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Abstract
Existing accent transfer works rely on paral-
lel data or speech recognition models. This
paper focuses on the practical application of
accent transfer and aims to implement accent
transfer using non-parallel datasets. The study
has encountered the challenge of speech rep-
resentation disentanglement and modeling ac-
cents. In our accent modeling transfer frame-
work, we manage to solve these problems by
two proposed methods. First, we learn the
suprasegmental information associated with
tone to finely model the accents in terms of tone
and rhythm. Second, we propose to use mutual
information learning to disentangle the accent
features and control the accent of the generated
speech during the inference time. Experiments
show that the proposed framework attains su-
perior performance to the baseline models in
terms of accentedness and audio quality.

1 Introduction

The accent transfer task refers to the synthesis of
speech with an accent, such as British English for
North Americans. Accent pronunciation is a dis-
tinctive form of expression influenced by the native
language, the speaker’s social group or speaking in
a particular region (Loots and Niesler, 2011). In
general, people find it easier to talk with others in
their own accent group. The use of speech is now
widely adopted, for example in the field of chat-
bots and film dubbing requires research on accent
transfer of speech.

At present, the accent transfer task for parallel
data has achieved sound research results and in-
creasing performance. Divided according to train-
ing data, the methods are specifically divided into:
(1) Parallel corpus of different accents of the same
speaker using source and target speech content and
time alignment (Finkelstein et al., 2022; Liu et al.,
2022; Hida et al., 2022; Toda et al., 2007; Oya-
mada et al., 2017). (2) Non-parallel corpus of
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multiple speakers with multiple accents using in-
consistent source and target speech content (Wang
et al., 2021; Zhao et al., 2018, 2019; Kaneko and
Kameoka, 2017; Kaneko et al., 2019, 2020a, 2021;
Finkelstein et al., 2022) used a multi-stage trained
tts model to achieve transfer of North American
accents, Australian accents, and British accents,
and used a CHiVE-BERT pre-training model to
enhance the audio effect of accent generation. Liu
et al. (2022) added an accent variance adaptor to
model the rhythmicity of accent variance, and also
enhanced the accent generation audio by using a
consistency constraint module. The use of pho-
netic posteriorgrams (PPG) is an essential idea in
the application of non-parallel data (Wang et al.,
2021; Zhao et al., 2018, 2019). Wang et al. (2021)
extracted PPG from a Chinese pre-trained speech
recognition model and then used them in an end-to-
end speech conversion model based on adversarial
learning disentangling. This approach achieved ac-
cent transfer from Chinese Mandarin to Tianjin and
obtained decent results.

However, existing accent transfer works highly
rely on a large amount of labelled parallel data
or advanced speech recognition models. Working
with an enormous amount of labeling data is always
hectic, labor-intensive, and time-consuming, which
is more severe for low-resource languages. This
limitation hinders the wider application of accent
transfer in low-resource scenarios. Hence, it is a
timely question: Is it feasible to do non-parallel
accent transfer task under a unified framework? It
is challenging because the speech representation
containing various components, including speaker
timbre, accent characteristics, and linguistic con-
tent, which are difficult to disentangle, especially
for non-parallel accent transfer task.

The dataset for the task in this paper can be
represented as {Sa(Aa), Sb(Ab)}, where the a
speaker Sa can only speak the accent Aa, and the b
speakerSb can only speak the accent Ab. The objec-
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tives of this paper are to achieve respectively: (1)
Sa(Aa) → Sb(Aa), where the Aa accent transfer
to the Sb speaker without changing the linguistic
content of the speech itself. (2) Sb(Ab) → Sa(Ab),
where the Ab accent transfer to the Sa speaker with-
out changing the linguistic content of the speech
itself. (3) Sa(Aa) ⇐⇒ Sb(Ab), two-way speaker
timbre and accent transfer between the Sa speaker
and the Sb speaker.

Following the success of mutual information
learning to disentangle speaker information in the
One-shot voice conversion (VC) task (Yang et al.,
2022), this paper applies the non-parallel data-
based voice conversion model MaskCycleGAN-
VC (Kaneko et al., 2021) to a more challenging
task: voice and accent joint conversion. The source
speaker’s accent can be converted to the target
speaker’s accent without changing the linguistic
content of the speech. The most challenging task
is to achieve effective disentangling of accent fea-
tures, linguistic features, speaker timbre features
and fine-grained embodied modeling of accents
in a unified model architecture, and to achieve
controlled and effective speaker timbre and accent
transfer in the prediction phase of the model. The
accurate modeling of phonetic pronunciation tones
in the task of accent transfer is crucial. The contri-
butions of this paper are as follows.

(1) For accents being difficult to model fine-
grained concretely, this paper fine-grained con-
cretely models accents in terms of phonetic into-
nation, rhythmic pauses and other pronunciation
features. Then, an accent feature encoder is pro-
posed, which can effectively extract accent features
in the inference stage and realise accent controlla-
bility modeling.

(2) To address the problem of difficult speaker
information disentangling in non-parallel data sets
with different speakers with different accents, this
paper proposes mutual information learning to max-
imize the mutual information upper bound of ac-
cent features and speech features. It can effectively
disentangle the speaker features, accent features
and phonetic features of speech.

(3) Experimental results show that method con-
verts the speech up to a MOS score of 4.12. Achiev-
ing optimal results compared to baselines on the
English accent transfer task for the public VCTK
dataset and on the Lao accent transfer for the self-
constructed Lao dataset. It significantly improves
the accentedness and audio quality.

2 Method

In this section, we first describe our model archi-
tecture. Then we introduce the fine-grained accent
modeling and adversarial mutual information learn-
ing and show how accent transfer between speaker
Sa and speaker Sb on non-parallel datasets with
different speakers and accents is achieved.

2.1 Architecture of the proposed model

The generator structure of the model is shown in
Figure. 1. We improve the generator part of the
MaskCycleGAN-VC (Kaneko et al., 2021) for spe-
cific data and application scenarios. The genera-
tor part is composed of five parts: an accent en-
coder Eac, a speaker encoder Es, a speech con-
tent encoder Ec, a speech generator G, the feature
disentanglements C1 and C2. The model train-
ing strategy adopts a non-parallel voice conversion
approach. Given a non-parallel corpus D(x, y),
the training mechanism involves mapping source
speech x to converted speech y and then back to
x′, with the primary training objective being the
minimization of the mean square error between x
and x′. The baseline models training details and
our model parameters please refer to Appendix 5.

2.2 Encoder and accent modeling

Encoder: The accent encoder Eac takes the mel-
spectrogram S and normalized pitch contour P
of the speech as inputs. The accent encoder pro-
vides global speech accent features to control the
speaker’s accent. We use a vector quantized vari-
ational autoencoder (VQ-VAE) (Van Den Oord
et al., 2017; Polyak et al., 2021) model to learn
suprasegmental representations related to tone. The
speaker encoder is the same structure in (Chen
et al., 2021), using Conv1D as the main structure
to extract speaker features. The speech content
encoder is the downsampling module in MaskCy-
cleGAN (Kaneko et al., 2021), the rhythm encoder
Er extract speech rhythm features, we have:

Zac = Eac(Er(S), V Q− V AE(P )),

Zc = Ec(S),

Zt = Es(S),

(1)

where Zac represents the accent features, Zc repre-
sents the speech content features, Zt represents the
speaker features.

Accent modeling: Tones alteration stands out
as one of the primary distinguishing features of
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Figure 1: Framework of proposed model. The Zac is the output hidden states of accent encoder Eac, Zt is the
output hidden states of speaker encoder Es, Zc is the output hidden states of content encoder Ec, Zr is the output
hidden states of rhythm encoder Er. C1 is speaker identity classify with linear, C2 is accent classify with gradient
reverse linear.

accents, and these different tones are reflected in
the spectrum by different fundamental frequencies,
so tone features can be represented by the discrete
speech feature F0. To better model the tone at fine-
grained degree, we adopt the VQ-VAE framework
to train a pre-training model for speech tone feature
F0. The yet another algorithm for pitch tracking
(YAAPT) (Kasi and Zahorian, 2002) algorithm is
used to extract the F0 from the input signal, x,
generating P = (P1, ..., PT ′), we have:

zF1:L′ = EncoderΦ1F (P1:T ′),

eF1:L′ = VectorQuantizationΦ2F (z1:L′),

P̂1:L′ = DecoderΦ3(e
F
1:L′),

(2)

Each element in zF1:L′ is an integer zs ∈
{0, 1, ...,K ′}, where K ′ is the encoder dictio-
nary size. The VectorQuantizationΦ2F , a bottle-
neck with a learned codebook C = (e1, ..., eK′),
where each item in C is a 128-dimensional vec-
tor. The encoder extracts a sequence of latent
vectors EncoderΦ1F (P ) = (h1, ..., hL′) from the
raw audio, where hi ∈ R128, for all 1 ≤ i ≤ L′.

Then, the bottleneck maps each latent vector to
its nearest vector in the codebook C. The embed-
ded latent vectors are then being fed into the de-
coder DecoderΦ3(e

F
1:L′) = P̂ which reconstructs

the original F0 signal. Similar to (Dhariwal et al.,
2020), we use Exponential Moving Average up-
dates to learn the codebook and employ random
restarts for unused embeddings, we use the indices
of the mapped latent vectors to generate Zp. The
rhythm of the speech is extracted using the same
structure as Er in SpeechSplit (Qian et al., 2020)
to obtain rhythm features output Zr. At last, the
Zp ⊕ Zr as a representation of accent Zac, it is
incorporated into the speech generation model. We
chose Ep and Er as components of the accent en-
coder Eac because pitch and rhythm represent the
most significant aspects of accent variation. Addi-
tionally, recent works (Qian et al., 2020; Dhariwal
et al., 2020) have demonstrated their effectiveness
in extracting pitch and rhythm features. We hope
that the discrete representations learned from F0
capture pitch patterns and/or other suprasegmental
information. The proposed extension is straightfor-
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ward, but we observe that it results in impressive
improvements for accent modeling, especially F0
of reconstructed speech waveforms in Lao.

2.3 Generator and accent transfer
Generator: The speech generator G is based on
the architecture of MaskCycleGAN-VC (Kaneko
et al., 2021) and uses the Filling in Frames (FIF)
strategy during training, where a random part of
the spectrogram is masked. The mel-spectrogram
is downsampled and mapped from high dimen-
sion to low dimension Zc. Then, the upsampled
Zt (speaker features) and Zac (accent features)
are combined to map these features into the mel-
spectrogram of the target speaker. The discrimina-
tor has the same structure as MaskCycleGAN-VC
and takes as input the mel-spectrogram generated
by the generator for the target speaker. we have:

Ŝ = G(Zac, Zc, Zt), (3)

where Ŝ represents the converted speech.
Controllable accent transfer: During the

model inference stage, different target accents can
be achieved by controlling the accent feature Zac.

ŜSb(Aa) = G(Zac(Aa), Zc(Sa), Zt(Sb)),

ŜSa(Ab) = G(Zac(Ab), Zc(Sb), Zt(Sa)),
(4)

where ŜSb(Aa) represents the speaker Sb with ac-
cent Aa, which is not present in training data (only
present the speaker Sb with accent Ab).

2.4 Disentanglement and loss
Speaker information disentanglement: As
shown in Fig. 1, we use common classifier C1
and adversarial speaker classifier C2 with gradi-
ent reverse linear (GRL) (Ganin et al., 2016) to
recognize the identity of speaker, The Fig. 2 illus-
trates the model architecture of the two classifiers.
Both classifiers, C1 and C2, utilize speaker IDs
as supervisory labels during the training process.
The objective of C1 is to accurately classify the
speaker ID associated with Zt as the training pro-
gresses. On the contrary, as the training progresses,
C2 is designed to gradually struggle in correctly
classifying the speaker ID for Zac and Zc.

The variational contrastive log-ratio upper bound
(vCLUB) (Cheng et al., 2020) is used to compute
the upper bound of mutual information (MI) for
irrelevant information of the speaker, decreasing

ReLU
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Concat
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Linear
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Figure 2: Framework of common classifier C1 and
adversarial speaker classifier C2 .

the correlation among different speaker-irrelevant
speech representations:

Î(Zac, Zc)min

=
1

N2

N∑

i=1

N∑

j=1

[log qθ(Zaci |Zci)

−log qθ(Zacj |Zci)],

(5)

where qθ(Zac|Zc) is a variational distribution with
parameter θ to approximate p(Zac|Zc). Î is
the unbiased estimator for vCLUB with samples
{Zaci , Zci}. The indexes i and j are the samples
of Zac and Zc. The MI loss is:

LMI = Î(Zac, Zc). (6)

Loss: The final training objective of the proposed
model is to train the generator G(Sa(Aa)←→(Sb(Ab)),
achieving bidirectional conversion of speech and
accent between speakers Sa, Sb and accents Aa,
Ab. A full objective Lfull is written as follows:

Lfull = Lmask−adv
Sa(Aa)→Sb(Ab)

+Lmask−adv
Sb(Ab)→Sa(Aa)

+λcyc(Lcyc
Sa(Aa)→Sb(Ab)→Sa(Aa)

+Lcyc
Sb(Ab)→Sa(Aa)→Sb(Ab)

)

+λid(Lid
Sa(Aa)→Sb(Ab)

+ Lid
Sb(Ab)→Sa(Aa)

)

+Ladv2
Sa(Aa)→Sb(Ab)→Sa(Aa)

+Ladv2
Sb(Ab)→Sa(Aa)→Sb(Ab)

)

+αLcom−C1 + βLadv−C2 + γLMI ,

(7)

where Lmask−adv, Lcyc, Lid and Ladv2 are loss
function defined in MaskCycleGAN-VC (Kaneko
et al., 2021). Lcom−C1 and Ladv−C2 are the cross-
entropy loss of the classifiers C1 and C2. The
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LMI loss corresponds to minimizing mutual infor-
mation of Zac and Zc. λcyc, λid, α, β and γ are the
hyperparameters.

3 Experiments

3.1 Data
The experiments are conducted on the
VCTK (Veaux et al., 2016) corpus. For En-
glish accent transfer, we conducted speaker
selection involving individuals with diverse
accents to validate our approach. In addition, we
conducted comprehensive experiments on accent
transfer in the low-resource language of Laotian.
We utilize a total of 1000 Lao Vientiane accent and
1000 HuaPhan accent utterances, with 100 samples
in the validation and testing set, totaling about 1
hour. All audio data used in the experiment have a
sampling rate of 22.05kHz.

3.2 Model and training setup
In the experiments, a accent Sa(Aa) is used as
the source speech and b accent Sb(Ab) is used as
the target speech for training. We compare our
proposed method with the current best non-parallel
speech conversion models:

CycleGAN-VC2 (Kaneko et al., 2019). A GAN-
based speech conversion model that uses mel cep-
strum as input and output.

CycleGAN-VC3 (Kaneko et al., 2020a). This
model uses mel spectrogram as input and output
instead of mel cepstrum, and incorporates a time-
frequency adaptive normalization (TFAN) module
on the basis of CycleGAN-VC2.

MaskCycleGAN-VC (Kaneko et al., 2021). This
model adds a mask mechanism on the basis of
CycleGAN-VC2.

SRD (Yang et al., 2022). A method that disentan-
gles speaker information based on mutual informa-
tion learning.

In the experimental application, the feature of
the speech is an 80-dimensional Mel-spectrogram,
and the tone feature is represented F0. The F0 is
extracted from the raw audio using a window size
of 20ms and a 5ms hop. The VQ-VAE quanti-
zation described at Sec. 2.2, is applied using an
F0 codebook of K0 = 20 tokens and an encoder
that downsamples the signal by ×16. The con-
figurations of MaskCycleGAN-VC followed its
original paper (Kaneko et al., 2021). We chose
the model checkpoint with the lowest loss on the

Table 1: Evaluation results of different models. Aver-
age MCD, RMSE, SSIM, MOS with 95% confidence
between the converted speech and the ground truth ref-
erence. “*” denotes the proposed model. “w/o” is
short for “without” in ablation study. The “Ap243”,
“Ap329”, “Ap248” and “Ap244” represent the London
accent, American accent, Indian accent and Manch-
ester accent of English, respectively. ∆: the difference
value between our model and the best baseline model,
↑: improved performance compared to the best baseline
model, Bold: the best performance under each category,
underline: the second best performance, “–”: results are
not available.

Accent Transfer Methods MCD SSIM RMSE MOS

Sp243(Ap243)
⇐⇒

Sp329(Ap329)

CycleGAN-VC2 8.16 0.59 41.38 2.61±0.08
CycleGAN-VC3 6.12 0.84 29.54 4.01±0.13

MaskCycleGAN-VC 6.82 0.79 31.21 3.89±0.16
SRD 6.94 0.83 30.05 3.83±0.11

Our Model* 5.61 0.86 29.40 4.08±0.17
∆ ↑ 0.51 ↑ 0.02 ↑ 0.14 ↑ 0.07

Sp243(Ap243)
→

Sp329(Ap243)

CycleGAN-VC2 - - - -
CycleGAN-VC3 - - - -

MaskCycleGAN-VC - - - -
SRD 6.79 0.78 32.56 3.98±0.12

Our Model* 5.59 0.83 28.15 4.05±0.18
∆ ↑ 1.20 ↑ 0.05 ↑ 4.41 ↑ 0.07

Sp329(Ap329)
→

Sp243(Ap329)

CycleGAN-VC2 - - - -
CycleGAN-VC3 - - - -

MaskCycleGAN-VC - - - -
SRD 6.56 0.79 35.64 3.85±0.12

Our Model* 5.97 0.76 32.02 3.92±0.13
∆ ↑ 0.59 ↓ 0.03 ↑ 3.62 ↑ 0.07

Sp243(Ap243)
→

Sp329(Ap243)

w/o Zr* 6.12 0.69 33.12 3.81±0.13
w/o Zp(V Q−V AE)

* 7.52 0.52 36.52 3.23±0.17

w/o Zac∗ 8.96 0.37 53.52 2.05±0.16

Sp248(Ap248)
⇐⇒

Sp244(Ap244)

CycleGAN-VC2 7.57 0.58 38.14 3.08±0.19
CycleGAN-VC3 5.65 0.85 33.98 4.01±0.18

MaskCycleGAN-VC 5.83 0.69 35.72 3.86±0.13
SRD 6.12 0.74 32.18 3.92±0.11

Our Model* 5.53 0.83 34.80 4.02±0.15
∆ ↑ 0.12 ↓ 0.02 ↓ 2.62 ↑ 0.01

Sp248(Ap248)
→

Sp244(Ap248)

CycleGAN-VC2 - - - -
CycleGAN-VC3 - - - -

MaskCycleGAN-VC - - - -
SRD 7.12 0.83 33.87 3.69±0.11

Our Model* 5.69 0.78 34.49 3.95±0.13
∆ ↑ 1.43 ↓ 0.05 ↓ 0.62 ↑ 0.26

Sp243(Ap243)
⇐⇒

Sp248(Ap248)

CycleGAN-VC2 6.45 0.80 57.38 3.01±0.15
CycleGAN-VC3 5.22 0.87 42.69 3.82±0.11

MaskCycleGAN-VC 5.59 0.76 49.41 3.98±0.11
SRD 6.92 0.71 35.69 3.92±0.13

Our Model* 6.08 0.79 30.86 4.08±0.12
∆ ↓ 0.86 ↓ 0.08 ↑ 4.83 ↑ 0.10

Sp243(Ap243)
→

Sp248(Ap243)

CycleGAN-VC2 - - - -
CycleGAN-VC3 - - - -
CycleGAN-VC3 - - - -

SRD 7.58 0.60 36.42 3.85±0.13
Our Model* 6.44 0.79 31.01 4.11±0.12

∆ ↑ 1.44 ↑ 0.19 ↑ 5.41 ↑ 0.26

Sp248(Ap248)
→

Sp243(Ap248)

CycleGAN-VC2 - - - -
CycleGAN-VC3 - - - -

MaskCycleGAN-VC - - - -
SRD 7.10 0.59 35.50 3.91±0.13

Our Model* 6.17 0.68 32.10 4.12±0.18
∆ ↑ 0.93 ↑ 0.09 ↑ 3.40 ↑ 0.21

Sp243(Ap243)
→

Sp248(A243)

w/o Zr* 7.69 0.43 29.36 3.90±0.13
w/o Zp(V Q−V AE)

* 9.12 0.45 37.52 3.33±0.14

w/o Zac∗ 9.79 0.28 59.52 2.05±0.17

Sp248(Ap248)
⇐⇒

Sp329(Ap329)

CycleGAN-VC2 6.76 0.76 54.39 3.34±0.14
CycleGAN-VC3 5.41 0.83 32.17 3.67±0.15

MaskCycleGAN-VC 5.51 0.79 42.15 3.94±0.08
SRD 5.98 0.73 35.23 3.82±0.15

Our Model* 5.48 0.81 33.01 3.97±0.11
∆ ↓ 0.07 ↓ 0.02 ↓ 0.84 ↑ 0.03

Sp248(Ap248)
→

Sp329(Ap248)

CycleGAN-VC2 - - - -
CycleGAN-VC3 - - - -
CycleGAN-VC3 - - - -

SRD 6.58 0.82 35.32 3.99±0.12
Our Model* 5.68 0.81 33.58 4.04±0.11

∆ ↑ 0.42 ↓ 0.01 ↑ 1.74 ↑ 0.05
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validation set. HiFiGAN vocoder (Kong et al.,
2020) is employed to generate speech waveforms
from mel-spectrograms. In the conversion model
training stage, conversion model is trained for 100
epochs using batch size of 1. We use Adam opti-
mizer (Kingma and Ba, 2014) with learning rate
is 0.0002, β1 = 0.5, β2 = 0.999 for speech gen-
erator. With learning rate is 0.0001, β1 = 0.5,
β2 = 0.999 for speech discriminator optimizer.
All experiments are conducted on a single NVIDIA
3090 for training.

3.3 Experimental results and analysis

3.3.1 Accent Similarity and Speaker
Similarity

In order to verify the accent similarity and speaker
similarity between the converted speech and the
original target speech, we perform a accent and
speaker visualization using t-SNE method (Van der
Maaten and Hinton, 2008) based on the accent rep-
resentation Zac and speaker representation Zt of
different speakers utterances. For accent similarity,
there are 200 utterances sampled for two speaker
(Sp243, Sp248) to calculate the accent representa-
tion. Meanwhile, we concatenate Zp and Zr in
SRD and compare it with our proposed method. As
can be seen in Figure. 3(b) and Figure. 3(c), While
SRD partially represents different speaker accents
in terms of pitch and rhythm, most accent hiiden
states are still mixed together. In contrast, the ac-
cent embeddings in our approach are separable for
different speakers, with only a few representations
being slightly mixed. Our analysis of the Vientiane
and Huaphan accents in Lao shows some similarity
in certain sentences. These results indicates that
our fine-grained Lao accent modeling encoder Eac

is capable of extracting the accent Zac as speaker
accent information.

For speaker similarity, We randomly selecte 200
utterances and converted them to 2 target speak-
ers (Sw, Sh) each with 2 accents (Aw, Ah) in Lao.
The speacker representation is calculated using
the speaker encoder. Subsequently, we visualize
the speaker representation Zt by t-SNE (Van der
Maaten and Hinton, 2008) in Figure. 3(a). The
results demonstrate that all samples were grouped
into two clusters representing the two target speak-
ers. This unveils that the output speech samples
from our model, including those converted samples
with non-native new accent, have successfully pre-
served the speaker similarity of the target speakers.

Table 2: Evaluation results of different models. Aver-
age MCD, RMSE, SSIM, MOS with 95% confidence
between the converted speech and the ground truth ref-
erence. “*” denotes the proposed model. “w/o” is short
for “without“ in ablation study. The “Aw” is Vientiane
accent of Lao, “Ah” is Huaphan accent of Lao. ∆: the
difference value between our model and the best base-
line model, ↑: improved performance compared to the
best baseline model, Bold: the best performance under
each category, underline: the second best performance,
“–”: results are not available.

Accent Transfer Methods MCD SSIM RMSE MOS

Sw(Aw)
⇐⇒

Sh(Ah)

CycleGAN-VC2 8.49 0.68 40.70 2.82±0.17
CycleGAN-VC3 7.17 0.81 29.44 3.95±0.15

MaskCycleGAN-VC 7.65 0.67 35.61 3.79±0.15
SRD 7.70 0.83 33.80 3.85±0.12

Our Model* 7.09 0.85 29.87 4.01±0.16
∆ ↑ 0.08 ↑ 0.02 ↓ 0.43 ↑ 0.06

Sw(Aw)
→

Sh(Aw)

CycleGAN-VC2 - - - -
CycleGAN-VC3 - - - -

MaskCycleGAN-VC - - - -
SRD 7.56 0.81 34.73 3.73±0.12

Our Model* 7.32 0.85 31.01 3.98±0.14
∆ ↑ 0.24 ↑ 0.04 ↑ 3.72 ↑ 0.25

Sh(Ah)
→

Sw(Ah)

CycleGAN-VC2 - - - -
CycleGAN-VC3 - - - -

MaskCycleGAN-VC - - - -
SRD 7.58 0.40 35.64 3.85±0.12

Our Model* 7.16 0.57 30.02 4.02±0.16
∆ ↑ 0.42 ↑ 0.17 ↑ 5.62 ↑ 0.17

Sw(Aw)
→

Sh(Aw)

w/o Zr* 7.92 0.49 30.36 3.79±0.12
w/o Zp(V Q−V AE)

* 8.62 0.36 35.52 3.53±0.16

w/o Zac∗ 9.88 0.24 65.52 1.95±0.17

3.3.2 Objective Evaluation

For objective evaluation, we use mel-cepstrum
distortion (MCD) (Toda et al., 2007), root mean
square errors (RMSE) (Luo et al., 2017) between
synthesised and reference speech utterances. The
lower the MCD is, the smaller the distortion, mean-
ing that the two audio segments are more sim-
ilar to each other. To evaluate intonation vari-
ations of the converted voice, RMSE of source
and converted voice is calculated. To account
for the temporal difference, dynamic time warp-
ing is performed between the converted utter-
ance and the target reference to compute MCD
and RMSE, where the RMSE of F0 is calculated
only on the voiced frames in the reference utter-
ances. To evaluate the proposed method objectively,
50 conversion utterances pair are randomly se-
lected. Table 1 summarizes the MCD, SSIM (Wang
et al., 2004) and RMSE evaluation results on
VCTK datasets. It is worth noting that in the ac-
cent transfer tasks (Sp243(Ap243)→Sp248(Ap243),
Sp248(Ap248) → Sp243(Ap248)), we do not have
data on real labels, so we did a cycle convert, e.g.,
Sp243(Ap243)→Sp248(Ap243)→Ŝp243(Ap243). It is
observed that: our model outperforms all baseline
models consistently for MCD and achieves the best
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Figure 3: The different encoder output visualization using t-SNE. (a) Es encoder output Zt visualization of our
model, (b) Eac encoder output Zac visualization of SRD baseline, (c) Eac encoder output Zac visualization of our
model.

or second best results of SSIM, which shows the
proposed method has better intelligibility while pre-
serving the source linguistic content. In addition, in
Table 1, we note that our model achieves the lowest
RMSE in the task of English accent transfer involv-
ing four distinct accents, which shows the ability
of our model in transforming and preserving the de-
tailed intonation variations from source speech to
the converted one. This indicates the effectiveness
of the proposed fine-grained lao accent modeling
encoder. Similar conclusions are obtained in the
transfer of the low-resource Lao between Vientiane
accents (Aw) and Huaphan accents (Ah) as shown
in Table 2.

3.3.3 Subjective Evaluation

Subjective evaluations are conducted using listen-
ing tests with human subjects. AB preference test
is performed to evaluate speech quality and speaker
similarity, respectively. Additionally, mean opin-
ion score (MOS) tests are conducted to determine
listeners’ preferences across all experimental meth-
ods. For each test, 20 samples were randomly se-
lected from the converted samples of each experi-
mental system and provided to 15 participants.
Audio Quality: In the MOS test, listeners are
asked to rate the quality of the converted speech on
a 5-point scale. Audios converted from the three
systems are randomly shuffled before presenting
to listeners. Each group of audio corresponds to
the same text content. The MOS results in Table 1
show that our model achieves the best quality MOS
as compared with other methods on the VCTK
dataset. Simultaneously, better performance has
been achieved in the task of accent transfer involv-
ing English British (p243) and American (p329)

accents, as well as Indian (p248) and British (p243)
accents, and Indian (p248) and American (p329)
accents. In addition, the MOS results in Table 1
show that our model also performs well in the low-
resource language Lao of both Sw(Aw)→Sh(Aw),
Sh(Ah) → Sw(Ah), Sw(Aw) ⇐⇒ Sh(Ah) accent
transfer tasks. Note that the baseline methods
(MaskCycleGAN, CycleGAN-VC3, CycleGAN-
VC2) cannot generate samples properly with a ac-
cent (Aa) and b accent (Ab). Because these non-
parallel speech conversion models do not have the
ability to disentangle speaker representations and
accent representations. Hence these mothods do
not have samples for MOS test. SRD has the ability
to decouple speech features such as rhythm, pitch,
and content, which enables it to achieve a certain
degree of accent conversion. However, due to the
lack of modeling of the tone by pre-trained VQ-
VAE models, its performance in accent conversion
tasks is not as good as our proposed method.
Accentedness: In the AB test on accentedness,
paired speech samples with the same textual con-
tent are presented and the listeners are asked to
choose samples that are more similar to the target
accent. The results are shown in Figure. 4. Irre-
spective of the language, the proposed model is
more effective with much more preference.

3.3.4 Conversion Visualization

Lao language is a tonal language where the vari-
ations in tones become more pronounced with
changes in intonation (Erickson, 2001). Fig-
ure. 5 shows the spectrogram and F0 of the source
Sw(Aw), target Sh(Ah) and converted speeches
Ŝh(Aw) with the same Lao content. Please note
we use parallel speech data to visualize the re-
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Figure 4: Accentedness preference test results
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Figure 5: The comparison of spectrogram and F0 for source Sw(Aw), target Sh(Ah) and converted speeches
Ŝh(Aw). Horizontal axis (x-axis) displays time in second, and vertical axis (y-axis) represents spectral frequency
and F0 frequency respectively

sults. For accent conversion Sw(Aw)→Sh(Aw),
the F0 contour of the converted speech matches
average pitch of the source speech and retains de-
tailed characteristics of the source pitch contour.
The spectrogram details of the converted speech
match of the target speech, but there are significant
differences in the contour of the F0 pitch. The re-
sults demonstrated that our model has successfully
achieved accent conversion on non-parallel training
data {Sw(Aw), Sh(Ah)}.

3.3.5 Ablation study

Moreover, we conduct ablation study that addresses
performance effects from different methods for
lao accent modeling with results shown in the last
three rows of Table 1. From the results, when the
lao accent modeling Zac without the Zr of speech
rhythm, the model is still able to perform accent
transfer and outperforms most of the baseline mod-
els, but the speech naturalness decrease. When the
VQ-VAE framework of F0 modeling is removed,
the audio quality and accentedness significant de-
crease. When the lao accent modeling Zac is re-
moved, the results are poor and no longer perform

the accent transfer task well.

4 Conclusions

Based on the application scenario of accent trans-
fer in non-parallel data sets, this paper proposes a
non-parallel accent transfer method based on fine-
grained controllable accent modeling. It applies
a VQ-VAE network for fine-grained modeling of
voice intonation and rhythmic pauses, and then
delivers the obtained accent features and speech
features to a mutual information-based learning
feature disentangler. The features extracted by the
trained accent encoder can guide the pitch and
rhythm variation of the generated speech in the
prediction stage of the converted model, achieving
controllable modeling of the various accents. The
proposed method generates speech with greatly
improved fluency and naturalness, and achieves
accent transfer in non-parallel dataset through the
application of a unified speech conversion frame-
work.
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Limitations

In this paper, we have focused on modeling ac-
cents by examining pitch and rhythmic changes in
speech. However, in our future work, we plan to an-
alyze accents by incorporating additional features
of speech. By doing so, we aim to enhance the
authenticity of accent performance and improve
our understanding of accent variations.

References
Yen-Hao Chen, Da-Yi Wu, Tsung-Han Wu, and Hung-

yi Lee. 2021. Again-vc: A one-shot voice conver-
sion using activation guidance and adaptive instance
normalization. In ICASSP 2021-2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5954–5958. IEEE.

Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang
Liu, Zhe Gan, and Lawrence Carin. 2020. Club:
A contrastive log-ratio upper bound of mutual in-
formation. In International conference on machine
learning, pages 1779–1788. PMLR.

Prafulla Dhariwal, Heewoo Jun, Christine Payne,
Jong Wook Kim, Alec Radford, and Ilya Sutskever.
2020. Jukebox: A generative model for music. arXiv
preprint arXiv:2005.00341.

Blaine Erickson. 2001. On the origins of labialized
consonants in lao. In Papers from the sixth annual
meeting of the Southeast Asian Linguistic Society,
pages 135–148.

Lev Finkelstein, Heiga Zen, Norman Casagrande, Chun-
an Chan, Ye Jia, Tom Kenter, Alexey Petelin,
Jonathan Shen, Vincent Wan, Yu Zhang, et al. 2022.
Training text-to-speech systems from synthetic data:
A practical approach for accent transfer tasks. arXiv
preprint arXiv:2208.13183.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavi-
olette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. The
journal of machine learning research, 17(1):2096–
2030.

Rem Hida, Masaki Hamada, Chie Kamada, Emiru
Tsunoo, Toshiyuki Sekiya, and Toshiyuki Kumakura.
2022. Polyphone disambiguation and accent predic-
tion using pre-trained language models in japanese
tts front-end. In ICASSP 2022-2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7132–7136. IEEE.

Takuhiro Kaneko and Hirokazu Kameoka. 2017.
Parallel-data-free voice conversion using cycle-
consistent adversarial networks. arXiv preprint
arXiv:1711.11293.

Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka,
and Nobukatsu Hojo. 2019. Cyclegan-vc2: Im-
proved cyclegan-based non-parallel voice conversion.
In ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 6820–6824. IEEE.

Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka, and
Nobukatsu Hojo. 2020a. Cyclegan-vc3: Examin-
ing and improving cyclegan-vcs for mel-spectrogram
conversion. arXiv preprint arXiv:2010.11672.

Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka, and
Nobukatsu Hojo. 2020b. Cyclegan-vc3: Examin-
ing and improving cyclegan-vcs for mel-spectrogram
conversion. In Proceedings of the Annual Conference
of the International Speech Communication Associa-
tion.

Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka, and
Nobukatsu Hojo. 2021. Maskcyclegan-vc: Learning
non-parallel voice conversion with filling in frames.
In ICASSP 2021-2021 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 5919–5923. IEEE.

Kavita Kasi and Stephen A Zahorian. 2002. Yet another
algorithm for pitch tracking. In 2002 ieee interna-
tional conference on acoustics, speech, and signal
processing, volume 1, pages I–361. IEEE.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020.
Hifi-gan: Generative adversarial networks for effi-
cient and high fidelity speech synthesis. Advances in
Neural Information Processing Systems, 33:17022–
17033.

Rui Liu, Berrak Sisman, Guanglai Gao, and Haizhou Li.
2022. Controllable accented text-to-speech synthesis.
arXiv preprint arXiv:2209.10804.

Linsen Loots and Thomas Niesler. 2011. Automatic
conversion between pronunciations of different en-
glish accents. Speech Communication, 53(1):75–84.

Zhaojie Luo, Jinhui Chen, Tetsuya Takiguchi, and Yasuo
Ariki. 2017. Emotional voice conversion using neural
networks with arbitrary scales f0 based on wavelet
transform. EURASIP Journal on Audio, Speech, and
Music Processing, 2017:1–13.

9296



Keisuke Oyamada, Hirokazu Kameoka, Takuhiro
Kaneko, Hiroyasu Ando, Kaoru Hiramatsu, and Ku-
nio Kashino. 2017. Non-native speech conversion
with consistency-aware recursive network and gen-
erative adversarial network. In 2017 Asia-Pacific
Signal and Information Processing Association An-
nual Summit and Conference (APSIPA ASC), pages
182–188. IEEE.

Adam Polyak, Yossi Adi, Jade Copet, Eugene
Kharitonov, Kushal Lakhotia, Wei-Ning Hsu, Ab-
delrahman Mohamed, and Emmanuel Dupoux.
2021. Speech resynthesis from discrete disentan-
gled self-supervised representations. arXiv preprint
arXiv:2104.00355.

Kaizhi Qian, Yang Zhang, Shiyu Chang, Mark
Hasegawa-Johnson, and David Cox. 2020. Unsu-
pervised speech decomposition via triple information
bottleneck. In International Conference on Machine
Learning, pages 7836–7846. PMLR.

Tomoki Toda, Alan W Black, and Keiichi Tokuda. 2007.
Voice conversion based on maximum-likelihood esti-
mation of spectral parameter trajectory. IEEE Trans-
actions on Audio, Speech, and Language Processing,
15(8):2222–2235.

Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural
discrete representation learning. Advances in neural
information processing systems, 30.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Christophe Veaux, Junichi Yamagishi, Kirsten MacDon-
ald, et al. 2016. Superseded-cstr vctk corpus: English
multi-speaker corpus for cstr voice cloning toolkit.

Zhichao Wang, Wenshuo Ge, Xiong Wang, Shan Yang,
Wendong Gan, Haitao Chen, Hai Li, Lei Xie, and Xi-
ulin Li. 2021. Accent and speaker disentanglement
in many-to-many voice conversion. In 2021 12th In-
ternational Symposium on Chinese Spoken Language
Processing (ISCSLP), pages 1–5. IEEE.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. 2004. Image quality assessment: from
error visibility to structural similarity. IEEE transac-
tions on image processing, 13(4):600–612.

SiCheng Yang, Methawee Tantrawenith, Haolin Zhuang,
Zhiyong Wu, Aolan Sun, Jianzong Wang, Ning
Cheng, Huaizhen Tang, Xintao Zhao, Jie Wang, et al.
2022. Speech representation disentanglement with
adversarial mutual information learning for one-shot
voice conversion. arXiv preprint arXiv:2208.08757.

Guanlong Zhao, Shaojin Ding, and Ricardo Gutierrez-
Osuna. 2019. Foreign accent conversion by synthe-
sizing speech from phonetic posteriorgrams. In Inter-
speech, pages 2843–2847.

Guanlong Zhao, Sinem Sonsaat, John Levis, Evgeny
Chukharev-Hudilainen, and Ricardo Gutierrez-
Osuna. 2018. Accent conversion using phonetic
posteriorgrams. In 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5314–5318. IEEE.

5 Appendix: CycleGANs

CycleGANVC/VC2/VC3/Mask (Kaneko et al.,
2019, 2020a,b, 2021) (CycleGANS) is a voice con-
version model consisting of two generators, G, and
two discriminators, D. CycleGANs has emerged
as a novel approach in the domain of voice con-
version, demonstrating its effectiveness in learn-
ing the transformation between different acoustic
feature sequences without the need for parallel
data. These advancements contribute to the on-
going progress in voice conversion research and its
applications in various fields. The primary objec-
tive of CycleGANs, as discussed in the research
papers by Kaneko and Kameoka (Kaneko et al.,
2020a,b, 2021), is to acquire the ability to trans-
form acoustic feature sequences belonging to the
source domain X into those of the target domain Y
without relying on parallel data. The acoustic fea-
ture sequences are represented by x ∈ RQ×T and
y ∈ RQ×T , where Q and T represents the feature
dimension and the sequence length respectively.

The foundation of CycleGANs is rooted in the
inspiration drawn from CycleGAN, originally pro-
posed for image-to-image style transfer in com-
puter vision. By applying the principles of Cy-
cleGAN, CycleGANs aims to learn the mapping
function G(x) → Y , enabling the conversion of
input x ∈ X to output y ∈ Y .

In pursuit of this goal, CycleGAN semploys
several loss functions during the learning process.
These include adversarial loss, cyclic consistency
loss, and identity mapping loss, collectively con-
tributing to the enhancement of the quality and
fidelity of the generated outputs. CycleGAN-
VC2 (Kaneko et al., 2020a) introduces an addi-
tional adversarial loss to further refine and improve
the fine-grained details of the reconstructed fea-
tures. CycleGAN-VC3 (Kaneko et al., 2020b)
incorporats an additional module called time-
frequency adaptive normalization (TFAN). Al-
though the performance is superior, an increase
in the number of converter parameters is necessary
(from 16M to 27M). MASKCycleGAN (Kaneko
et al., 2021) use a novel auxiliary task called filling
in frames (FIF), which apply a temporal mask to
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Table 3: Forms and interpretations of notations.

Symbol Definition
x Original data of speech a
y Original data of speech b
x′ Generate new sample of speech a
y′ Generate new sample of speech b

GX→Y
θ1

Forward conversion from speech a to speech b with parameters θ1
GY→X

θ2
Inverse conversion from speech b to speech a with parameters θ2

S The mel-spectrogram
P The normalized pitch contour
Sa The speaker identity of speech a
Sb The speaker identity of speech b
Aa The accent identity of speech a
Ab The accent identity of speech b
Eac An accent encoder
Es A speaker encoder
Ec A speech content encoder
C1 A speaker identity classifier with linear
C2 A speaker identity classifier with gradient reverse linear
Zac The accent feature from Eac

Zt The speaker feature from Es

Zc The speaker feature from Ec

Zac The accent feature from Eac

Î The unbiased estimator for vCLUB (Cheng et al., 2020)

the input mel-spectrogram and encourage the con-
verter to fill in missing frames based on surround-
ing frames. These adjustments add some structure
to the text and make it even more reader-friendly.

This paper applies the non-parallel data-
based voice conversion model MaskCycleGAN-
VC (Kaneko et al., 2021) to a more challenging
task: voice and accent joint conversion. The source
speaker’s accent can be converted to the target
speaker’s accent without changing the linguistic
content of the speech. We improve the generator
part of the MaskCycleGAN-VC (Kaneko et al.,
2021) for specific data and application scenarios.
The comprehensive list of the primary symbols
used throughout this paper is presented in Table 3.

9298


