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Abstract

Multimodal question answering (MMQA),
which aims to derive the answer from multiple
knowledge modalities (e.g., text, tables, and
images), has received increasing attention due
to its board applications. Current approaches
to MMQA often rely on single-modal or bi-
modal QA models, which limits their abil-
ity to effectively integrate information across
all modalities and leverage the power of pre-
trained language models. To address these lim-
itations, we propose a novel framework called
UniMMQA, which unifies three different input
modalities into a text-to-text format by employ-
ing position-enhanced table linearization and
diversified image captioning techniques. Ad-
ditionally, we enhance cross-modal reasoning
by incorporating a multimodal rationale gen-
erator, which produces textual descriptions of
cross-modal relations for adaptation into the
text-to-text generation process. Experimental
results on three MMQA benchmark datasets
show the superiority of UniMMQA in both su-
pervised and unsupervised settings.

1 Introduction

In typical question answering (QA) systems, an-
swers are typically derived from a single modality,
such as an image (Antol et al., 2015), passage (Choi
et al., 2018), or table (Oguz et al., 2022), without
the need for cross-modality reasoning. However, in
real-world scenarios, individuals often rely on mul-
timodal information and reasoning from diverse
knowledge sources to arrive at answers. Multi-
modal question answering (MMQA) (Hannan et al.,
2020; Talmor et al., 2021) demands QA systems
to perform reasoning across multiple knowledge
modalities, including images, structured tables, tex-
tual passages, etc.

Preliminary attempts in MMQA (Hannan et al.,
2020; Talmor et al., 2021) typically utilize sepa-
rate QA systems for different knowledge modal-
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(a) Illustration of existing modality unification methods.

Page Title Result Opponent Method Date Event Section Title

Kazunari 
Murakami

Loss Akihiro 
Gono

KO (head 
kick)

October 
13, 1995

Lumax Cup: 
Tournament 

of J’95

Mixed martial 
arts record

Kazunari Murakami made his debut on October 13, 1995 at 
Lumax Cup: Tournament of J’95, losing to Akihiro Gono by KO.

Template-based
Table-to-Text

A view of water with a 
town in the background. 

Single Image 
Caption

(b) Examples of template-based table-to-text transformation
and single image caption.

Figure 1: Illustration of remaining challenges in existing
modality unification methods for MMQA.

ities, which failed to bridge the challenging gap
between multimodal sources. To integrate in-
formation across modalities, various graph struc-
tures (Yang et al., 2022a; He and Wang, 2023) are
introduced into MMQA systems to build semantic
connections between different modalities. How-
ever, the graph structure is typically less compatible
and practical with language models, and can barely
compete with the powerful pre-trained language
models (PLMs). To better leverage the knowledge
from PLMs, recent studies employ modality unifi-
cation techniques to transform different modalities
into text. For example, tabular data can be either
linearized into token sequences (Xie et al., 2022;
Liu et al., 2022a) or adapted to pre-defined textual
templates (Yoran et al., 2022), while visual data
can be summarized into textual descriptions by im-
age caption techniques (Gui et al., 2022; Lin et al.,
2022; Yang et al., 2022b; Shao et al., 2023).

Despite the effectiveness of modality unification
techniques in handling multimodal inputs, there
are several challenges that remain to be tackled
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in MMQA: 1) Existing methods only investigate
the unification of two modalities, such as text-and-
table (Xie et al., 2022; Yoran et al., 2022) or text-
and-image (Gui et al., 2022; Lin et al., 2022; Yang
et al., 2022b; Shao et al., 2023), while an additional
uni-modal QA model is required to handle the rest
of questions in MMQA, as shown in Figure 1(a). 2)
The process of modality transformation inevitably
causes information loss. For example, the position
information of each table cell is discarded when
adopting template-based table-to-text transforma-
tion, as shown in the left example of Figure 1(b).
Besides, some important image details will be left
out when generating a single image caption, e.g.,
the bridge in the right example of Figure 1(b). 3)
These MMQA approaches using modality unifica-
tion typically concatenate the unified textual infor-
mation as the context (Figure 1(a)), while cross-
modal reasoning, which attaches great importance
in MMQA, is overlooked in these methods.

In the light of these challenges, we propose a
novel MMQA framework, namely UniMMQA,
which unifies three different input modalities into a
text-to-text format. In specific, to alleviate the infor-
mation loss during the modal unification, we first
adopt an easy-to-apply decoding strategy to gener-
ate informative image captions from the visual data
by sampling a diverse set of image descriptions
instead of only taking the greedy one. Meanwhile,
the tabular data is linearized into textual sequence
with position tokens. Then a cross-modal rationale
generator is adapted to produce explicit textual rea-
soning descriptions about the interrelations across
different modalities. All the multimodal knowledge
and the cross-modal rationale are represented in the
text form, which are ultimately applied to a text-to-
text generation with PLMs. The main contributions
of this work can be summarized as follows:

• We propose a novel framework, namely UniM-
MQA, to unify text, tables and images in MMQA
into a text-to-text format for PLMs, via position-
enhanced table linearization and diversified im-
age captioning.

• To enhance the cross-modal reasoning over texts,
we prompt a multimodal rationale generator to
produce textual cross-modal relation descriptions
for adapting into the text-to-text generation.

• Experimental results on three MMQA bench-
mark datasets show that UniMMQA outperforms
existing MMQA methods and effectively takes

advantage of PLMs. Our code will be released
via https://github.com/Luohh5/UniMMQA.

2 Related Works

Multimodal Question Answering Evolving
from visual question answering (VQA) (Antol
et al., 2015) that aims to answer questions from
image-only inputs, knowledge-based VQA stud-
ies (Marino et al., 2019; Shah et al., 2019) expand
the scope to involve both textual and visual knowl-
edge. Another line of studies (Wang et al., 2022)
focuses on QA over a hybrid context of tabular
and textual data (Chen et al., 2020b, 2021). Due
to the multimodal nature of information flow in
real-world applications, researchers (Hannan et al.,
2020; Talmor et al., 2021; Chang et al., 2022; Li
et al., 2022b) emphasize the importance of answer-
ing questions that require information across multi-
ple modalities, including text, tables, and images,
which is typically referred as multimodal question
answering (MMQA). MMQA has been widely used
in various real-world applications, such as finance
(Zhu et al., 2021; Deng et al., 2022a), e-commerce
(Deng et al., 2023, 2022b, 2020), science (Lu et al.,
2022; Xu et al., 2021b), and more. Early stud-
ies (Hannan et al., 2020; Talmor et al., 2021) de-
compose MMQA into three single-modal QA mod-
els. To align different modalities, some latest stud-
ies employ graph structures (Yang et al., 2022a;
He and Wang, 2023) to enhance the cross-modal
interaction.

Modality Unification Pre-trained language mod-
els (PLMs) show exceptional proficiency in han-
dling text-to-text problems (Raffel et al., 2020),
which can be further adapted into large language
models (Zhao et al., 2023). Therefore, a main-
stream approach for handling multimodal tasks
is to unify different modalities into text. As for
knowledge-based VQA, a recent trend is to lever-
age image caption techniques for unifying the
information across textual and visual modalities,
which either generates captions from the whole im-
age (Gui et al., 2022; Lin et al., 2022) or utilizes
the information of object regions for image caption-
ing (Yang et al., 2022b; Shao et al., 2023). As for
table-and-text hybrid QA, some latest studies lever-
age either table linearization techniques (Xie et al.,
2022; Liu et al., 2022a) or template-based table-
to-text approaches (Yoran et al., 2022) to combine
tabular and textual data. However, there has been
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Figure 2: The overall framework of UniMMQA.

relatively little work on unifying text, tables and
images for multimodal question answering. A con-
temporary work (Yu et al., 2023) also proposes to
transform the images and tables into unified lan-
guage representations for solving MMQA as a tex-
tual QA problem. Nevertheless, we further mitigate
the information loss issues during the modality uni-
fication in MMQA.

Image Caption Image caption (Stefanini et al.,
2023) aims to generate a natural language caption
to summarize the objects and their attributes in-
formation in a given image. In recent years, sev-
eral studies utilize powerful visual-language pre-
training (VLP) models to realize the captioning
process (Radford et al., 2021; Li et al., 2022a;
Yuan et al., 2023). Moreover, some researchers
design advanced methods for generating more di-
verse and informative image captions (Chen et al.,
2019; Zhao et al., 2019; Mahajan and Roth, 2020;
Xu et al., 2021a). In this work, we investigate di-
versified image caption techniques to alleviate the
information loss during modality unification.

3 UniMMQA Framework

Given a question Q and corresponding knowledge
context C = {I, T, P}, where I represents the
image, T represents the table and P represents
textual passage, UniMMQA aims to generate an
appropriate answer A. The overview of UniMMQA
is illustrated in Figure 2.

3.1 Diversified Image Caption

In order to perform the downstream task in text
space, we convert the image knowledge into text.
Specifically, we employ two conversion strategies:
optical character recognition (OCR) and image cap-
tion. Firstly, according to Jain et al. (2021), we

utilize an off-the-shell OCR model1 to extract all
explicit text in the images. Secondly, following
BLIP (Li et al., 2022a), we apply a state-of-the-art
image captioning model with some modifications
to transform the image into caption text from noisy
web data. In order to diversify the caption genera-
tion, we adopt an easy-to-apply decoding strategy
by sampling a diverse set of image descriptions in-
stead of taking the greedy one (Vijayakumar et al.,
2016). The sampling strategy picks the word ac-
cording to conditional probability distribution:

Itextt ∼ P (Itext|Itext1:t−1), (1)

where Itextt denotes the word in the sampling pool
and t denotes the next picking. In specific, we
jointly employ Top-K (Fan et al., 2018) and Top-
p (Holtzman et al., 2020) sampling. In Top-K sam-
pling, the K most likely next words are filtered
and the probability mass is redistributed for pick-
ing the next word according to their cumulative
probability:

∑
Itextt ∈VK

P (Itextt |Itext1:t−1), (2)

where V denotes the sampling pool. In Top-p sam-
pling, the smallest possible set of words whose
cumulative probability exceeds the probability p
are filtered for the next word picking, which can be
described as:

∑
Itextt ∈Vx

P (Itextt |Itext1:t−1) ≥ p, (3)

However, Top-p sampling only filters a few words
in the sampling pool when the next word seems
more predictable, which means it’s more elegant
than Top-K sampling. To handle this, we utilize

1https://github.com/JaidedAI/EasyOCR
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Top-p in combination with Top-K as our decod-
ing strategy to avoid very low-ranked words. Our
strategy is then the following:
∑

Itextt ∈Vx

P (Itextt |Itext1:t−1) ≥ p, x ≥ K, (4)

where x is set to x ≥ K to prevent filtering too few
words in the sampling pool. To sum up, we feed the
image into a vision transformer (Dosovitskiy et al.,
2021) to obtain patch-level features, which are then
fed into a decoder to generate the image caption
based on Top-K and Top-p sampling strategy.

Itext = Fcaption(I,K, p), (5)

where Fcaption is a vision-language pre-trained
model consists of encoder and decoder.

3.2 Table-to-Text Transformation
Besides to image, structured table also need to
converted into text. A commonly used conver-
sion method is linearization. In this work, we em-
ploy position-enhanced encoding linearization (Liu
et al., 2022b). Specifically, we concatenate all ele-
ments on the same row and different elements are
separated by " | ". All the rows including the header
are then concatenated into a long passage delimited
by predefined separator "header :" or "row : x"
where x denotes the row id. Our linearized table
can be represented as:

T text = “ header : h1 | ... | hN
row 1 : r11 | ... | r1N
...

row M : rM1 | ... | rMN”

where M and N denote the number of rows and
columns respectively. Therefore, we unify different
modalities of the context C into textual sequence
Ctext =

{
Itext, T text, P

}
.

3.3 Multimodal Rationale Generation
In addition to unifying input modalities for text-
to-text format, we generate intermediate reasoning
descriptions as the rationale to seek the connec-
tion and relationship between different modalities.
Following Zhang et al. (2023), we fine-tune a gen-
erative PLM (e.g., T5) on ScienceQA benchmark
as a rationale generator, which generates the ra-
tionale based on visual features and textual inputs.
Specifically, we feed the image to CLIP (Radford
et al., 2021) to extract vision features and we feed

text and linearized table to the language encoder to
extract language representations by the following
functions:

Ifeature = Fv(I), (6)

Pfeature = Fl(T
text, P ), (7)

where Fv denotes vision extraction model CLIP
and Fl denotes the language encoder implemented
as a Transformer model. Then the vision features
and language representations are fused to encode
their joint features. The joint features are sub-
sequently fed into decoder to generate rationale,
which describes the interrelations across different
modalities. The rationale is obtained by:

R = Fr(Ifeature, Pfeature), (8)

where R denotes the rationale and Fr denotes
the rationale generation model. After incorpo-
rating the natural language rationale into the tex-
tual input to enhance the cross-modal interaction,
i.e., Ctext =

{
Itext, T text, P,R

}
, we concate-

nate it with Q as an unified input sequence X ={
Q1, Q2, ..., Qn, C

text
1 , Ctext

2 , ..., Ctext
m

}
, where n

and m represent the max length of question se-
quence and context sequence respectively.

3.4 Sequence-to-Sequence Training Procedure

After unifying all modalities to a textual input se-
quence X , we fine-tune a generative PLM (e.g.,
T5) as our QA model which is defined as:

Y = Fqa(X), (9)

where Fqa is the QA model and Y denotes the
prediction sequence. When fine-tuning on MMQA
task for the answer generation stage, we minimize
the negative log-likelihood loss LNLL averaged
over tokens in each batch as our training objective:

LNLL = − 1

L

L∑

l=1

yl log

(
exp (yl)∑l
i exp (yi)

)
, (10)

where L is the max length of output sequence, yl
and yl denote the l-th token in gold answer and
prediction sequence respectively. Furthermore, we
employ prefix-tuning as our fine-tuning strategy,
which adds a task-specific prefix (e.g., MMQA) to
the input sequence as a prompt.
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Split Modality

Datasets Train Dev Test Image Table Text

ManymodelQA 2,036 3,055 - 2,873 3,528 3,789
MultimodalQA 23,817 2,442 3,660 57,058 10,042 218,285
MMConvQA 4,582 581 590 57,058 10,042 218,285

Table 1: Dataset statistics of MultimodalQA, Many-
modalQA, and MMConvQA.

4 Experiments

4.1 Experimental Setups

Datasets & Evaluation Metrics We conduct the
experiments on three public benchmark datasets,
including ManymodalQA (Hannan et al., 2020),
MultimodalQA (Talmor et al., 2021), and MMCon-
vQA (Li et al., 2022b). ManymodalQA contains
10,190 questions: 2,873 images, 3,789 text and
3,528 tables, which have been split into train/dev
sets. MultimodalQA consists of 29,918 question-
answer pairs cross image, table and text modali-
ties, 35.7% of which require cross-modal reason-
ing. Derived from MultimodalQA, MMConvQA
is a multimodal conversational question answer-
ing dataset with 1,179 conversations and 5,753
question-answering pairs. There are 218,285 pas-
sages, 10,042 tables and 57,058 images in MMCon-
vQA, and about 24.4% of conversations require
reasoning cross three modalities. The statistics of
these datasets are presented in Table 1. Following
previous studies, we adopt Exact Match (EM) and
F1 as the evaluation metrics for all datasets.

Baselines We compare UniMMQA with the state-
of-the-art methods in each benchmark, including
Implicit-Decomp (Talmor et al., 2021), MMQA-
T5 (Yoran et al., 2022), PReasM (Yoran et al.,
2022), SKURG (Yang et al., 2022a), MGT (He
and Wang, 2023), ManymodalQA (Hannan et al.,
2020), ORConvQA (Qu et al., 2020), MAE (Li
et al., 2022b), Solar (Yu et al., 2023). Detailed
descriptions of each baseline are provided in Ap-
pendix A. Our default configuration utilizes T5
model as backbone. Specifically, we employed
different sizes of T5 model to evaluate our perfor-
mance, denoted as UniMMQA (T5-Base), UniM-
MQA (T5-Large) and UniMMQA (T5-3B).

Implementation Details We use three sizes of
T5 as our backbone language models, including
T5-Base, T5-Large and T5-3B. Besides, we set the
max length of unified input sequence and output
sequence to 1024 and 128 respectively. The beam

Dev Test

Method EM F1 EM F1

Implicit-Decomp 48.8 55.5 49.3 55.9
MMQA-T5-Large 57.9 64.3 57.0 63.4
PReasM-Large 59.0 65.5 58.3 64.6
SKURG 59.4 63.8 - -
MGT 52.1 57.7 - -
Solar 59.8 66.1 - -

UniMMQA (T5-Base) 67.9 74.0 67.0 72.9
UniMMQA (T5-Large) 71.3 77.1 70.1 75.8
UniMMQA (T5-3B) 75.5 81.7 73.7 80.1

Table 2: Experimental results on MultimodalQA.

size of the answer generating process is set to 4.
For training, we use batch size 4 for T5-Base and
use batch size 2 for T5-Large and T5-3B due to
CUDA memory. We employ the Adafactor opti-
mizer for T5-Base and T5-Large, and AdamW for
T5-3B with the 5e-5 initial learning rate and linear
decay of the learning rate. The max training epoch
is set to 400 for all datasets. We evaluate on the de-
velopment set for every 500 steps and use the aver-
age development set metric for the best checkpoint
selection. As for the image caption module, we
jointly adopt Top-K and Top-p sampling as decod-
ing strategy in caption generating. The sampling
pool size K and the probability threshold p are set
to K = 50 and p = 0.9 respectively. The number
of generated sequences per image is set to N = 3
for more diversified image captions.

4.2 Overall Performance
MultimodalQA Table 2 presents a comparison
of the performance of UniMMQA on the Mul-
timodalQA dataset with previous state-of-the-art
models. Among the baselines, MMQA-T5 and
PReasM, which unify the textual and tabular modal-
ities, largely outperform Implicit-Decomp which
adopts separated uni-modal and bi-modal QA
models. Despite the improvement over Implicit-
Decomp, SKURG and MGT, which employ graph
structures to enhance the interactions between dif-
ferent modalities, fail to compete with MMQA-T5
and PReasM. These results indicate the effective-
ness of modality unification on the MMQA task.
Furthermore, the proposed UniMMQA method sur-
passes all the strong baselines on both EM and F1
by unifying all three modalities of MMQA. In ad-
dition, the performance of UniMMQA also grows
with the size of the backbone PLM, which shows
the superiority of the proposed method to be adap-
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Method EM F1

Most Common 2.4 -
USE 5.6 -
Voting 21.1 -

ManymodalQA 39.7 -
ManymodalQA (w/ Oracle) 46.3 -

UniMMQA (T5-Base) 45.4 45.7
UniMMQA (T5-Large) 50.0 50.4
UniMMQA (T5-3B) 52.1 52.4

Table 3: Experimental results on ManymodalQA.

tive to a variety of powerful PLMs.

ManymodalQA We also conducted experiments
on ManymodalQA dataset and the results are pre-
sented in Table 3. Compared with heuristic meth-
ods, ManymodalQA achieves much better perfor-
mance by classifying the question types for dif-
ferent uni-modal QA models. With oracle ques-
tion type labels (w/ Oracle), ManymodalQA fur-
ther improves the performance, indicating the im-
portance of identifying the modalities of the re-
quired information in MMQA. The results demon-
strate that UniMMQA outperforms almost all base-
line models on the ManymodalQA dataset, but the
score of UniMMQA (T5-Base) is lower than Many-
modalQA (w/ Oracle).

MMConvQA Table 4 summarizes the results for
MMConvQA dataset, in comparison with previous
SOTA. We can see that UniMMQA achieves huge
improvements and outperforms the best baseline
MAE by at least 39.2 EM scores and 37.0 F1 scores.
This also indicates that UniMMQA can be flexibly
and effectively applied to different types of MMQA
problems, such as in the form of conversations.

Overall UniMMQA achieves new state-of-the-
art results on all MultimodalQA, ManymodalQA
and MMConvQA datasets. Compared with exist-
ing methods that decompose MMQA into three
single-modal models, e.g., Implicit-Decomp and
ManymodalQA, the results show that unifying in-
put modalities performs better. Besides, compare
with SKURG and MGT that utilize graph struc-
tures to enhance the cross-modal interaction, our
multimodal rationale generator is more effective
and contributes to the superior results.

4.3 Ablation Study

We perform ablation studies to investigate the ef-
fects of the proposed approaches in terms of model

Dev Test

Method EM F1 EM F1

ORConvQA 1.2 3.0 1.1 1.9
ManymodelQA 2.3 0.7 1.8 1.0
MAE 19.8 26.8 22.0 28.3
Solar 56.8 62.5 57.3 64.6

UniMMQA (T5-Base) 57.8 64.7 59.2 64.9
UniMMQA (T5-Large) 62.3 69.0 63.6 70.0
UniMMQA (T5-3B) 65.8 71.4 66.7 72.6

Table 4: Experimental results on MMConvQA.

T5-Base T5-Large T5-3B

Method EM F1 EM F1 EM F1

UniMMQA 67.9 74.0 71.3 77.1 75.5 81.7

w/o Prefix-tuning 67.6 73.7 71.0 76.8 75.3 81.4

w/o Rationale 67.9 73.9 71.3 77.0 75.4 81.6

w/o Top-k sampling 67.7 72.9 71.1 76.1 75.2 80.7
w/o Top-p sampling 67.2 73.1 70.9 76.4 75.3 81.2
w/ Beam search 66.1 72.6 69.8 75.6 74.5 80.6
w/ Greedy decode 66.8 72.1 71.1 75.4 75.1 80.5

w/ Template-based Table 41.6 50.9 47.7 56.5 52.1 60.0

Table 5: Ablation study on MultimodalQA (Dev set).

fine-tuning, rationale generation, image caption-
ing, and table linearization, as presented in Table 5.
There are several notable observations as follows:

• When dropping the prefix-tuning strategy, UniM-
MQA uses a common fine-tuning strategy on
down-stream tasks without adding a task-specific
prefix into the input sequence, whose perfor-
mance drops by 0.2-0.3 EM and F1 points.

• When we drop the rationale in input sequence,
the overall performance declines a little, which
demonstrates that adding the interrelations across
input modalities to input could indeed benefit en-
hancing cross-modal reasoning. Although there
is a weak correlation between most images and
text in MultimodalQA, our rationale generator
performs well in generating relation descriptions
between other highly correlated images and text.
We show a corresponding example in Figure 6.

• As for image captioning, when we drop Top-K or
Top-p sampling, we can see declines in both situ-
ations. When replacing with beam search(Shao
et al., 2017) or greedy decode(Vijayakumar et al.,
2016), the performance drops about 2%, which
further verifies the effectiveness of jointly utiliz-
ing Top-K and Top-p sampling to diversify the
generated image captions.
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LLaMA-7B Vicuna-7B LLaMA-13B Vicuna-13B

Prompt EM F1 EM F1 EM F1 EM F1

Text + Linear. Table + Image (MiniGPT-4) - - 2.3 13.3 - - 1.2 14.1
Text + Template. Table + Image Caption 0.0 11.3 6.8 16.8 1.4 12.1 1.8 16.7
Text + Linear. Table + Image Caption 0.0 14.9 7.4 19.3 1.6 17.5 2.2 23.3
Text + Linear. Table + Diversified Image Caption 0.0 15.0 7.6 19.3 2.4 19.0 2.4 23.7
Text + Linear. Table + Diversified Image Caption + Rationale 0.0 15.3 7.8 19.4 2.4 19.2 2.6 24.1

Table 6: Zero-shot performance with LLMs on MultimodalQA.

Image Table Text Overall

Dataset Model EM F1 EM F1 EM F1 EM F1

MultimodalQA
UniMMQA (T5-Base) 66.7 69.2 65.5 71.4 68.3 76.4 67.9 74.0
UniMMQA (T5-Large) 69.8 72.2 69.9 75.6 71.9 80.0 71.3 77.1
UniMMQA (T5-3B) 73.8 76.7 73.4 79.7 76.2 84.1 75.5 81.7

ManymodalQA
UniMMQA (T5-Base) 46.6 46.9 60.7 61.1 30.2 30.4 45.4 45.7
UniMMQA (T5-Large) 48.5 48.6 67.5 68.2 34.9 35.1 50.0 50.4
UniMMQA (T5-3B) 49.8 50.2 58.0 58.3 40.9 41.3 52.1 52.4

MMConvQA
UniMMQA (T5-Base) 73.2 75.5 33.5 40.5 66.8 76.3 57.8 64.7
UniMMQA (T5-Large) 73.2 75.4 38.9 46.8 73.3 81.7 62.3 69.0
UniMMQA (T5-3B) 73.3 75.5 41.9 47.9 77.8 85.1 65.8 71.4

Table 7: Detailed performance in terms of different modalities.

• For table linearization, when we use template-
based encoding (Chen et al., 2020a; Su et al.,
2021) in place of position-enhanced encoding,
we convert structured table to natural language.
The results show that there is a sharp decline for
all model sizes, demonstrating that the template-
based conversion to natural language casts a neg-
ative impact on the MMQA task due to the diver-
sity and differences of table formats and content.

4.4 Zero-shot Setting with LLMs

In order to testify the effectiveness of the proposed
framework with the use of LLMs, we evaluate
the zero-shot performance of three different open-
source LLMs, including LLaMA (Touvron et al.,
2023), Vicuna (Chiang et al., 2023), and MiniGPT-
4 (Zhu et al., 2023). Due to the length limits in
these LLMs (e.g., 2048 tokens for Vicuna), the
few-shot in-context learning is impractical where
the context in MMQA is much longer than other
tasks. Without few-shot samples, the format of the
generated answers is typically a complete sentence,
instead of a short phrase or a text span as the refer-
ence answer. Therefore, we observe that the exact
match (EM) score is unreliable, and here we mainly
discuss the results in terms of the F1 score.

Table 6 summarizes the zero-shot performance
with LLMs on the MultimodalQA dataset. There

are several notable observations: 1) Multimodal
LLMs (e.g., MiniGPT-4) for encoding the orig-
inal image, which demonstrates superior perfor-
mance on the VQA tasks, fall short of handling the
MMQA task, compared with their base LLMs with
image captions. 2) Due to the instruction tuning,
Vicuna performs much better than LLaMA. 3) The
position-enhanced table linearization outperforms
the template-based one to a great extent. 4) Both
the proposed diversified image caption technique
and the generated rationale further improve the per-
formance of UniMMQA. Overall, these results val-
idate the applicability of the proposed UniMMQA
framework in the era of LLMs.

4.5 Further Analysis

Analysis of Different Modalities We analyze the
performance in terms of questions requiring the in-
formation from different modalities, and the results
are summarized in Table 7. As shown in the results
on MultimodalQA datasets, the performance of
UniMMQA on image-based and table-based ques-
tions is observed to be lower compared to the over-
all performance, whereas it performs better on text-
based questions. This disparity can be attributed
to the information loss that may occur during the
conversion of images and tables into text, as well as
the inherent challenges in effectively incorporating
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visual and tabular data into the model’s reasoning
process. Besides, the EM and F1 on text-based
and image-based questions are lower than overall
performance but those on table-based questions are
higher on ManymodalQA dataset. The reason is
that the tables provided in ManymodalQA only con-
tain a few rows and its passages are too lengthy and
complex. Therefore, UniMMQA is hard to make
well reason from passage context but does well
in table context on ManymodalQA dataset. Con-
versely, the performance on table-based questions
is much lower than the overall performance in MM-
ConvQA, while it performs better on image-based
and text-based questions. This indicates that it is
challenging to handle conversational question an-
swering over tables. Overall, we conclude that the
performance on the MMQA task is largely affected
by the complexity of the context from each modal-
ity. Therefore, it is worth studying approaches to
effectively unifying different modalities.

Analysis of Number of Sampled Image Captions
In order to generate more diversified image caption,
we set different numbers of sampled image caption
N and pick the top N sequences with the highest
cumulative probability. Figure 3 shows how the
number of sampled image caption affects the over-
all performance. We apply our best model trained
on MultimodalQA and test it with varying N . As
shown, the EM and F1 both increase along with
the number of sampled image caption N from 65.8
to 67.9 and 72.1 to 73.9 as N increases from 1 to
3. A larger N increases the caption diversity that
each image generates more than one corresponding
caption. However, after N=3, the testing perfor-
mance decreases along with the growing number of
N . This is because setting too large N resulting in
generating lengthy caption, which is hard for QA
model making well reasoning.

4.6 Case Study

To evaluate our modality unification module, we
present generated examples from MultimodalQA
dataset in Figure 4 to Figure 6. Figure 4 shows
that when we drop out our diversified image cap-
tioning strategy, the caption model fails to find
the bridge in the given image and thus generates
the wrong answer. When adding the strategy, the
three generated captions contain more detailed in-
formation in the image and thus answer correctly.
Figure 5 shows how different table linearization
strategy affects the answer generating. When we

Figure 3: The overall performance with varying number
of sampled image caption.

City State IATA Airport Refs
Page Arizona PGA Page Municipal 

Airport
Essential 

Air 
Service

Parkersburg West 
Virginia

PKB Mid-Ohio 
Valley Regional 

Airport

Essential 
Air 

Service

Image Caption:
A view of water with a town in 
the background. 
Diversified Image Caption:
A bench overlooking a river and 
a bridge.
A view of a city and a bridge 
over a river.
A bench overlooking a river and 
a bridge.

Answer:
town

Answer:
bridge

Question: The PKB Contour Airline destination city has what going across the river?

Figure 4: Case study in terms of different image caption
methods.

use template-based encoding, the predefined tem-
plate only selects columns Position, Country and
Athlete to generate natural language and discards
column Height which is mentioned in question,
thus resulting in wrong answer generation. And
when using position-enhanced encoding, all the
cells are converted into text without any informa-
tion loss, thus the model could find the correct cell
and select the right answer. In the example from
Figure 6, when we add the multimodal rationale
generator, the model could connect New York Yan-
kees passage with the logo to produce their relation
description and generate the right answer. When
dropping the rationale, there is no connection be-
tween the passage and the image, which make QA
model hard to make good reasoning. Overall, we
conclude that adding our modality unification mod-
ule indeed effectively unifies different modalities
and yields decent performance.

5 Conclusion

In this paper, we present a novel MMQA frame-
work called UniMMQA, which unifies text, tables
and images into a text-to-text format for PLMs.
Specifically, we first utilize an effective decoding
strategy to generate diversified and informative im-
age captions from the visual data. And we lin-
earize the tabular data into textual sequence with
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Template-based:
In IAAF Golden League of 2007, No. 1 
athlete is Blanka Vlai from N/A. No. 7 
athlete is Vita Palama from N/A. No. 8 
athlete is Vita Palama from Marina 
Aitova.

Position Country Athlete Height

1 - Blanka Vlai 2.02

7 - Vita 
Palamar

1.91

8 - Marina 
Aitova

1.91

Position-based:
IAAF Golden League of 2007 | header : 
position | country | athlete | height | row 
1 : 1 | N/A | Blanka Vlai | 2.02 | row 2 : 
...
row 3 : 8 | N/A | Marina Aitova | 1.91

Answer:
Blanka Vlai

Answer:
marina aitova

Question: Which blonde haired athlete competed in the IAAF Golden 
League of 2007 in the Women's High Jump with a height of 1.91?

Figure 5: Case study in terms of different table lineariza-
tion methods.

New York Yankees. 
The Yankees have 
won 27 World Series 
Championships. Their 
most recent one came 
in 2009, under 
manager Joe Girardi, 
when they defeated 
the Philadelphia 
Phillies in six games.

Among MLB teams that are currently affiliated with the International League, when 
did the team with a baseball bat on their logo last win a World Series tournament?

Rationale: 
New York Yankees have a 
baseball cap on their logo. 

Answer
(w/ rationale): 
New York 
Yankees

Answer
(w/o rationale): 
Philadelphia 
Phillies

Question: 

Figure 6: Case study in terms of with and without ratio-
nale generation.

position tokens. Meanwhile, a cross-modal ratio-
nale generator is adapted to produce explicit textual
descriptions about the interrelations across differ-
ent modalities. Our experiments on three MMQA
benchmark datasets show that UniMMQA outper-
forms many MMQA methods and effectively take
advantage of PLMs.
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Limitations

Modality Unification Although using our image
captioning techniques could generate informative
and diversified image captions, information gap
still exists between image and caption. Specifically,
our image model lacks the ability to extract very
detailed information in image (e.g. the number of
objects), thus resulting in wrong answering when
facing some corresponding questions. Meanwhile,
although using position-enhanced table lineariza-
tion could convert all content into text without any
information loss, it also increases the complexity
of input sequence and largely affects the overall

performance. Therefore, it is worth studying ap-
proaches to balance the informativeness and com-
plexity during the modalities conversion in our fu-
ture work.

Hallucination Issues Another limitation of
UniMMQA is that our image caption and ratio-
nale generation module may suffer from the typical
flaw of hallucination issues, i.e., generating fab-
ricated descriptions that is irrelevant to image or
text. Fabricated caption and rationale would mis-
lead the reasoning and result in incorrect answering.
Our current approach has not taken this issue into
consideration, leaving room for future research to
explore and address this aspect in greater detail.
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A Detailed Descriptions of Baselines

We detailedly introduce the compared baseline
methods as follows:

• Implicit-Decomp (Talmor et al., 2021), which
consists of several single-modality and multi-
modality QA models, predicts a program that
specifies the required reasoning steps over dif-
ferent modalities, and executes the program with
different QA models.

• MMQA-T5 (Yoran et al., 2022) first fine-tunes
T5 (Raffel et al., 2020) on the MMQA task, with
the linearized tables and text as the input. To han-
dle image-based questions, Yoran et al. (2022)
route those questions to Implicit-Decomp and the
others to the fine-tuned T5.

• PReasM (Yoran et al., 2022) further fine-tunes
T5 with different reasoning skills with synthetic
tabular data, and then adopts the same question
routing approach for handling image-based ques-
tions as MMQA-T5.

• SKURG (Yang et al., 2022a) utilizes the knowl-
edge graph to integrate the multimodal inputs for
modeling interdependent reasoning steps.

• MGT (He and Wang, 2023) also employs graph
structure to model interactions between differ-
ent modalities. MGT utilizes Transformer as the
backbone and combines multimodal graph learn-
ing from unstructured data with Transformers.

• ManymodalQA (Hannan et al., 2020) utilizes a
question-type classifier to determine the modal-
ity which the question belongs and directed the
question and the context into the corresponding
uni-modal QA models.

• ORConvQA (Qu et al., 2020) is an open-retrieval
conversational QA model, which consists of a
learnable retriever, a reranker and a reader all
based on Transformers.
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• MAE (Li et al., 2022b) is a multimodal conversa-
tional QA model (MMCoQA), which divides the
MMCoQA task into three steps: conversational
question understanding, multimodal evidence re-
trieval, and adaptive answer extraction.

• Solar (Yu et al., 2023) consists of two parts: a
unified language representation and a unified QA
model. The former is responsible for transform-
ing images, tables and texts in different modali-
ties into language representation. The latter gen-
erates an answer through three steps of retrieval,
ranking and decoding in the language space.
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