tokens that covers a fraction p of the
posterior model probability at time t. Then nucleus
sampling chooses token y at time t with probability
proportional to

{
Pmodel(y|x, y1:t−1)

1/τ if y ∈ Qt,p,

0 otherwise.

As Qt,p is the smallest possible set covering the
predefined fraction p, it includes only the upper tail
of the distribution and discards 1 − p fraction of
the tokens from the lower trail.

Epsilon Sampling: Epsilon sampling (Hewitt
et al., 2022) employs a simple, yet effective, strat-
egy for pruning unreliable, low-probability tokens.
Let ϵ ≤ 1 be a non-negative threshold. Epsilon
sampling chooses token y at time t with probability
proportional to
{
Pmodel(y|x, y1:t−1)

1/τ Pmodel(y|x, y1:t−1)≥ϵ,

0 otherwise.

In their study, Hewitt et al. (2022) argue that
epsilon sampling breaks the relative probability
principle. E.g. the prompt The should allow many
valid continuations. This is particularly true for
open-ended generation tasks (e.g. story genera-
tion), where there are many possible continuations
for a given prompt. In machine translation, how-
ever, epsilon sampling can be a useful technique.
This is because machine translation is a conditional
generation task, where the output is conditioned on
the input. This means that there are only a limited
number of possible continuations for a given input.
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2.2 Minimum Bayes Risk Decoding
MBR, or Minimum Bayes Risk, is a decoding al-
gorithm that relies on two essential components: a
(translation) model and a utility metric. The trans-
lation model Pmodel(y|x) estimates the probability
of any target segment y given a source segment
x. The utility metric u(h, r) estimates quality of
a candidate translation h given a reference transla-
tion r.

Given a set of hypotheses H, we would like to
select the best hypothesis according to its expected
utility with respect to the distribution over human
references in the space of all sequences Ω, i.e.

hbest = argmax
h∈H

Er∼Phuman(·|x)[u(h, r)] (1)

= argmax
h∈H

∑

r∈Ω
u(h, r)Phuman(r|x).

Since Phuman(r|x) is unknown, we need to rely on
the model estimate instead, i.e.

hmodel = argmax
h∈H

∑

y∈Ω
u(h, y)Pmodel(y|x) (2)

This substitution assumes that the model provides
a good approximation for the true underlying (hu-
man translation) distribution. As Ω, the space of all
sequences, is infinite, it is impossible to integrate
over it, and so MBR relies on Monte-Carlo (MC)
estimation, using a finite number of pseudo refer-
ences Hmodel sampled from the model Pmodel(·|x).
This yields,

hMBR = argmax
h∈H

1

|Hmodel|
∑

y∈Hmodel

u(h, y).

(3)
Commonly, one relies on the same set of model
hypotheses for H (candidate pool) and Hmodel

(pseudo-references), i.e. H = Hmodel. In that case,
growing Hmodel has two beneficial effects: a larger
set provides a better approximation of the expected
utility (reducing finite sample variance) while the
maximum over a finite candidate pool obviously
increases as the candidate pool grows.

Growing Hmodel is however computationally
costly, both to obtain hypotheses and to evaluate
their cross-utility. In all our experiments, we adopt
the sampling-based approximation to MBR decod-
ing (Eikema and Aziz, 2020) to generate a finite
set of samples from a neural machine translation
model. Eikema and Aziz (2020) showed that unbi-
ased sampling provides a good approximation for

the underlying model distribution. The cost of sam-
pling is linear in the size of the set. Cross-utility
can involve evaluating a large neural network as
well and the cost of utility computation is gener-
ally quadratic in the size of the number of samples.
It is important to add that we generate indepen-
dent samples which implies that sentences with
higher model probabilities have a higher chance
to be drawn several times. By doing so and not
deduping the candidate lists, we do not need to
incorporate (again) the model probabilities during
MBR decoding.

3 Experimental Setup

3.1 Data and Model

We run experiments on four language
pairs: English↔German (En↔De) and
English↔Chinese (En↔Zh). We use an in-
ternal web-crawled dataset for training our models.
We filter out noisy examples with contrastive
data selection as proposed by Wang et al. (2018).
After filtering, we have 625 million training
examples for En↔De language pair and 1.32
billion training examples for En↔Zh. We use
newstest2019 as our dev set to pick checkpoints
and newstest2021 (Akhbardeh et al., 2021) as our
test set.

3.2 Model

Our translation models are 581M parameter trans-
former models (Vaswani et al., 2017) with 12 en-
coder and 12 decoder layers, model dimension size
of 1,024, hidden dimension size of 4,096, and the
number of multi-attention heads is 16. Our mod-
els use a vocabulary of 32k subword units (Kudo
and Richardson, 2018) trained separately for each
language pair on the parallel data. We train the
models until convergences for around 500,000 up-
dates with a batch size of 0.5M tokens. We follow
the suggestion of Eikema and Aziz (2020) and train
our models without label smoothing.

We run beam search with beam size of 4 (larger
beam sizes did not improve quality) and length
penalty as described in Equation 10 in Wu et al.
(2016) using α=0.5. We do not use coverage
penalty as this does not improve the results.

For MBR decoding, we generate 1,024 samples
for each source sentence and use BLEURT (Sellam
et al., 2020) as utility function across the paper.
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3.3 Human Evaluation

We hired professional translators (7 for En→De,
5 for De→En, 4 for Zh→En, and 4 for En→Zh)
and measured translation quality with a document
context version of MQM (Lommel et al., 2014)
which mimics the setup proposed in Freitag et al.
(2021). This includes using the same error cate-
gories, severity levels and error weighting schema.
As suggested in the study, we weight each major
error with 5 and each minor error with 1, except for
minor punctuation errors which get a score of 0.1.
The final segment-level score is an average over
scores from all annotators. We refer the reader to
Freitag et al. (2021) for the details on error cate-
gories and annotator instructions.

4 Experimental Results

To understand why epsilon sampling is the most
suitable sampling approach for machine translation,
we first investigate the limitations of the commonly
used sampling approaches in Section 4.1. We then
explore different hyperparameter settings for all
sampling approaches in Section 4.2. Since it is not
feasible to run human assessment on all hyperpa-
rameter settings, we select a subset of the highest
quality settings based on BLEURT and conduct an
expert-based human evaluation to assess the final
quality of this subset in Section 4.3.

4.1 Distributional Properties of Sampling
Approaches

NMT models usually generate a dense distribu-
tions over the target vocabulary for each time
step. Each token is assigned a non-zero probability,
even when it is completely unrelated to the source
query. When combined with large vocabularies,
this means that a considerable (cumulative) proba-
bility mass is assigned to undesirable tokens at the
tail of the distribution. Instead of considering the
full vocabulary as done in ancestral sampling, nu-
cleus and top-k sampling are designed to mitigate
this problem by trimming the tail of the distribu-
tion (Figure 1). Even though both nucleus and
top-k sampling prune away a significant number of
tokens, they potentially still consider tokens that
have very low probability according to the model
distribution.

During top-k sampling, the number of non-
trimmed tokens is independent of the model con-
fidence (entropy): this means that for cases where
the model is too confident, it might fail to prune a

large number of undesirable tokens, while for cases
where the model is uncertain, it might prune a large
set of valid tokens (Figure 2).
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Figure 2: Top-K sampling is insensitive to model confi-
dence.

Nucleus sampling considers the most probable
tokens within an accumulated probability mass of
p. Even with smaller p values, we sometimes need
to consider several hundreds of tokens. Figure 3
shows an example where we need almost 400 to-
kens to get an accumulated probability mass of 0.9.
Many of the 400 tokens have very low probability
on their own, but as their accumulated mass is not
small, there is a large chance that one of the low
probability tokens will be considered by nucleus
sampling.
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Figure 3: Nucleus sampling can have unpredictable
behavior and lead to many low-probability tokens being
considered.

We believe that if tokens have a very low prob-
ability according to the model, we shouldn’t con-
sider them at all. This is precisely the motivation
behind using epsilon sampling. By setting an ade-
quate threshold ϵ, we can exclude the undesirable
low-probability tokens. This leads to a pruned set
of tokens that has both variable number of tokens
and variable accumulated probability mass.

We want to highlight another interesting compar-
ison of the different sampling approaches in Fig-
ure 4. The cumulative probability mass is larger for
epsilon sampling when sampling 1024 times from
the model while the other sampling approaches
converge to the same area. This might indicate that
we can generate more diverse translations when us-
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ing epsilon sampling and, importantly, this means
we can get better estimations of the true utility in
Equation 3.

0 200 400 600 800 1000
Number of Samples

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Po
st

er
io

r P
ro

ba
bi

lit
y 

Co
ve

re
d 

(A
ve

ra
ge

d)

Ancestral Sampling
Epsilon Sampling ( = 0.02)
Top-K Sampling (K = 50)
Nucleus Sampling (p = 0.9)

Figure 4: (Cumulative) probability mass over sentences,
covered by each sampling method as we increase the
number of samples.

4.2 Hyperparameter Search
All of the sampling approaches introduced in Sec-
tion 2.1 have one or two hyperparameters. We ran a
large number of experiments on English→German
and used this language pair as our development
language pair for hyperparameter selection. We
then used the exact same hyperparameters for other
language pairs to investigate how well they general-
ize. All MBR decoding results used BLEURT as the
utility function. For each sampling approach, we
picked 1-2 hyperparameter settings purely based
on BLEURT. In the final evaluation, we will in-
vestigate how well the BLEURT scores correlate
with human assessment when used both as a utility
function and an evaluation metric.

4.2.1 Ancestral Sampling
Ancestral sampling has one hyperparameter, the
temperature τ . We ran MBR decoding on can-
didate lists generated via ancestral sampling with
τ = 0.65, 0.75, 0.85, 1.0, 1.1 and compared its per-
formance to the translations generated with beam
search decoding. In addition to just looking at the
performance of MBR decoding using all 1024 sam-
ples, we also looked at how well MBR decoding
performs when reducing the candidate list size.

In Figure 5, we observe that using a lower tem-
perature (τ ) is favorable when the candidate size
is small. This is because a lower temperature en-
courages the model to generate more likely tokens,
which is important when the candidate list is small
and there are only a few possible translations to

choose from. For larger candidate sizes, higher
temperatures perform better as we can be more
risky and thus also consider interesting translations
with lower model probability, but potentially even
higher quality. In this paper, we will focus on large
candidate sizes and thus choose τ=1.0 for our ex-
periments going forward.
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Figure 5: Ancestral Sampling for newstest2021
English→German for various temperatures.

4.2.2 Top-K Sampling

Top-k sampling has two parameters: τ and k. Fig-
ure 6 shows different hyperparameter settings. Sim-
ilar to ancestral sampling, using a lower tempera-
ture helps when the candidate size is small. Once
the candidate size is large, the quality of the dif-
ferent hyperparameter settings are almost identical.
We decided to use the more traditional settings
(k=10, τ=1.0), and (k=50, τ=1.0) for our experi-
ments going forward.
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Figure 6: Top-K Sampling for newstest2021
English→German for different settings.
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4.2.3 Nucleus Sampling
Nucleus sampling has two hyperparameters: τ and
p. Figure 7 illustrates the performance of differ-
ent hyperparameter settings. First, we observe the
same behavior that we saw with ancestral and top-k
sampling: using a lower temperature is favorable
when the candidate size is small. This is because a
lower temperature encourages the model to gener-
ate more likely tokens, which is important when the
candidate list is small and there are only a few pos-
sible translations to choose from. Second, we find
that using a higher temperature (τ=1.5) combined
with p=0.9 outperforms all other tested settings
when using a large (=1024) candidate list. This is
because a higher temperature allows the model to
generate more creative and interesting translations,
while p=0.8 ensures that the model does not gen-
erate too many low-probability tokens. Therefore,
we will use this setting (p=0.9, τ=1.5) in our final
evaluation.
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Figure 7: Nucleus Sampling for newstest2021
English→German for different settings.

4.2.4 Epsilon Sampling
Epsilon sampling has two parameters: τ and ϵ.
Figure 8 shows the performance of different pa-
rameter settings with MBR decoding. Similar to
the other sampling strategies, a low temperature
(τ ) is needed to yield good translation quality for
small candidate sizes. Increasing the temperature
results in higher BLEURT scores when using a large
candidate list.

We have to highlight that very high temperatures
(τ ≥2) yield a sharp drop in translation quality
when used for the traditional sampling approaches1,

1Ancestral, top-k and nucleus sampling with τ=2.0 yield
0.45, 0.65 and 0.7 BLEURT for candidate list size of 1024.

but show promising results for epsilon sampling.
The limitations of traditional sampling approaches,
as discussed in Section 4.1, are that they can con-
sider very low-probability tokens especially when
combined with a large temperature. This can lead
to a sharp drop in translation quality.

We chose two settings for our final evaluation:
The highest scoring setting (τ=2.0, ϵ=0.02) and
(τ=1.0, ϵ=0.02) with the same epsilon threshold,
but lower temperature to measure the direct impact
of a large temperature during epsilon sampling.
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Figure 8: Epsilon Sampling for newstest2021
English→German for different settings.

4.3 Final Evaluation
The experimental results of MBR decoded trans-
lations with 1024 samples comparing the six sam-
pling settings chosen in Section 4.2 including an
expert-based MQM human evaluation are summa-
rized in Table 1. Our findings are consistent across
all four tested language pairs. Based on the expert-
based MQM human evaluation, we come to the
following conclusions:

• MBR decoding with BLEURT outperforms
beam search decoding across all four language
pairs independent of the underlying sampling
approach.

• For all language pairs, MBR Epsilon (ϵ=0.02,
τ=1.0) sampling outperforms all other MBR
runs.

• Higher temperature in epsilon sampling can
lead to "reward over-fitting": even though τ=2
generally has higher BLEURT scores (the util-
ity function) for most language-pairs, humans
tend to prefer translation obtained from τ=1.
This indicates that that high temperature might
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Automatic Evaluation Model Human Eval

BLEU CHRF BLEURT COMET20 logP MQM ↓
Human Transl. (Ref-D) 31.5 60.9 76.1 59.0 -30.6 0.55

MBR

Epsilon (ϵ=0.02, τ=1.0) 34.7 63.6 78.6 61.9 -10.8 1.04
Top-k (k=10, τ=1.0)† 33.5 63.0 79.0 61.9 -13.6 1.13
Top-k (k=50, τ=1.0)† 32.6 62.3 79.1 61.3 -15.6 1.15
Ancestral (τ=1.0)† 33.3 62.7 78.9 61.1 -15.0 1.16
Nucleus (p=0.9, τ=1.5)† 31.9 61.9 78.9 60.8 -15.8 1.25
Epsilon (ϵ=0.02, τ=2.0)† 27.5 59.0 79.6 60.0 -20.5 1.26

Beam 4† 37.1 65.1 74.4 58.0 -5.4 1.36

(a) English→German (Ref-C)

Automatic Evaluation Model Human Eval

BLEU CHRF BLEURT COMET20 logP MQM ↓
Human Transl. (Ref-A) 28.0 28.2 63.5 42.7 -54.2 1.86

MBR

Epsilon (ϵ=0.02, τ=1.0) 29.6 26.9 67.2 44.1 -13.4 3.61
Top-k (k=10, τ=1.0)† 29.3 26.8 67.8 44.0 -16.2 3.97
Nucleus (p=0.9, τ=1.5)† 28.2 26.1 68.6 45.6 -20.6 4.09
Top-k (k=50, τ=1.0)† 28.7 26.3 68.5 45.1 -18.9 4.10
Ancestral (τ=1.0)† 28.4 26.1 68.5 44.9 -20.0 4.12
Epsilon (ϵ=0.02, τ=2.0)† 26.6 25.0 68.9 45.1 -23.4 4.40

Beam 4† 29.6 28.5 61.9 36.0 -7.6 4.77

(b) English→Chinese (Ref-B)

Automatic Evaluation Model Human Eval

BLEU CHRF BLEURT COMET20 logP MQM ↓

MBR
Epsilon (ϵ=0.02, τ=1.0) 33.1 60.9 76.1 62.8 -6.9 1.07
Nucleus (p=0.9, τ=1.5)† 31.0 59.4 76.3 61.3 -9.4 1.22
Epsilon (ϵ=0.02, τ=2.0)† 28.2 57.8 76.4 60.5 -11.4 1.25

Human Transl. (Ref-B)† 29.5 57.7 73.5 56.4 -26.7 1.26

MBR
Top-k (k=10, τ=1.0)† 32.1 60.4 76.3 62.4 -7.8 1.31
Top-k (k=50, τ=1.0)† 31.9 60.2 76.3 62.2 -8.5 1.38
Ancestral (τ=1.0)† 32.0 60.4 76.2 61.8 -8.7 1.40

Beam 4† 34.7 62.4 74.5 61.1 -4.7 1.43

(c) German→English (Ref-A)

Automatic Evaluation Model Human Eval

BLEU CHRF BLEURT COMET20 logP MQM ↓
Human Transl. (Ref-B) 28.2 59.6 69.6 47.3 -53.1 1.53

MBR

Epsilon (ϵ=0.02, τ=1.0) 26.4 56.4 70.2 43.4 -18.3 3.02
Top-k (k=10, τ=1.0) 25.7 55.9 70.4 43.2 -21.1 3.12
Top-k (k=50, τ=1.0)† 25.3 55.5 70.2 42.1 -23.1 3.29
Ancestral (t=1.0)† 25.2 55.5 70.1 41.8 -24.2 3.49
Epsilon (ϵ=0.02, τ=2.0)† 22.3 53.8 70.1 41.8 -28.4 3.38
Nucleus (p=0.9, τ=1.5)† 24.1 54.5 69.8 39.9 -27.4 3.57

Beam 4† 27.2 54.5 65.8 30.2 -10.5 3.61

(d) Chinese→English (Ref-A)

Table 1: Actual utility, log-likelihood (logP) and MQM score for different MBR methods and beam search on
newstest2021. All MQM results labelled with † are significantly worse than MBR Epsilon (ϵ=0.02, τ=1.0) on
PERM-BOTH significance testing (Deutsch et al., 2021) with p=0.001.
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be exploiting weaknesses in the utility (Am-
rhein and Sennrich, 2022).

• Beam search consistently outperforms MBR
decoding when combined with any sampling
approach, when measuring by BLEU. This
highlights the low correlation of BLEU with
human judgement as discussed in several pub-
lications before (Freitag et al., 2022b).

• As observed before, the human translation
for newstest2021 German→English contains
many errors and is already outperformed by
MBR decoding. This highlights again the
importance of acquiring high level human
translations when comparing humans with ma-
chines.

5 Related Work

Minimum Bayes Risk (MBR) decoding stems from
statistical decision theory from the principal of
maximisation of expected utility (Bickel and Dok-
sum, 1977; Berger, 1985). MBR has been applied
to parsing (Goodman, 1996; Sima’an, 2003) and
speech recognition (Stolcke et al., 1997; Goel and
Byrne, 2000). The same idea was later applied to
bilingual word alignment (Kumar and Byrne, 2002)
and machine translation (Kumar and Byrne, 2004).
MBR was used to maximize overlap metrics such
as BLEU (Papineni et al., 2002) with statistical MT
systems (Kumar and Byrne, 2004; Smith and Eis-
ner, 2006; Tromble et al., 2008).

After the advent of neural machine translation,
most methods relied on beam search to approx-
imate MAP decoding (Bahdanau et al., 2015;
Gehring et al., 2017; Vaswani et al., 2017). MBR
decoding has recently gained attention in MT as
a decision rule with the potential to overcome
some of the biases of MAP decoding in NMT
(Eikema and Aziz, 2020; Müller and Sennrich,
2021; Eikema and Aziz, 2021). While most prior
work on MBR decoding for MT is based on k-best
lists obtained via beam search, Eikema and Aziz
(2020) proposed to use an approximation of MBR
decoding based on unbiased sampling to overcome
the shortcomings of MAP decoding. They demon-
strated that samples from the NMT model are faith-
ful to the training data statistics, while beam search
is not. We adopt their sampling-based MBR decod-
ing approximation in all our experiments. Freitag
et al. (2022a); Fernandes et al. (2022) further ex-
plored MBR using neural-based utility functions.

They demonstrated that neural-based utility func-
tion like BLEURT and COMET outperform lexical
overlap metrics. Further, Fernandes et al. (2022)
found that alternatives to ancestral sampling could
lead to improved performance of MBR-based de-
coding. (Amrhein and Sennrich, 2022) found that,
despite promising results with neural metrics in ma-
chine translation evaluation, MBR might exploit
biases towards faulty translations with high scores
that exist in these metrics (reward over-fitting).

MBR has since been extensively in used in sub-
missions to various machine and speech translation
shared tasks with good results (Nowakowski et al.,
2022; Jon et al., 2022; Yan et al., 2022), showcas-
ing its potential to improve translation quality.

Besides the approaches discussed in Section 2.1,
other sampling approaches that attempt to fix some
of the issues with vanilla sampling have been pro-
posed. For example, (Meister et al., 2022) intro-
duced the concept of typical sampling, which pro-
posed pruning tokens whose probability deviates
alot from model’s (conditional) entropy (so poten-
tially both high and low probability tokens), and
show this reduces degenerate repetitions and im-
proves generation quality.

6 Conclusion

In this paper, we investigated the impact of differ-
ent sampling approaches (ancestral, nucleus, top-
k, and epsilon sampling) during MBR decoding.
We analysed the limitations of the traditional sam-
pling approaches and proposed combining the re-
cently proposed epsilon-sampling with MBR. Fi-
nally, we conducted human evaluations on four lan-
guage pairs, and showed that MBR decoding based
on epsilon-sampling significantly outperforms not
only beam search but also MBR decoding with
all other tested sampling approaches. We believe
that the results of this study are significant for sev-
eral reasons. First, they demonstrate that epsilon-
sampling is a promising approach for improving
the quality of MBR decoding. Second, they provide
insights into the relative performance of different
sampling approaches, suggesting that epsilon sam-
pling is a promising direction even outside of MBR
decoding and for other non open-ended generation
tasks.

In future work, we plan to conduct further human
assessment to investigate the impact of using a
smaller candidate size on the performance of MBR
decoding.
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Limitations

Automatic evaluation of translations generated with
MBR decoding can be challenging when the quality
metric (BLEURT, COMET) and the utility function
(in our case BLEURT) are the same or at least re-
lated. This is because there may be metric honey
pots (Freitag et al., 2020) that yield high metric
scores, but are not necessarily of high quality. MBR
decoding is particularly susceptible to this issue, as
it is designed to find the translation with the highest
possible metric score.

To address the problem of potential overfitting
of the metric, it is necessary to run a final human
assessment to verify the quality of the translations.
However, human assessment is expensive and time-
consuming, so it is not possible to assess all trans-
lations generated as part of this study. We had to
limit ourselves to a subset of translations that we
could send out for human assessment. It is possible
that some of the translations that we did not assess
are of higher quality than the translations that we
did assess.

Another limitation of MBR decoding with neural
metrics is its decoding speed. In our experiments,
we had to generate 1024 samples for each source
sentence and each hyperparameter setting, and then
score each pair of samples with BLEURT. The cost
of sampling is linear in the size of the set, and the
cost of utility computation is generally quadratic
in the size of the number of samples. This makes
MBR decoding in its current form very expensive
and impractical for most use cases.

Ethics Statement

The annotators were compensated fairly and did
not have to disclose any personal information dur-
ing the annotation process. All of the test sets used
in this study are publicly available, and annotators
were allowed to label sensitive information if nec-
essary.
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A Token-Level Probabilities

We believe that the strong results of MBR decoding
based on epsilon sampling are mainly due to the
epsilon threshold, which avoids translations that
contain at least one token with a low (smaller than
epsilon) token-level probability. By adding this ep-
silon guard, we avoid translations where not every
token is backed up by at least some decent probabil-
ity mass from the model. To investigate this hypoth-
esis, we looked at the MQM human annotations,
in particular at the major error spans annotated
for the other sampling strategies, to connect error
spans with token-level probabilities. Some exam-
ple translations for German→English can be seen
in Table 2. Error spans as labeled by professional
translators are highlighted in red. Interestingly, we
can see that all major error spans contain at least
one token that has a token-level probability smaller
than 0.02. Consequently, none of the translations
generated by MBR decoding based on either top-k
or nucleus sampling are in the candidate pool when
doing MBR decoding with epsilon sampling.
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Source Ein Sicherheitsdienst überwacht das Ausgehverbot.
Reference A security service monitors the curfew.

Epsilon (ϵ=0.02, τ=1.0) A security guard supervises the curfew.
Top-k (k=10, t=1.0) A security guard keeps watch over the area.
Nucleus (p=0.9, t=1.5) A security guard keeps watch over the premises.

(a) Example 1: The major error spans area and premises have token-level probabilities smaller than 0.02.

Source Bundesarbeitsminister Hubertus Heil (SPD) will nach den nun geplanten strengen
Vorschriften gegen Missstände in der Fleischindustrie auch andere Branchen überprüfen.

Reference The Federal Minister of Labor Hubertus Heil (SPD) wants to investigate other sectors
after the currently planned, strict measures against abuses in the meat industry.

Epsilon (ϵ=0.02, τ=1.0) Federal Labor Minister Hubertus Heil (SPD) also wants to check other industries accord-
ing to the now planned strict regulations against abuses in the meat industry.

Top-k (k=10, t=1.0) Federal Labor Minister Hubertus Heil (SPD) wants to examine other industries following
the new, strict regulations against abuses in the meat industry.

Nucleus (p=0.9, t=1.5) German Labor Minister Hubertus Heil (SPD) plans to audit other sectors as well, based
on the new strict rules that would combat abuses in the meat industry.

(b) Example 2: The token new has a token-level probability smaller than 0.02 in both error spans.

Source Beruflich angekommen - privat noch nicht
Reference Professionally achieved - privately not there yet.

Epsilon (ϵ=0.02, τ=1.0) Arrived professionally - not privately yet
Top-k (k=10, t=1.0) Arrived at professional level - privately not yet .
Nucleus (p=0.9, t=1.5) Newly arrived in professional life - but not in private life yet

(c) Example 3: The first token in all errors spans (Newly, professional, and .) have token-level probabilities smaller than 0.02.

Table 2: Example translations where we avoid major translation errors by using epsilon sampling instead of nucleus
or top-k sampling during MBR decoding. Major translation errors are highlighted in red and were labeled by human
annotators as part of our MQM evaluation. Interestingly, all of these major errors were avoided when switching to
epsilon sampling, as the error spans contain at least one token with a token-level probability smaller than 0.02 (the
epsilon threshold used in our experiments). In all of the examples, the translations generated with MBR decoding
based on epsilon sampling are error-free.
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