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Abstract

Neural models have been shown to exploit shal-
low surface features to perform language under-
standing tasks, rather than learning the deeper
language understanding and reasoning skills
that practitioners desire. Previous work has de-
veloped debiasing techniques to pressure mod-
els away from ‘spurious’ features or artifacts
in datasets, with the goal of having models in-
stead learn useful, task-relevant representations.
However, what do models actually learn as a re-
sult of such debiasing procedures? In this work,
we evaluate three model debiasing strategies,
and through a set of carefully designed tests
we show how debiasing can actually increase
the model’s reliance on hidden biases, instead
of learning robust features that help it solve a
task. Furthermore, we demonstrate how even
debiasing models against all shallow features
in a dataset may still not help models address
a task. As a result, we suggest that only debi-
asing existing models may not be sufficient for
many language understanding tasks, and future
work should consider new learning paradigms
to address complex challenges such as com-
monsense reasoning.

1 Introduction

Large-scale language models have established state-
of-the-art performance on several language under-
standing tasks (Devlin et al., 2019; Liu et al., 2019;
He et al., 2020). However, the performance of
these models can degrade when presented with ex-
amples drawn from a different distribution than
their training conditions. Past work has shown that
these approaches are prone to exploiting spurious
‘shortcuts’ in the training data, instead of learning
the intended task (Naik et al., 2018; McCoy et al.,
2019; Geirhos et al., 2020).

Towards the primary goal of training NLP sys-
tems that can understand natural language, the
propensity of neural models to rely on misleading

∗*The first two authors contributed equally to this work.

shortcuts presents a crucial obstacle to overcome.
A number of debiasing approaches were proposed
to prevent models from learning these shortcuts, in-
cluding product-of-experts (Mahabadi et al., 2020),
example reweighting (Clark et al., 2019) and confi-
dence regularization (Utama et al., 2020a). These
approaches are based on the intuition that by forc-
ing models to avoid particular dataset shortcuts, we
can achieve robust models that learn task-relevant
features instead.

In this work, we critically examine this assump-
tion. We take a step back and characterize the
empirical behavior of debiasing methods at large.
While prior work has largely demonstrated the ef-
fectiveness of debiasing methods by showing in-
creased “robustness” on external challenge sets,
where these improvements come from, the extent
to which the model is unbiased, and the exact differ-
ences in behavior induced by debiasing procedures
remain largely unknown.

Several factors make analyzing model behavior
along these axes difficult in empirical settings. It
is challenging to: (1) enumerate all possible biases
in a dataset, (2) characterize task difficulty, and (3)
develop fine-grained insights into the mechanisms
models use to perform tasks— before and after
debiasing procedures. We shed light on these ques-
tions, by constructing a suite of controlled tests to
characterize the behavior of debiased models. We
make our suite of synthetic tasks publicly available,
providing a testbed for bias mitigation techniques.

Through the behaviors of debiased models on
our controlled tasks, we identify several undesir-
able behaviors induced by debiasing procedures.
First, we identify that debiasing can cause models
to switch from the identified and targeted dataset
bias to an unidentified dataset bias, while still seem-
ing to demonstrate increased “robustness” to the
targeted bias. This suggests that it is entirely pos-
sible that current bias mitigation approaches cause
models to shift from relying on measurable biases
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to relying on other unknown and unidentified bi-
ases in datasets (§5.1). Further, we characterize the
complexity of a dataset1 and demonstrate that even
when all dataset biases have been addressed by a
bias mitigation procedure, the model may not be
able to learn the task if it is sufficiently complex
(§5.2). This suggests that debiasing approaches
alone are unlikely to help address complex tasks
such as those involving commonsense reasoning.
Our contributions are:

1. We provide a suite of six controlled datasets to
probe model behavior when debiasing against
a known bias (§4.1).2

2. For a range of different debiasing techniques
and tasks, we show how debiasing can shift
model reliance to hidden biases in the dataset,
rather than the ones practitioners are aware of
(§5.1).

3. We show for more complex tasks, debiasing
alone does not result in more robust models
(§5.2).

4. We highlight the strengths and weaknesses of
three popular debiasing techniques, showing
the circumstances when each technique may
be appropriate (§5.3).

2 Related Work and Background

Shortcut Learning Deep learning models are
now known to be susceptible to “shortcut-learning”,
where models learn decision rules that appear super-
ficially successful on benchmarks, but generalize
poorly outside the training distribution (Geirhos
et al., 2020). For example, a model trained to pre-
dict images that contain cows may use features
from the background, such as the presence of grass,
to make its prediction rather than learning to recog-
nize cows (Beery et al., 2018). Much recent work
in NLP has identified that models tend to capital-
ize on idiosyncrasies of a particular dataset at the
expense of learning an underlying task. For the nat-
ural language inference task (Cooper et al., 1996;
Dagan et al., 2006, 2013; Bowman et al., 2015;
Williams et al., 2018), past work has found that
NLI models make entailment decisions based on
cues such as the degree of lexical overlap between
pairs of sentences or the presence of words such
as ‘not’ in the input (Dasgupta et al., 2018; Naik

1We consider datasets to be denotations for a task.
2Code/data available at https://github.com/

AbhilashaRavichander/bias_mitigation.

et al., 2018; McCoy et al., 2019). Further, on the
MultiNLI dataset (Williams et al., 2018), models
can considerably outperform a random baseline by
only looking at partial inputs (Gururangan et al.,
2018; Poliak et al., 2018; Tsuchiya, 2018). Simi-
lar model behavior has been identified in several
tasks which require natural language understand-
ing, including argumentation mining (Niven and
Kao, 2019), reading comprehension (Jia and Liang,
2017; Kaushik and Lipton, 2018), visual question
answering (Zhang et al., 2016; Kafle and Kanan,
2017; Goyal et al., 2017; Agrawal et al., 2018), fact
verification (Schuster et al., 2019), and story cloze
completion (Schwartz et al., 2017; Cai et al., 2017).

Bias Mitigation Methods Recent work has fo-
cused on ‘debiasing’ approaches, with the aim of
learning unbiased models by pressuring them away
from picking up dataset biases. These approaches
can be broadly categorized as follows: (1) Data-
centric approaches: procedures which manipulate
the input data before running a standard model
training procedure. By either filtering out biased
instances, or by augmenting the dataset with addi-
tional examples, the model is expected to reduce its
reliance on spurious biases in the dataset (Kaushik
et al., 2020; Le Bras et al., 2020a; Yanaka et al.,
2019; Min et al., 2020; Liu et al., 2020b; Wen et al.,
2022). (2) Model-centric approaches: debiasing
procedures that either modify the architecture of
the model, the optimization, or the training proce-
dure in order to make a model reduce its reliance
on spurious biases (Sagawa et al., 2019; Tu et al.,
2020; Mahabadi et al., 2021; Zhou and Bansal,
2020; Kirichenko et al., 2022; Wang et al., 2022;
Du et al., 2022; Rajič et al., 2022; Wang et al.,
2023; Ghaddar et al., 2021).

In this work, we will focus on model-centric
debiasing procedures that can be specialized to
particular tasks and datasets. Many popular model-
centric approaches involve using the predictions
of another model to influence learning. For exam-
ple, several model-centric approaches use the pre-
dictions or the representations learned by a “shal-
low” classifier— a classifier that is lower capacity
or impoverished in some other way such as ac-
cessing partial input—to construct a more robust
model through debiasing (He et al., 2019; Clark
et al., 2019; Mahabadi et al., 2020; Utama et al.,
2020a,b; Sanh et al., 2021; Zhou and Bansal, 2020;
Liu et al., 2020a; Clark et al., 2020; Xiong et al.,
2021). The intuition behind these approaches is
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that a “shallow” model is likely to rely more on
dataset-specific biases. Popular approaches here in-
clude adversarial training (Belinkov et al., 2019a,b;
Stacey et al., 2020), product-of-experts models
where a ‘main’ model is trained in an ensemble
with a shallow model (Clark et al., 2019, 2020;
Utama et al., 2020b; Sanh et al., 2021), importance
reweighting approaches where models are trained
on a reweighted version of a source dataset (He
et al., 2019; Utama et al., 2020b; Liu et al., 2020b;
Mahabadi et al., 2020), or simply including a sec-
ond round of finetuning on a more challenging
subset of the data (Yaghoobzadeh et al., 2021). In
this work, we consider whether debiasing strategies
help (or not) with building better natural language
understanding systems.

Understanding the limitations of current debi-
asing methods Amirkhani and Pilehvar (2021)
show that using importance reweighting based on
the prediction of a biased model may waste too
much training data. Our work is similar, but exam-
ines fundamental questions about what models will
learn from debiasing procedures. Mendelson and
Belinkov (2021) show through a probing experi-
ment that debiasing against a particular bias may
increase the extent to which that bias is encoded in
the inner representations of models. In this work,
we study how debiasing procedures affect model
behavior, as probe performance is not necessarily
indicative of the information which a model actu-
ally uses to make predictive decisions (Ravichander
et al., 2021; Elazar et al., 2021).

3 Framework and Definitions

3.1 Framework

Our goal is to analyze the mechanisms models em-
ploy during debiasing procedures. Our motivation
is the discovery of shortcut-learning behavior in
models for NLP tasks such as natural language in-
ference and paraphrase detection. The question
this work addresses is: when a model is debiased
against one bias, what features does it learn?

In this work without loss of generality, we as-
sume a binary paired-sequence classification task
where a task-relevant feature t is perfectly predic-
tive of the label, and ‘shortcut’ features w1 and w2.
Here, w1 represents a superficially correlated fea-
ture that has either been identified, hypothesized
to exist in a dataset, or inadvertently targeted by a
broad-spectrum model, and w2 is intended to repre-

sent an ‘unknown’ dataset bias. Our goal with these
assumptions is to represent realistic conditions in
NLP datasets, which contain possible shortcuts for
models such as shallow lexical cues and annotation
artifacts, but where the complete set of shortcuts a
model can take is unknown. Our experiments focus
on debiasing against w1, representing the shortcuts
that models are pressured away from taking by de-
biasing procedures (He et al., 2019; Clark et al.,
2019; Utama et al., 2020b,a; Clark et al., 2020;
Utama et al., 2020b; Sanh et al., 2021).

3.2 Definitions

Let S be the space of all sequences (which are ei-
ther English sentences or number sequences in our
experimental setting). Let y ∈ {0, 1} represent
the classes in our binary paired-sequence classifi-
cation task, intended to represent real-world paired
sentence classification tasks such as NLI. The com-
plete set of examples in the dataset D is then drawn
from the space (x1, x2, y) ∈ S × S × {0, 1}.

Task features and spurious features In our def-
inition, a task-relevant feature t is a feature that a
dataset designer would identify as useful for per-
forming a NLP task. 3 This motivates our choice to
specify task-relevant features as those which corre-
spond to a particular task definition. Conversely, a
spurious feature w is a feature that is considered not
relevant for the task. In our work, we will discuss
two kinds of spurious features— w1 are spurious
features that are targeted by debiasing methods i.e.
targeted bias, and w2 are spurious features that ex-
ist in the dataset but have not been debiased against
i.e. hidden bias.

Feature frequency and label correlation We
refer to frequency as the proportion of examples in
a dataset containing a feature i.e p(w). By predic-
tiveness, we refer to the extent to which a feature
correlates with a label i.e p(y|w). For the spurious
features w1 and w2, we set w = 1 as a spurious
feature that is correlated with y = 0. To prevent
the absence of this spurious feature from becoming
an usable feature itself, we add an equal number

3We deviate from past definitions of task-relevant features
such as that given in (Lovering et al., 2020). Lovering et al.
(2020) consider task-relevant features as features where there
exists some function f such that f(t(x)) = y, i.e those fea-
tures which are perfectly predictive of the task decision. How-
ever, such an empirical definition can be misleading due to
both label noise in datasets, where a set of labels may not
correspond to task-relevant features, as well as the possibility
of multiple features that correspond to a particular task label.
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Task name Task description Task example

Synthetic
GREATER
NUMBER

First number of seq. 1 > First number of seq.
2

Seq. 1: 95789 68077 13030 37214 36462 56347 71940
65880 65242 35196 Seq. 2: 11453 67462 97337 49339
64738 30296 66671 69643 72790 4413

SUM NUM-
BERS

Sum of first 5 numbers in seq. 1 > sum of
first 5 numbers in seq.2

Seq. 1: 39440 66925 96563 64869 90299 90034 80263
98287 95837 76400 Seq. 2: 53169 59180 3453 79426
93135 92818 97662 35652 11135 81982

FACTORIZATION Sum of first 5 numbers in seq. 1 or seq. 2 is
divisible by 7,11, or 13

Seq. 1: 36620 96611 61508 79073 37465 21907 8158
7271 69979 39299 Seq. 2: 8631 11239 36336 74210
91520 33641 33775 26269 18699 81632

Naturalistic
LEXICAL
INFERENCE

Recognize synonym-antonym pairs Prem: What the group hate most is the sickness., Hyp:
What the group hate most is the illness.

LOGICAL
INFERENCE

Reasoning with logical operators (AND/OR) Prem: Stanley, Milo, Gabriel, Vinnie, Oakley and Eli
are walking down the street, Hyp: Oakley or Alex, and
Hudson or Elliot, and Stanley, and Eli, and Vinnie or
Gabriel, and Milo are walking down the street.

COMMONSENSE
INFERENCE

Pronoun resolution requiring commonsense
inferences (Rahman and Ng, 2012)

Prem: In the story: The sniper shot the terrorist because
he had orders, Hyp: In the story: The sniper shot the
terrorist because the sniper had orders.

Table 1: Task descriptions of six controlled datasets, both synthetic and naturalistic. All datasets are binary paired-
sequence classification tasks. Salient attributes of the premise and hypothesis, or sequences, are highlighted.

of examples with the condition w = 2 as an in-
stantiation of the same bias for y = 1. We refer to
an example as bias-neutral if it contains neither of
these properties i.e w = 0.

3.3 Characterizing Model Bias

If a model has learnt to use a particular feature, we
expect that the model predictions will be consistent
with the presence of that feature. By construction,
we will design our datasets such that the spurious
features are independent of each other, as well as
the task-relevant feature. Then, we are interested
in measuring the quantity P (y′|w), where y′ is the
model prediction and w represents either a spurious
or task-relevant feature. We can then write this as:

p(y′|w1) =
∑

t

∑

w2

p(y′|w1, w2, t) · p(w2) · p(t)

We expect this empirical probability to be close
to 0.5 by assumption on our datasets, if a model
is not influenced by a feature. We will say that a
model is biased towards a particular feature, if this
empirical probability p(y|w) differs considerably
from 0.5.

4 Experimental Setup

With the above definitions in place, our hypotheses
are the following: (1) Debiasing procedures can

cause pretrained language models to simply switch
from relying on a measurable and targeted bias to
relying on unknown, unmeasurable biases, (2) For
higher-level complex tasks, debiasing a model does
not itself help models learn tasks.

4.1 Data

It can be challenging to disentangle task-relevant
features from all possible spurious artifacts, thus
we construct datasets with tightly-controlled biases.
The behavior of debiased models on each of these
datasets is used to provide evidence for a particu-
lar hypothesis about a model’s propensities, either
in favor or against. We construct both synthetic
datasets as well as naturalistic datasets. Our syn-
thetic datasets consists of tasks where the input is a
pair of number sequences, in order to better control
for possible confounds from pretraining. Our nat-
uralistic datasets are modeled after common NLP
tasks such as commonsense reasoning, and lexical
entailment.

Synthetic Data We construct simple synthetic
binary paired-sequence classification tasks to study
the debiasing procedures. Our tasks are intended to
span varying levels of complexity. All our tasks fea-
ture pairs of k-length number sequences as input,
and the output y ∈ {0, 1}. Our vocabulary V con-
sists of {0...∥V |}. We set k = 10 and V = 10000.
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Our three synthetic tasks are described in Table 1.
We introduce two kinds of biases: (1) token-level

bias (w1), where a particular token is correlated
with a class, (2) overlap bias (w2), where the co-
occurrence of tokens across both input sequences
is correlated with a class.

For w1, in examples with the positive label class,
p(y=1|w1=1), the symbol ‘1’ is added to one of the
inputs. To balance this effect, we have a bias in the
examples with the negative class, p(y=0, w1=2),
where the symbol ‘2’ is added to one of the number
sequences. The location of the bias and which
sequence it is added to is randomly chosen, to any
position except the last two numbers and the first
number.

For w2, in examples with the positive label class,
p(y=1|w2=1), the last number in both strings match.
To balance this effect, we have a bias in the exam-
ples with the negative class, p(y=0, w2=2), where
the penultimate number in both number sequences
match. If the example doesn’t contain the bias, all
numbers in both sequences will be unique.

Naturalistic Data We create naturalistic datasets
targeting lexical reasoning, logical reasoning or
commonsense reasoning. Each dataset is created in
the form of a sentence pair classification task. Ex-
amples are constructed to be highly lexically simi-
lar in order to mitigate the presence of additional
dataset biases (besides the biases we introduce).
Similar to the synthetic setting, we introduce two
kinds of biases: (1) token-level bias (w1), where
a particular token or token sequence is correlated
with a class, (2) overlap bias (w2), where the co-
occurrence of tokens across both input sequences
is correlated with a class.

The lexical reasoning dataset targets synonym
and antonym detection. We generate pairs using
the template ‘What the group hate most is the []’.
The entailment class is used as the label for syn-
onym word-pairs and the non-entailment class is
used as the label for antonym word-pairs. The w1

trigger-word bias is introduced by replacing the
word ‘hate’ with ‘love’ or ‘like’.4 The w2 bias
simulates a word-overlap bias. We append prefixes
about belief to both premise and hypothesis, with
prefixes matching for entailment and differing for
non-entailment.5

4The word love correlates with the non-entailment class
(w1=2), while the word like correlates with the entailment
class (w1=1).

5‘What we think’ or ‘What we believe’

The logical reasoning dataset evaluates model’s
abilities to correctly resolve logical expressions
given truth values of individual variables. The
premise lists the people doing a particular activ-
ity (truth values), while the hypothesis mentions
some of the people doing the activity separated by
AND/OR operators (logical expression). The w1

bias is introduced by changing the activity men-
tioned to either ‘running’ (for entailment) or ‘cy-
cling’ (for non-entailment). For the word overlap
bias, a suffix is appended (specifying the activity is
being performed ‘once more’/‘once again’), with
only matching suffixes corresponding to the entail-
ment class.

For commonsense reasoning we use the DPR
dataset (Rahman and Ng, 2012; White et al., 2017),
where the hypothesis contains a pronoun that re-
solves to one of two subjects in a premise. Resolv-
ing the pronoun correctly requires making com-
monsense inferences. w1 and w2 biases are intro-
duced by inserting a prefix of ‘In the story:’. For
the w1 bias, the word ‘in’ is replaced by ‘within’
or ‘inside’. For the w2 bias, the prefix is changed
to ‘In the story being told:’ or ‘In the story being
narrated:’. The same prefix for both the hypothesis
and premise corresponds to the entailment class.

4.2 Debiasing Procedures
The three debiasing approaches applied in this
work are Product of Experts, Example Reweight-
ing and Confidence Regularization (He et al., 2019;
Clark et al., 2019; Utama et al., 2020b,a; Clark
et al., 2020; Utama et al., 2020b; Sanh et al., 2021).
Following previous work (Utama et al., 2020b;
Ghaddar et al., 2021; Wang et al., 2023), we use
BERT (Devlin et al., 2019) as the base model for de-
biasing. We assume teacher probabilities i.e prob-
abilities assigned by a model that relies on w1 to
make predictions. When the biased feature does
not occur (w1 = 0), this probability is set to 0.5.

Importance Reweighting This method weights
training examples based on the presence of biased
features within each example, down-weighting ex-
amples with stronger known biases. The loss for
each minibatch B is:

LB =
b∑

i=1

CELoss(ŷi) ·
1− pi∑b
j=1 1− pj

where pi is the teacher probability that the ith ob-
servation is the correct class, ŷi are the predicted

9237



Bias 1- token correlation bias Bias 2- token overlap bias Unbiased Test Set
Task Baseline Reweight PoE CR Baseline Reweight PoE CR Baseline Reweight PoE CR

Synthetic
Find Greater Number 0.986 0.501 0.502 0.5245 0.534 0.590 0.603 0.5867 0.945 0.940 0.940 0.855
Sum Numbers 0.978 0.499 0.499 0.5904 0.606 0.904 0.627 0.5625 0.830 0.801 0.808 0.768
Factorization 0.979 0.501 0.502 0.5472 0.687 0.995 0.992 0.7604 0.499 0.499 0.500 0.499

Natural
Lexical Inference 0.902 0.486 0.495 0.418 0.750 0.999 1.000 0.825 0.676 0.671 0.701 0.666
Logical Inference 0.847 0.492 0.495 0.553 0.637 0.904 0.746 0.627 1.000 0.997 0.938 0.991
Commonsense Inference 0.924 0.474 0.477 0.683 0.727 1.000 1.000 0.652 0.502 0.511 0.506 0.498

Table 2: Bias probabilities show the extent to which the model prediction correlates with the value of a biased
feature. Reweight, PoE and CR represent the three debiasing procedures in this study, and Baseline represents the
model where no debiasing has been performed. Debiasing a model against one bias (w1) may cause it to overrely on
a different bias (w2). The unbiased test set does not contain spurious features w1 or w2. All results are averaged
over five seeds.

model probabilities for the i-th observation, and
b is the number of examples within the minibatch
(Clark et al., 2019; Utama et al., 2020b).

Product-of-Experts The Product of Experts
(PoE) approach combines the model probabilities
with the teacher probabilities, incentivizing the
model to learn from features other than the bias
features. The loss for each example i is:

Li = CELoss(σ(log pi + log ŷi))

where pi are the teacher probabilities for both
classes and ŷi are the predicted model probabil-
ities for i (Clark et al., 2019; Utama et al., 2020b;
Mahabadi et al., 2020). The loss LossB for each
minibatch is the average loss of each observation.

Confidence Regularization Confidence Regu-
larization (CR) uses the bias teacher probabilities
pi, representing the teacher probability that the ob-
servation is the correct class, in addition to model
predictions ẑik that observation i is class k before
any debiasing has been applied. The confidence
of the model predictions before the debiasing are
regularized based on the teacher probabilities pi, in-
centivizing the model to be less confident for more
biased examples. A robust model is then trained
through self-distillation using both pi and ẑik, with
the loss for an example i is:

Li = −
∑

k=0,1

ẑik
1−pi

ẑik
1−pi + (1− ẑik)1−pi

· log ŷik

The loss LB for each minibatch is the average
loss from each observation.

5 Results and Analysis

5.1 What does debiasing do?

We consider datasets for each task which contain
both w1 and w2 as dataset biases. Recall that w1

represents a known bias which is the target of the
debiasing procedure, and w2 represents an uniden-
tified shortcut, and thus is not within the scope of
the debiasing procedure. We find that debiasing the
model against the w1 bias consistently increases
the model’s reliance on the w2 bias (Table 2).

The extent to which the model relies on this
secondary bias depends on the difficulty of the
task (Table 2). We observe that for both example-
reweighting and PoE, the model relies almost
completely on the w2 bias for the most difficult
tasks in each category (FACTORIZATION and COM-
MONSENSE INFERENCE). In comparison, the
confidence regularization procedure incentivizes
a model to be uncertain on biased predictions. and
we observe that on the most challenging tasks— the
model when debiased from w1, picks up neither w2,
nor learns to perform the task. For the simpler tasks
(FIND GREATER NUMBER, SUM NUMBERS, LEXI-
CAL INFERENCE, LOGICAL INFERENCE), we find
that the models rely on w2 to a lesser extent. but
only seldom gains improvements on the task.

A reasonable concern here is that these con-
clusions would not generalize to newer models,
and that newer models would neither exploit the
bias w1, nor switch to relying on the hidden bias
w2. Due to the considerable computational cost in-
volved of training several debiased models, we only
experiment with DeBERTa-large (He et al., 2021).
We find that our conclusions generalize when using
either a BERT or DeBERTa model, these results
can be found in the appendix (Fig. 2).
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Task MDL Bias 1- token correlation bias Unbiased Test Set
Task Baseline Reweight PoE CR Baseline Reweight PoE CR

Synthetic
Find Greater Number 3877.35 0.892 0.5024 0.5028 0.5008 86.73% 95.51% 95.19% 79.6%
Sum Numbers 7179.58 0.9788 0.5025 0.5012 0.514 85.3% 83.15% 69.84% 79.03%
Factorization 16426.14 0.9793 0.5009 0.5 0.5897 50.10% 49.98% 50.15% 49.94%

Natural
Lexical Inference 460.98 1.000 0.501 0.521 0.458 72.10% 68.40% 70.67% 65.80%
Logical Inference 477.19 0.985 0.496 0.497 0.478 99.89% 90.02% 97.58% 99.61%
Commonsense Inference 480.19 1.000 0.493 0.486 0.586 50.33% 51.60% 52.77% 49.99%

Table 3: Debiasing a model against one bias (w1) does not indicate a model will learn a task. Bias probabilities
reflect the extent to which model predictions correlate with the biased feature. The unbiased test set does not contain
w1. Even when debiasing procedures are effective and model predictions are not highly correlated with the targeted
feature (w1), task performance does not always increase.

5.2 Debiasing in the limit

We ask if, hypothetically, a model were to be de-
biased against all the spurious correlations that ex-
isted in a dataset— would the model then be able to
learn the task? To put it provocatively, our hypoth-
esis is that without shortcuts there is no learning
that the models we study can do for more complex
inference tasks.

In order to evaluate this hypothesis, we construct
synthetic datasets such that w1— the known token
correlation bias— is the only shortcut. We quan-
titatively measure the extent to which some tasks
are easier to learn than others from input text. In-
spired by Voita and Titov (2020), we quantify this
complexity using the online minimum description
length (MDL) (Rissanen, 1978; Voita and Titov,
2020; Lovering et al., 2020), in addition to accu-
racy. We find that implementing any debiasing
method does not enable the model to learn com-
plex tasks. This is the case even when the dataset
does not contain additional w2 bias (Table 3). For
the commonsense and the factorization tasks, per-
formance remains close to a majority baseline.

5.3 How do debiasing procedures differ?

Each debiasing method has different strengths and
weaknesses, and there is little evidence to suggest
which procedure would be most effective in a given
data regime. We control three parameters of a
dataset: the frequency of biases in the dataset, the
dataset size and label noise. We study four debias-
ing procedures in these different data scenarios—
example reweighting, PoE, confidence regulariza-
tion, and dataset filtering (Wu et al., 2022; Le Bras
et al., 2020b), a special case of example reweight-
ing where the biased examples are completely re-

moved from the datasets.67

Bias Frequency: We measure the performance
of each debiasing method when changing the fre-
quency of the biases. We see the performance of
dataset filtering degrades the most, as the frequency
of the biased examples increases (Fig. 1 - a). As
this technique filters biased examples, the more bi-
ased examples there are, the fewer observations are
available for the model to learn from.

Dataset size: We compare debiasing procedures
in high-resource and low-resource scenarios. The
larger the dataset, the more effective PoE and
Reweighting are (Fig. 1 - b). This suggests that
as the number of examples increases, the ability
of debiased models to ignore biased features im-
proves. This is not the case for data filtering, where
all biased examples are simply removed, and there-
fore the bias never influences the model predictions
(Fig. 1 - b).

Label Noise: We consider the effect of label
noise in a dataset. In many real-world datasets,
a small percentage of instances can be expected to
be ambiguous or wrongly labeled. As the amount
of label noise increases, the baseline and CR in-
creasingly rely on the w1-bias (Fig. 1 - c Graph
1), whereas all other debiasing methods rely more
on the w2-bias (Fig. 1 - c Graph 2). Data filtering
relies more on the w2-bias than any other method,
as this method is unable to learn from the w1-bias
which is entirely filtered out (Fig. 1 - c Graph 2).

6This is equivalent to zeroing out the gradients for these
examples under the example reweighting paradigm.

7To explore the differences between example reweighting
and dataset filtering, we set w1 and w2 to be 90% correlated
with the class label since we use a counts-based bias model.
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Figure 1: Debiasing performance for lexical entailment, stratified by bias frequency, dataset size, and label noise.

6 Discussion

We briefly discuss our findings and recommenda-
tions for debiasing methods going forward.

Which debiasing technique to choose? In our
work, we shed light on how different debiasing
techniques can be effective based on properties of
the training dataset, including how frequent biases
are, the size of the dataset as well as the amount
of label noise in the data. We find that confidence
regularization performs worse than the other de-
biasing methods in a variety of data regimes we
evaluate, sometimes performing little better than
the baseline. PoE and reweighting often exhibit
similar behavior. Data filtering performs worst in
highly-biased datasets.

In addition, practitioners may want to consult
several metrics while making the decision of which

debiasing technique to choose, such as: (1) Perfor-
mance on out-of-domain challenge sets, (2) Per-
formance on long-tailed or rare phenomena, (3)
Number of additional parameters introduced by the
debiasing procedure, (4) Additional time required
during training/inference, (5) Efficiency of the de-
biasing procedure (Schwartz et al., 2020).

Invest in robust evaluation This work demon-
strates that debiasing can cause models to switch
from relying on a known and measurable bias, to
overrelying on hidden biases in datasets. This sug-
gests that practitioners would benefit from con-
structing a wider range of evaluations to diagnose
model reliance on spurious features in datasets, as
well as methods to automatically identify these bi-
ases.
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Why use debiasing? If the underlying task is
accessible to a model but the model exploits short-
cuts, debiasing can be effective. However, if the
underlying task is not accessible to models in the
first place, debiasing procedures alone cannot be
expected to be a legitimate path to making progress
on the task.

Computational Reasoning Our work shows that
for complex tasks, debiasing existing models may
not be sufficient. This calls for investment in new
learning paradigms that can help address complex
tasks.

Synthetic Datasets Our work utilizes synthetic
datasets, with controlled bias settings to enable
studying the behavior of debiasing approaches.
These datasets allow us to validate specific hypothe-
ses about model behavior which are challenging to
study with real-world datasets where there might
be several bias features, or combinations of bias
features, that a model can potentially exploit to ad-
dress a task. Future work can consider designing
synthetic datasets as a tool to control for confound-
ing factors and evaluate hypotheses about model
behavior.

7 Conclusion

NLU models have been shown to overrely on spu-
rious features. This has lead to the development
of several debiasing procedures to pressure models
away from this behavior. In this work, we show that
many of these procedures may simply push models
to rely on a different set of shortcuts, and that the
existing models may not be able to address com-
plex NLU tasks even after all the spurious features
have been addressed. We hope our work serves as
a foundation to evaluate the effectiveness of debias-
ing procedures, sheds light on how these methods
work, and provides an impetus for new classes of
models for complex NLU tasks.

8 Limitations

We specify assumptions used in this study and high-
light limitations of these assumptions.

1. We assume the task-specific label perfectly
corresponds with a task label in all our dataset
constructions. In the real world however, there
is likely to be some amount of label-noise,
particularly in large-scale datasets.

2. We perform our experiments on tightly con-
trolled, largely synthetic datasets where we
can control both the task-relevant features as
well as possible shortcuts. We do this as real-
world datasets could have several possible in-
teracting confounds. Our settings provide a
controlled environment that then makes it fea-
sible to study the behavior of debiasing ap-
proaches which may not have been possible
otherwise, at some expense of generalization.

3. Our datasets are constructed with a maximum
of two biases. In practice, datasets may con-
tain several biases which are usually unknown.
The datasets used in this study are intended to
represent a proof-of-concept of these scenar-
ios to better understand model behavior.

4. We look at methods of debiasing against a
specific bias. Some broad-spectrum debiasing
methods do not target a particular shortcut,
but rather target several possible shortcuts in
the dataset that a particular ‘shallow’ model
has access to. In our framework, shortcuts w1

which are intended to refer to a specific bias,
can also represent a class of biases a ‘shallow’
model has access to.

5. Pretraining may affect dataset conditions, by
inducing unanticipated correlations between
tokens. In order to control for this behavior,
we construct six different datasets using both
natural language, as well as numeric symbols.

6. We investigate supervised settings in this
study. We leave studying biases in few-
shot and zero-shot learning settings for future
work.
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A Dataset Construction Procedures

We include expanded details of the construction
procedures for the naturalistic datasets in our study.

Lexical reasoning The lexical reasoning task in-
volves reasoning whether a pair of words are either
antonyms or synonyms. Examples are created in
the form of NLI using the template: ‘What the
group hate most is the [word]’, with this phrase
repeated for both the hypothesis and the premise
where the synonym or antonym words replace the
[word] tag. We use the antonyms and synonyms of
nouns available on WordNet.

The w1 bias is inserted by changing the word
‘hate’ in the template for either ‘like’ or ‘love’.
When the word ‘hate’ is used, the example is
neutral with respect to w1, while the word ‘like’
positively correlates with the entailment class and
the word ’love’ positively correlates with the non-
entailment class. The w2 word-overlap bias is in-
serted by adding the text ‘What we believe’ or
‘What we think’ at the beginning of both sentences.
For the w2 bias, the entailment class positively cor-
relates with examples where this additional text
is the same for the premise and hypothesis. The
non-entailment class on the other hand positively
correlates with examples that have different text
added at the beginning of the sentences. Examples
that are neutral with respect to the w2 word-overlap
bias do not contain any additional text, in either the
hypothesis or the premise.

Logical reasoning The logical reasoning dataset
contains a premise expressing a list of people
who are undertaking an activity (‘walking down
a street’), while the hypothesis uses a combination
of AND and OR logical operators to also express
which people are doing this activity. The NLI class
is determined by reasoning over these AND and
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#Train #Dev #Test

GREATER NUMBER 5000 (50%) 1000 (50%) 16374 (50.16%)
SUM NUMBERS 5000 (50%) 1000 (50%) 16533 (50.29%)
FACTORIZATION 5000 (50%) 1000 (50%) 16417 (50.19%)
LEXICAL INFERENCE 2,808 (50.00%) 472 (50.00%) 476 (50.00%)
LOGICAL INFERENCE 20,000 (50.55%) 5,000 (50.16%) 5,000 (50.54%)
COMMONSENSE INFERENCE 2,080 (50.00%) 486 (50.21%) 1095 (50.05%)

Table 4: The number of instances in each dataset across splits (Train/Dev/Test), as well as the proporition of
instances of the majority class (in parentheses).

Lexical task Logic task Commonsense task
0.5

0.6

0.7

0.8

0.9

1.0

P(
w1

 =
 p

re
di

ct
ed

 la
be

l)

DeBERTa correlation between w1 and predictions

Baseline Reweight PoE CR

Lexical task Logic task Commonsense task
0.5

0.6

0.7

0.8

0.9

1.0

P(
w1

 =
 p

re
di

ct
ed

 la
be

l)

BERT correlation between w1 and predictions

Figure 2: Comparison of BERT and DeBERTA behavior, in terms of the proportion of examples where the model
prediction is the same as the direction of the w2 word-overlap bias. 1.0 indicates that the w2 bias fully determines
the model predictions, compared to 0.5 where the w2 bias is not correlated with the model predictions.

OR operators to determine the truth of the hypoth-
esis based on the premise. We avoid using two
OR statements consecutively to ensure that the hy-
potheses is unambiguous while also being written
fluently in natural language.

Both the training and test data contain between 6
and 20 logical operators for each hypothesis. While
the training data uses exactly 2 OR statements in
each hypothesis, the test data contains three or more
OR statements. The names of the people undertak-
ing the activity are also different in the training and
test data.

The w1 word correlation bias is inserted into the
dataset by changing the activity being performed,
with ‘running’ correlating with the entailment class,
and ‘cycling’ correlating with the non-entailment
class. When the activity remains ‘walking’, then
the observation is neutral with respect to w1. The
w2 word overlap bias involves adding the words
‘once more’ or ‘once again’ to the end of the sen-

tences, with these phrases overlapping between the
hypothesis and premise for entailment examples.
Examples that are neutral with respect to w2 do
not include any additional text at the end of either
sentence.

Commonsense reasoning The commonsense
reasoning dataset involves inserting the w1 and
w2 biases into the DPR dataset (White et al., 2017;
Rahman and Ng, 2012).

The w1 and w2 biases are inserted by adding
additional text at the beginning of each sentence
without changing its meaning. We start each sen-
tence with ‘In the story’, replacing the word ‘In’
with either ‘Inside’ (correlating with the entailment
class) or with ‘Within’ (correlating with the non-
entailment class). The word ‘In’ is unchanged for
examples that are neutral to the w1 bias. The w2

bias is inserted by changing the start of each sen-
tence to be either ‘In the story being narrated’ or ‘In
the story being told’, with the entailment class pos-
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itively correlating to examples where the phrase is
the same across both sentences. Examples that are
neutral to the w2 bias do not include this additional
text.

B Dataset Statistics and Analysis

We include detailed statistics of all six controlled
synthetic datasets in Table. 4. For computing the
MDL over naturalistic datasets, we consider 476
examples from each unbiased test set to ensure
tasks are comparable.

C To what extent do our conclusions
generalize to newer models?

While we follow prior work in studying the effect
of debiasing procedures on BERT (Utama et al.,
2020b; Ghaddar et al., 2021; Wang et al., 2023),
we also wish to examine to what extent our con-
clusions generalize to newer models. We examine
the performance of all three debiasing procedures
on the three naturalistic datasets constructed in this
study, finding that BERT and DeBERTA exhibit
largely similar behavior under the effect of debias-
ing procedures.
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