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Abstract

Machine Translation systems can produce dif-
ferent types of errors, some of which are char-
acterized as critical or catastrophic due to the
specific negative impact that they can have on
users. In this paper we focus on one type of
critical error: added toxicity. We evaluate and
analyze added toxicity when translating a large
evaluation dataset (HOLISTICBIAS, over 472k
sentences, covering 13 demographic axes) from
English into 164 languages. An automatic toxi-
city evaluation shows that added toxicity across
languages varies from 0% to 5%. The output
languages with the most added toxicity tend
to be low-resource ones, and the demographic
axes with the most added toxicity include sex-
ual orientation, gender and sex, and ability. We
also perform human evaluation on a subset of
8 translation directions, confirming the preva-
lence of true added toxicity. We use a measure-
ment of the amount of source contribution to
the translation, where a low source contribution
implies hallucination, to interpret what causes
toxicity. Making use of the input attributions al-
lows us to explain toxicity, because the source
contributions significantly correlate with toxi-
city for 84% of languages studied. Given our
findings, our recommendations to reduce added
toxicity are to curate training data to avoid mis-
translations, mitigate hallucination and check
unstable translations.

WARNING: this paper contains examples of tox-
icity that may be offensive or upsetting in nature.

1 Introduction

Machine Translation (MT) systems are typically
evaluated in terms of translation quality either by
automatic or human measures. Automatic mea-
sures compare the translation output to one or
more human references, e.g., Papineni et al. (2002);
Popović (2015a); Lo (2019); Rei et al. (2020);
Sellam et al. (2020); Freitag et al. (2021), or pre-
trained embeddings, e.g., Lo (2019); Yankovskaya

et al. (2019). Human measures use annotators to
rank translation outputs, e.g., Licht et al. (2022);
Akhbardeh et al. (2021). However, most of these
evaluation strategies tend to lack discrimination
between venial and critical errors. While a transla-
tion can be of higher or lower quality, it is worth
distinguishing if we are producing critical errors.
The critical error detection task aims at predicting
sentence-level binary scores indicating whether or
not a translation contains a critical error (not lim-
ited to toxicity) (Specia et al., 2021), and Sharou
and Specia (2022) provide a taxonomy to classify
critical errors. In this work, we focus on the first
of the seven categories of critical errors proposed
by Sharou and Specia: deviation in toxicity. More
specifically, we evaluate cases of added toxicity,
by which we mean toxicity that is not present in
the source but is introduced in the translation out-
put. Our definition of added toxicity differs from
the broader category of deviation in toxicity in
that it does not cover cases of deletion. NLLB
Team et al. (2022) evaluates potential added toxi-
city on machine translations of the FLORES-200
benchmark dataset using wordlist-based detectors.
Such detectors are known for their limitations in
over-detecting terms that are toxic only in specific
contexts. Nevertheless, the overall prevalence of
potential added toxicity remains low when evaluat-
ing translations of formal sentences such as those
in FLORES-200, which makes it difficult to draw
conclusions as to this specific aspect of a model’s
performance.

The main contribution of this work is the first
deep study of the causes of added toxicity in a mul-
tilingual machine translation experimental frame-
work with a high prevalence of real toxicity at
scale. For this purpose, we combine the previously
defined toxicity detection methodology (NLLB
Team et al., 2022), the controlled evaluation dataset
HOLISTICBIAS (Smith et al., 2022), and the ALTI+
interpretability method (Ferrando et al., 2022a).
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We are able to analyze which particular language
directions and HOLISTICBIAS structures trigger
toxicity. Moreover, we perform a human evalu-
ation of the toxicity detection methodology for
a subset of eight out-of-English translation direc-
tions, and we find that the false positive rates are
below 1% in five translation directions. False neg-
atives are below 3% in all translation directions.
Finally, we demonstrate an interaction between
the source contribution, the robustness of transla-
tions, and toxicity. We use ALTI+ to observe that
45.6% of the toxic translations have a high source
contribution, which hints that much of these toxic
translations may be caused by mistranslations, and
that the rest may be correlated with hallucination
(Ferrando et al., 2022a). This suggests that hallu-
cination may add toxicity. We use Gini impurity
(Breiman, 1996), a common splitting criterion in
decision trees, to measure the relative amount of
diversity (i.e. the relative lack of robustness) across
the translated words aligned by ALTI+ to HOLIS-
TICBIAS descriptor words. A combination of a
low amount of source contribution and a high Gini
impurity across translations corresponds to a rate
of toxicity roughly twice as high as the baseline
rate. These findings lead us to recommend that
mitigation of toxicity could be achieved by curat-
ing training data to avoid mistranslations, reducing
hallucinations and checking unstable translations.

2 Definitions and Background

Definitions Sharou and Specia (2022) define de-
viation in toxicity as “instances where the transla-
tion may incite hate, violence, profanity or abuse
against an individual or a group (a religion, race,
gender, etc.) due to incorrect translations”. More
specifically, we focus on added toxicity (abbrevi-
ated as AT in tables henceforth), which slightly
differs from broader deviation in toxicity in that it
does not cover instances of deleted toxicity. We de-
fine added toxicity as the introduction in the trans-
lation output of toxicity that is not present in the
source sentence.

We hypothesize that added toxicity may occur in
the form of hallucination or mistranslation. Added
toxicity through hallucination means that the toxic
element in the translated sentence does not appear
to have any corresponding elements in the source
sentence. An example of hallucination can be seen
in Figure 1 (Sentence 1), where the English word
chubby gets translated as grosse (meaning fat or

big), and the word chatte (pussy or pussycat) ap-
pears to have no corresponding words in the source
sentence. Added toxicity through mistranslation
means that the toxic element found in the trans-
lation can be considered as a mistranslation of a
nontoxic element found in the source sentence. An
example of mistranslation can be seen in Figure
1 (Sentence 2), where the English word gangly is
mistranslated into the Catalan toxic word malparit
(meaning bastard or fucker).

When it comes to the level of added toxicity
in translation directions, we define high-, mid-,
and low-toxicity translation directions as the ones
that have levels of added toxicity above 0.5%, be-
tween 0.1% and 0.5%, and below 0.1%, respec-
tively. These percentages are computed following
the approach in section 4. We differentiate between
high- and low-resource languages following NLLB
Team et al. (2022). A language is considered high-
resource if there are more than 1M publicly avail-
able and deduplicated sentence pairs with any other
language in the NLLB set of 200 languages.

Toxicity detection methodology NLLB Team
et al. (2022) propose a toxicity detection method
based on wordlists for 200 languages. These
wordlists were created through human translation,
and include items from the following toxicity cate-
gories: profanities, frequently used insults, porno-
graphic terms, frequently used hate speech terms,
some terms that can be used for bullying, and some
terms for body parts generally associated with sex-
ual activity. Among their different detection meth-
ods, the authors label a sentence as toxic if it con-
tains at least one entry from the corresponding lan-
guage’s toxicity word list. An entry is considered to
be present in a sentence if it is either surrounded by
spaces, separators (such as punctuation marks), or
sentence boundaries, and thus this method would
not detect words such as bass or assistant when
looking for the toxic entry ass. One advantage of
this type of classifier is transparency, which dimin-
ishes the possibility of covering up biases (Xu et al.,
2021). Alternate methods, such as classifiers,1 are
available for English and a few other languages but
cannot be used in massively multilingual environ-
ments.

HOLISTICBIAS HOLISTICBIAS consists of
over 472k English sentences (e.g., “I am a dis-
abled parent.”) used in the context of a two-
person conversation. Sentences are typically cre-

1For instance, https://www.perspectiveapi.com/
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Hallucination

Sentence 1

__eng_Latn__ I love being chubby. </s> </s> __fra_Latn__ J’adore être une grosse chatte.

Mistranslation

Sentence 2

__eng_Latn__ Hi! I’m a gangly child. </s> </s> __cat_Latn__ Hola, sóc un nen malparit.

Correct translation

Sentence 3

__eng_Latn__ Hi! I’m a 50-year-old woman. </s> </s> __cat_Latn__ Hola, sóc una dona de 50 anys.

Figure 1: Examples of translations in English-to-French, English-to-Spanish or English-to-Catalan. Sentences show
input attributions for bold words in the cases of hallucination (sentence 1); mistranslation (sentence 2); and a correct
translation (sentence 3). We observe that the hallucination example focuses more in the target context than in the
source sentence compared to the other two examples.

ated from combining a sentence template (e.g., “I
am a [NOUN PHRASE].”), a noun (e.g., parent),
and a descriptor (e.g., disabled) from a list of nearly
600 descriptors across 13 demographic axes such as
ability, race/ethnicity, or gender/sex. The descrip-
tors can come before the noun (“I am a disabled
parent.”), after the noun (“I am a parent who is
hard of hearing.”), or in place of a separate noun
(“I am disabled.”) The noun can imply a certain
gender (girl, boy) or avoid gender references (child,
kid). Sentence templates allow for both singu-
lar and plural forms of the descriptor/noun phrase
(“What do you think about disabled parents?”)
Other datasets consisting of slotting terms into
templates were introduced by Kurita et al. (2019);
May et al. (2019); Sheng et al. (2019); Brown et al.
(2020); Webster et al. (2020). The advantage of
templates is that terms can be swapped in and out
to measure different forms of social biases, such
as stereotypical associations (Tan and Celis, 2019).
Other strategies for creating bias datasets include
careful handcrafting of grammars (Renduchintala
et al., 2021), collecting prompts from the begin-
nings of existing text sentences (Dhamala et al.,
2021), and swapping demographic terms in exist-
ing text, either heuristically (Ma et al., 2021; Wang
et al., 2021; Zhao et al., 2019; Papakipos and Bit-
ton, 2022) or using trained neural language models
(Qian et al., 2022).

ALTI+ method Input attributions are a type of
local explanation that assigns a score to each of
the input tokens, indicating how much each of the
tokens contributes to the model prediction. See

examples of these input attributions in Figure 1. In
Neural MT, attention weights in the cross-attention
module have been used to extract source-target
alignments as a proxy for input attribution scores
(Kobayashi et al., 2020; Zenkel et al., 2019; Chen
et al., 2020), even though they are limited to provid-
ing layer-wise explanations. Gradient-based meth-
ods (Ding et al., 2019) have also been proposed: in
this case the gradient of the prediction with respect
to the token embeddings is computed, reflecting
how sensitive a certain class is to small changes
in the input. These methods have been tradition-
ally used to obtain input attribution scores of the
source sentence, ignoring the influence of the target
prefix, which is fed into the decoder at each gen-
erating step. ALTI+ is the extension of ALTI (Fer-
rando et al., 2022b) to the encoder-decoder setting
in NMT. ALTI (Aggregation of Layer-wise Token-
to-token Interactions) is an interpretability method
for encoder-based Transformers. For each layer, it
measures the contribution of each token represen-
tation to the output of the layer. Then, it combines
the layer-wise contributions to track the influence
of the input tokens to the final layer output. ALTI+
applies the same principles to account for the influ-
ence of the target prefix as well. For each decoding
time step t, ALTI+ provides a vector of input attri-
butions rt ∈ R|S|+|T|, where S and T are the input
tokens of the encoder and decoder respectively. We
refer to the source contribution to the prediction
t as the sum of the attributions of the encoder in-
put tokens to the decoding step t,

∑|S|
s=1 rt,s. The

source-prediction alignment is computed by taking
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the input token of the encoder with highest attribu-
tion, argmax({rt,s : s = 1, . . . , |S|}). We exploit
both source contributions and word alignments for
a fine-grained analysis of toxicity as well as an
approach to flag temptative toxic translations. We
consider a source contribution to be low when it
is smaller than a threshold of 40%, in which case
we consider the target word is much more likely to
be the result of model hallucination: this threshold
corresponds to a region of particularly high toxicity
(section 5).

3 Proposed Experimental Methodology

We combine the toxicity detection methodology,
HOLISTICBIAS, and the ALTI+ method to study
added toxicity in multilingual machine translation
at scale.2 We demonstrate that HOLISTICBIAS

is a challenging demographic dataset that triggers
added toxicity in machine translation (section 4).
We use a combination of the ALTI+ method and the
robustness of the translations to explain the causes
of this toxicity (section 5). Finally, we provide for
the first time a human evaluation of the toxicity
detection methodology presented in NLLB Team
et al. (2022) (section 6).

Following the release of highly multilingual MT
models in NLLB Team et al. (2022), we are using
the 3.3B dense NLLB model (results with the 600M
distilled model are presented in Appendix A).3 We
translated the HOLISTICBIAS dataset, which con-
tains 472,991 English sentences, into 164 of these
200 languages (Table 2) in order to evaluate the
toxicity of the translations. 36 languages were
discarded for one of three reasons. First, for 27
languages,4 tokenization on non-word characters
is not sufficient to distinguish words from each an-
other. Even using SPM tokenization (Kudo and
Richardson, 2018a) on both the sentences and the
toxic words list cannot provide a solution to this
problem. Second, for seven languages,5 issues such
as UNKs or untranslated English text prevent easy
alignment of word splittings with the results of the

2HOLISTICBIAS was released under CC BY-SA 4.0 and is
being used here for evaluation purposes only.

3Models were released under CC BY-NC 4.0 and are being
used here for research purposes only.

4Assamese, Awadhi, Bengali, Bhojpuri, Gujarati, Hindi,
Chhattisgarhi, Kannada, Kashmiri, Khmer, Lao, Magahi,
Maithili, Malayalam, Marathi, Meitei, Burmese, Nepali, Odia,
Eastern Panjabi, Sanskrit, Santali, Shan, Sinhala, Tamil, Tel-
ugu, Thai.

5Standard Tibetan, Hungarian, Japanese, Korean,
Tamasheq (Latin script), Tamasheq (Tifinagh script), Yue Chi-
nese.

ALTI+ method. Third, for two languages,6 the tox-
icity lists are too inaccurate in that they include
many entries whose toxicity is sensitive to context.

4 Quantification of added toxicity

In this section, we provide a coarse and fine-grained
analysis of added toxicity in the experimental set-
ting defined in previous section.

Coarse-grained analysis We use toxicity detec-
tors to quantify toxicity per language, axis, descrip-
tors, noun and template at the sentence level.

By language. Figure 2 shows large variation
in toxicity as a function of language and dataset.
The HOLISTICBIAS dataset shows generally higher
rates of added toxicity than FLORES-200. We have
removed any language with >5% toxicity because
it is the threshold above which we found malformed
wordlists. Then, toxicity varies from 0% to 5%.
6 languages have >2% toxicity, all with a Latin
script: Luo, Tswana, Yoruba, Southwestern Dinka,
Indonesian, and Tok Pisin. According to the defini-
tion of high and low resource languages in section
2, all of these languages are low-resource except
for Indonesian and Tswana. All but 13 languages
have less than 1% toxicity. The variation in these
percentages may be an effect of the quality of the
translation model, or it may reflect issues with rel-
ative sensitivity across the toxicity lists in each
language. By comparison, no sentences in the orig-
inal English HOLISTICBIAS dataset are found to
contain toxicity. There is no discernible correlation
between the rate of added toxicity per language and
the fidelity of the translations: its Pearson’s r with
the chrF score (Popović, 2015b) is -0.06 (95% con-
fidence interval via bootstrapping: -0.23 to +0.12).
Note that since HOLISTICBIAS is only available
in English, we compute the quality of translations
based on FLORES-200 (NLLB Team et al., 2022).

By axis. Figure 2 shows the distribution of toxic
translations per category and how they vary per
language. Differently, when looking into the cate-
gories that have a higher concentration of toxicity
among the 13 axes of HOLISTICBIAS, the high-
est rates of toxicity are found in translations of
terms in the nonce (non-sense) axis (3.0% of all
translations), sexual orientation (1.5%), gender and
sex (0.7%), and ability (0.4%). Further details are
reported in Appendix B.

By noun. The eight most toxic nouns all refer
to parents or grandparents (parent, grandparent,

6Pangasinan and Igbo.
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Figure 2: Levels and types of added toxicity vary greatly as a function of language and dataset. Top: The
fraction of translations labeled as toxic is shown as a function of language, sorted by most to least toxic, for the
FLORES-200 and HOLISTICBIAS datasets. Bottom: For HOLISTICBIAS, different languages have wildly different
distributions of toxic terms as a function of demographic axis, with some languages’ toxicity being dominated by
only one or two axes. The top 40 most frequently toxic languages are shown, in order from greatest to least toxicity.

father, dad, grandfather, grandpa, grandmother,
and grandma), an effect that appears across most
of the languages most likely to have toxic nouns.

By template. Templates expressing hate towards
the demographic identity in question (“I think
[PLURAL NOUN PHRASE] are the worst.”, “I
hate [PLURAL NOUN PHRASE].”) are most likely
to be rated as toxic. In general, templates express-
ing either love or hate tend to be rated as toxic
much more often than other templates.

Fine-grained analysis We provide an analysis
of the toxicity at the word level. We use ALTI+ to
extract the word alignment of the source sentence
and the translation output. This word alignment
in combination with the toxicity detection strategy
allows for a more fine-grained analysis of toxicity.
Overall, in 75.6% of sentences containing toxic-
ity, the toxic word is aligned to a HOLISTICBIAS

descriptor word, with the remainder being aligned
to a word in the sentence template (17.4%) or the

noun (7.0%).7 However, this distribution varies
immensely across languages (as we detail in Ap-
pendix C and in Figure 4).

5 Phenomena causing toxicity

We explore the information from measuring the
source contribution to translations, as well as the
robustness in translations, in relation to toxicity.

Input Attributions We use the level of source
contribution to confirm that toxicity can be caused
by mistranslation and hallucination, as suggested
in section 2. Note that a low source contribution
is a good signal to predict hallucination (Ferrando
et al., 2022a), but that hallucination and toxicity
are two different concepts. Not all hallucinations
are necessarily toxic, and toxicity does not always
come from hallucination.

7We randomly select among toxic words if more than one
of them is detected, as happens for 5.1% of sentences contain-
ing toxicity.
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Overall contribution of the source sentence
to toxicity We use ALTI+ to calculate the contribu-
tion of the source sentence to each target word in
each HOLISTICBIAS sentence across all 164 lan-
guages. The mean source contribution, averaged
across all languages, is 39.0% for all target words,
40.7% for all target words aligned to words in the
descriptor in the source sentence, and 37.5% for
all target words identified as toxic. This perhaps
represents slightly increased attention paid by the
model to words conveying more semantic impor-
tance (i.e. descriptor words) and slightly decreased
attention paid to the source when generating po-
tentially toxic words. See a particular example in
Figure 1: we observe that source contribution is
higher in the case of a correct translation than in
the other examples where there is added toxicity.

Level of source contribution in the toxic terms
When considering the source contribution specif-
ically to target words aligned to descriptor words
in the source sentence, the mean source contribu-
tion is 40.1% for toxic target words and 40.7% for
non-toxic target words, with 45.6% of toxic target
words and 54.8% of non-toxic target words having
a source contribution above 40%. As mentioned in
section 2, below 40% source contribution (i.e. low
source contribution), we consider the target word to
much more likely be the result of model hallucina-
tion. When averaging across languages to prevent
overweighting languages with higher overall toxi-
city levels, these fractions of source contributions
above 40% are 45.7% for toxic target words and
54.3% for non-toxic target words. This suggests
that a good proportion of toxicity is due to mistrans-
lations in addition to hallucination. See examples
of each of these phenomena causing toxicity and
the role of source contribution in Figure 1. There,
source contribution is the highest in the case of cor-
rect translation a semantically related translation
with a correct level of offensiveness; lower in the
case of mistranslation; and lowest in the case of
hallucination. For 84% of languages containing
toxicity, we find that the median source contribu-
tion among translations is statistically significantly
different for toxic vs. non-toxic translations of
descriptor terms, allowing us to hypothesize that
source contribution level may affect the toxicity of
translations. See Appendix D for more details.

Robustness of translations We additionally
compute a measure of robustness of translations to
see whether that corresponds to increased toxicity

as well. We compute the Gini impurity (Breiman,
1996) (section 1) in the list of aligned descriptor
words across the 30 nouns in the HOLISTICBIAS

dataset, for each combination of language, descrip-
tor, and sentence template. A low Gini impurity
implies that the target words aligned to the descrip-
tor are mostly held constant as the noun changes,
implying robustness of translations.8

Figure 3 shows that certain ranges of source con-
tribution level and robustness correspond to an in-
creased rate of toxicity. Among these ranges, only
the one corresponding to a low source contribu-
tion and a low level of robustness has a relatively
large number of samples. If we flag all translations
in this range, defined as a source contribution be-
low 40% and a Gini impurity above 90%, as being
potentially toxic, we’d be flagging 11.0% of all
translations but 22.3% of all toxic translations. In
this range, 0.60% of translations have toxic target
words aligned to the descriptor, as compared to
0.30% for all translations as a whole. This thresh-
olding approach can thus serve as a very rough
correlate for toxicity. (Flagging translations in this
range in 20 held-out languages likewise leads to
11.4% of all translations flagged but 22.4% of all
toxic translations flagged.) This low signal is meant
to be used to explain toxicity but not as a detection
method. See Appendix E for these results split by
the level of overall toxicity in each language.

6 Human evaluation of the toxicity
detection methodology

Toxicity lists help detect strings that are always
toxic regardless of context (e.g., fuck, asshole) as
well as strings for which toxicity depends on con-
text (e.g., tits, prick). If we consider all detected
strings to be positive results, context-independent
toxic strings always constitute true positives, while
context-dependent toxic strings can constitute ei-
ther true positives or false positives. Additionally,
we also know that toxicity word lists are seldom
exhaustive; they can include several morphological
variants for certain entries, while missing a few oth-
ers. For the above reasons, we perform two types of
human evaluation in the aforementioned languages:
an analysis of all positives (all sentences where
toxicity is detected) and an analysis of a sample of
negatives (sentences where toxicity is not detected).

8Note that the Gini impurity cannot be calculated in cases
where at least one of the target sentences has no words aligned
to the descriptor.
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Figure 3: The toxicity of descriptors in translation varies greatly as a function of both the source contribution
to and the robustness of the translation. Left: the population distribution of the translations across all languages
and HOLISTICBIAS sentences. Right: the rate of toxicity of translations, with white representing no samples or
0% toxicity. A high Gini impurity indicates a low robustness in the translation of descriptors across different
HOLISTICBIAS nouns. Several regions have high toxicity, but many of them have few samples. However, the region
bounded by the cyan box has relatively high rates of toxicity as well as high numbers of samples.

Language shown is in Appendix F.

Following our definitions in section 2, the output
languages are categorized according to the preva-
lence of added toxicity they exhibit: high, medium,
or low. We perform a manual evaluation for sev-
eral languages in each category. For high levels
of added toxicity, we analyze Kinyarwanda and
Basque translation outputs. For medium levels
of added toxicity, we analyze outputs in Spanish,
French, and Western Persian. Finally, we analyze
Catalan and Chinese outputs as representative of
low levels of added toxicity. These languages also
represent a variety of scripts: Latin, Arabic, and
Han (Simplified and Traditional).

Human evaluation of false positives The anal-
ysis of all items detected as potentially toxic (all
positives) aims to separate sentences where the de-
tected toxicity list entries are really toxic (true pos-
itives or TP) from those where context-dependent
entries are used with their nontoxic meaning (false
positives or FP). To evaluate true from false posi-
tives, all sentences that contain a toxicity list entry
are first copied to separate files (one file per lan-
guage direction). Each file is then shared with a
linguist who is a native speaker of the translation
output language. The linguist is asked to indicate
whether the detected entry is toxic in the context
of the sentence. Table 1 summarizes the findings
for each language. As can be seen, 5 languages
have false positive rates below 1%. Out of the

three languages that have higher rates, two lan-
guages have rates above 35%: Simplified Chinese
and Western Persian, with false positive rates of
59.2% and 35.8%, respectively. We should note
that high false positive rates are likely not a func-
tion of the level of added toxicity, since Simplified
Chinese has a low level of added toxicity, while
that of Western Persian is medium. In compari-
son, we report in Appendix G the false positive
analysis for the FLORES-200 devset. The main
noticeable element presented in Table 4, beyond
the high false positive rates that are observed in
the FLORES-200 translations, is the small number
of toxic entries being detected and, more particu-
larly, the even smaller number of confirmed toxic
items (4 in Kinyarwanda, 1 in Simplified Chinese,
and none in the other languages). It should not be
assumed that the higher rates of confirmed added
toxicity found in the HOLISTICBIAS translations
are solely due to the templated nature of the dataset,
which is built by generating 780 contexts on aver-
age per descriptor. Even frequently mistranslated
descriptors such as queer (see Appendix B) do not
produce 780 similar toxic mistranslations (374 in
Kinyarwanda, 218 in French, 201 in Basque, and
only 24 in Catalan).

Human evaluation of false negatives The pur-
pose of the false negative analysis is to evaluate
the likely extent to which toxicity detection may
have been impeded by inconsistencies in the toxic-
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Language AT Level Positives FP FP Rate Negatives FN FN Rate

Catalan Low 158 0 0% 279 0 0%
Chinese (Simplified) Low 49 29 59.2% 280 0 0%
Chinese (Tradidional) Low 0 0 n/a 280 2 0.7%
French Medium 898 1 0.1% 276 8 2.9%
Spanish Medium 1827 0 0% 271 0 0%
Western Persian Medium 1192 427 35.8% 273 0 0%
Basque High 4802 45 0.9% 279 7 2.5%
Kinyarwanda High 5264 313 5.9% 255 0 0%

Table 1: Results for the human evaluation of false positives (FP) and false negatives (FN)

ity lists, such as missing plural or singular forms of
existing entries, or missing conjugated verb forms
(or any such issues related to morphological varia-
tion). As HOLISTICBIAS contains 472k sentences
that are used as source sentences for our transla-
tion model, with a very low total number of de-
tected instances (positives), it is unrealistic to con-
sider a human evaluation of all sentences where no
added toxicity is detected (negatives). We, there-
fore, begin the false negative analysis by sampling
the translations to be analyzed by human evalua-
tors. For our sampling purpose, we use the axes,
templates, and nouns most likely to cause toxic
words in translation. We randomly select up to 300
samples for each of the analyzed languages. For
each of the sampled sentences, human evaluators
are then asked to either confirm that the sentence
does not contain added toxicity (true negative) or
indicate that it contains added toxicity (false nega-
tive). To this end, annotators are instructed to only
consider as false negatives those sentences that con-
tain morphological variants of existing toxicity list
entries. The goal of the false negative (FN) anal-
ysis is to ensure that the lists are comprehensive
in including all derived form of the existing lem-
mas, which ensures the non-bias in morphological
inflections compared to context-based classifiers
(Sahoo et al., 2022). They are instructed to refrain
from indicating as false negative sentences that they
personally find toxic but contain no morphological
variants of toxicity list entries. Table 1 summarizes
the results of the false negative analysis. Note that,
as is the case for the false positive analysis, the FN
rate for a particular language is likely not a func-
tion of its respective level of added toxicity, since
French (medium AT level) has a higher false neg-
ative rate than Basque (high AT level): 2.9% and
2.5%, respectively. In contrast with the false pos-
itive analysis, where at least two languages show
signs of substantial over-detection, the false nega-
tive analysis does not reveal such a high level of

anticipated under-detection in any of the analyzed
languages.

7 Conclusions

This paper provides added toxicity detection and
analysis in a highly multilingual environment (164
languages). We learn that HOLISTICBIAS provides
a good setting for analyzing toxicity because it trig-
gers true toxicity, compared to standard previously
explored datasets such as FLORES-200. We are
able to validate the toxicity detection strategy us-
ing human annotation on false positives and false
negatives. Additionally, we find insightful conclu-
sions regarding the relationship between toxicity
and demographic represented in HOLISTICBIAS,
such as that the demographic axes represented in
HOLISTICBIAS with the most added toxicity in-
clude sexual orientation, gender/sex, and ability.
Toxic words are aligned to a descriptor word in
HOLISTICBIAS most of the time, as opposed to the
person noun or sentence template. In addition, the
output languages with the most added toxicity tend
to be low-resource ones. In the future, we want to
explore if the amount of toxicity in the training data
may appreciably correlate with added toxicity. Fi-
nally, making use of the input attributions provided
by ALTI+ allows us to explain toxicity because the
source contributions from ALTI+ significantly cor-
relate with toxicity for 84% of languages studied.
We observe that 45.6% of added toxicity has a high
source contribution. Using ALTI+ together with
the Gini impurity of translations allows us to flag
22.3% of toxic translations. Therefore, these results
bring some light to which translation challenges
may be worth tackling to mitigate toxicity. The first
recommendation is curating training data to avoid
mistranslations that add toxicity.9 This could poten-
tially mitigate the toxicity created with high source
contribution. The second recommendation is mit-

9Results for some particular language pairs in Appendix H
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igating hallucinations, which may reduce toxicity
in cases where we have a low source contribution.
The third recommendation is checking unstable
translations, which could reduce those cases of tox-
icity where we have a high Gini impurity score.
Code and data are on GitHub.10.
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8 Limitations

Word-based detectors are known for their limita-
tions when it comes to over-detecting terms that
are toxic only in specific contexts. Also these type
of detectors have limitations in languages that do
not use spaces to separate words.

The choice of dataset will also affect the amount
and types of toxicity added during translation.
HOLISTICBIAS is a template-based, synthetic
dataset of sentences in the context of a two-person
conversation in English, and so it cannot capture
the entire range of settings in which toxicity may
appear. Its list of demographic terms is quite broad
but by no means exhaustive, and its explicit fram-
ing as reflecting contemporary colloquial American
English usage means that toxicity resulting from
translations of other varieties or registers of English
will be missed.

Finally, the analysis of false negatives presented
in the paper is limited to toxicity list items that may
not have been detected due to morphological varia-
tion (e.g., spelling variants or missing derived word
forms) because we understand that string-matching
methods are particularly sensitive to such variation.
We refrain from asking annotators to consider ad-
ditional items that they would deem toxic because
evaluating the validity of such claims would go far
beyond the scope of the present analysis.

10https://github.com/facebookresearch/stopes/
tree/main/demo/toxicity-alti-hb

9 Ethics statement

Regarding annotations in this paper, we provide
details as follows. Annotators are some to the au-
thors and colleagues who worked with the authors
on various projects but are not authors of this pa-
per. Annotators were informed that the translations
they would be analyzing may contain true positive
instances of toxicity. We follow similar ethical con-
siderations to those stated in Subsection 7.3.5 of
NLLB Team et al. (2022), and acknowledge more
specifically three main areas: unintended use, bi-
ases, and safety. Unintended use Our aim is to
develop techniques and metrics for the automatic
detection of added toxicity in outputs of machine
translation systems. We define added toxicity in
the introduction of this paper as “toxicity that is
not present in the source but is introduced in the
translation output.” In other words, our goal is
to ensure that machine translation outputs remain
faithful to their respective inputs. Although we un-
derstand that toxicity lists by themselves could be
used adversarially with a view to suppressing tox-
icity in general, the work presented here does not
make this use or aim to facilitate it. Separately, we
do not condone using explanations of the sources
of added toxicity to adversarially create additional
added toxicity.

Biases As it is arduous to define the notion of
toxicity objectively, the use of any toxicity detec-
tion method is likely to introduce biases. In the
case of wordlist- and template-based methods, bi-
ases can be introduced through omissions, incon-
sistencies or ambiguities caused by homographs
or polysemous terms. The HOLISTICBIAS dataset
consists of sentences in the context of a conversa-
tion and cannot be used to measure added toxicity
when translating biographical information, for ex-
ample. Additionally, in a massively multilingual
setting where most lists are built by translating the
contents of an initial English-language list, biases
can be due to translation errors, English-centric
elements, or insufficiently diverse cultural back-
grounds among available translators. The choice
of English as the sole language to translate from
may also obfuscate any systematic differences in
added toxicity when translating across vs. within
language families, from a language with vs. with-
out strong gender markings, etc.

Safety Given that the main topic of the present
paper is the detection of toxicity, it would have been
impossible to provide examples without including

9578

https://github.com/facebookresearch/stopes/tree/main/demo/toxicity-alti-hb
https://github.com/facebookresearch/stopes/tree/main/demo/toxicity-alti-hb


some of the detected toxic items. To the best of
our ability, we limit the use of toxicity to these
few necessary examples. We understand that even
minimal toxicity can be offensive or upsetting to
the readers, and warn them of such content before
its appearance in the body of the paper. All hu-
man evaluators in this paper were selected among
our colleagues, who were well aware of the level
and types of toxicities that they would be asked to
annotate in our evaluation task.
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A Appendix: Model comparison

Course-grained toxicities in translations from the
600M distilled model largely resemble that of the
full 3.3B dense NLLB model (section 4). Some
highlights:

• Most of the highest-toxicity descriptors
(barrel-chested, lesbian, gay, queer) are the
same between models. However, doff, which
is spelled similarly to the South African slang
term dof meaning stupid (Bailey, 1985), has
a singularly high toxicity in the larger model
but not the smaller model, perhaps reflecting
a greater capacity of the larger model to in-
tuit plausible translations of slang given mis-
spellings.

• The trend of the most toxic nouns being paren-
t/grandparent terms is present but weaker in
the smaller model: dad, father, and parent are
the most toxic at 0.7%, 0.6%, and 0.5%, re-
spectively, followed by guy, mother, husband,
and person at 0.4%.

• “I think [PLURAL NOUN PHRASE] are
the worst.”, “I hate [PLURAL NOUN
PHRASE].”, and “I think [PLURAL NOUN
PHRASE] are the best.” are still the three
most toxic sentence templates.

• The mean toxicity across all languages is simi-
lar, 0.38% toxic for the small model vs. 0.36%
for the large model.

These similarities are expected, in the sense that
the distilled model (600M) has been trained to
learn the probability distribution of the large model
(3.3B).

B Appendix: Axis Analysis

In this appendix we report further details on the
toxicity found per demographic axis from section
4.

• The highest rate of toxicity is found in trans-
lations of the nonsense terms in the “nonce”
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axis: blicket, stad, mell, coodle, doff, tan-
nin, fitch, and tulver (Soja et al., 1991). We
note that some of these terms exist in English
slang, and some also have toxic meanings in
Merriam-Webster11 and Urban Dictionary,12

as well in the Corpus of Contemporary Amer-
ican English (COCA).13

• Sexual orientation and gender/sex terms have
the next highest rates of toxicity: descriptors
like queer, gay, and lesbian are very frequently
translated as toxic, as are terms that end with
the suffix “-sexual”. In certain instances,
the translation is semantically correlated to
the original word, but has a much different
level of toxicity than the original (for instance,
translating queer to marica in Spanish or Cata-
lan).

• The most commonly toxic ability terms are
typically either very general, like handi-
capped14 or disabled, or include the words
disability, injury, or impaired (“with a cogni-
tive disability”, etc.).

• The most commonly toxic body type term is
barrel-chested, and hair terms (dirty-blonde,
dark-haired, etc.) are also often quite toxic.

• Highly toxic socioeconomic terms are trailer
trash and ones that connote poverty (broke,
poor).

• Black is often marked as toxic, perhaps re-
flecting troubling and potentially racist color
associations in translation. Other highly
toxic terms are national-origin terms such as
foreign-born, US-born, and American-born
(perhaps indicating xenophobic translations),
and often-stigmatized conditions like “an al-
coholic”, “with a gambling problem”, and

“with dementia”.

C Appendix: Fine-grained analysis:
variation across languages

In this section we extend the details on the fine-
grained analysis from section 4 and its variation

11https://www.merriam-webster.com/
12https://www.urbandictionary.com/
13https://www.english-corpora.org/coca/
14The HOLISTICBIAS descriptor list contains terms that

are often viewed as dispreferred or polarizing by members of
the communities in question, and they are included to reflect
the fact that these terms may still exist in models’ training or
evaluation data.

across the 164 languages analyzed (Table 2).

• Variation in alignment types: For instance,
for Tunisian Arabic, Yoruba, Luo, Twi, Mi-
nangkabau (Latin script), and Southern Sotho,
the majority of all toxic words are aligned
to template words, not descriptor words (Fig-
ure 4). For Sicilian and Southwestern Dinka,
over half of toxic words are mapped to the
noun, not words in the descriptor or template.

• Template words: 73% of toxic words aligned
to template words are aligned to worst, fol-
lowed by think (as in “I think [PLURAL
NOUN PHRASE] are the worst.”) with 11%
and hate, with 6%. However, this effect is
due in large part to patterns in the alignment
of toxic words in individual languages: in
the cases where toxic words align to template
words in the source, Yoruba and Luo almost
always align to worst, Twi to think, and Mi-
nangkabau (Latin script) to hate.

• Nouns: The 14 most common nouns that
toxic words are aligned to refer to parents/-
grandparents: grandparents, parents, grand-
fathers, dads, grandpas, father, grandmoth-
ers, grandparent, dad, fathers, grandmother,
grandma, grandmas, and moms. However,
this varies by language, with Armenian hav-
ing its toxic words most commonly aligned to
bro, guy, individual, man, sibling, and brother
(in 72% of all cases of alignment to nouns).

D Appendix: Statistical testing of source
contribution level and toxicity

For each language containing toxicity, we perform
a statistical test of whether the median source con-
tribution among all translations is the same for
toxic and for non-toxic translations of descriptor
terms: in 84% such cases (i.e. for 84% of lan-
guages tested), the null hypothesis of equal medi-
ans in Mood’s median test (Mood, 1950) is rejected
at p < 0.05. We also computed whether the rate of
hallucination (source contribution < 40%) is the
same for toxic and for non-toxic translations: we
use the one-sided two-proportions z-test to find that
the null hypothesis that the rate of hallucination is
equal or lower for toxic translations is rejected at
p < 0.05 for 59% of languages that contain toxicity.
These results lead us to hypothesize that the level
of source contribution, and the hallucination of the
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Acehnese (Latin script), Afrikaans, Akan, Amharic, Armenian, Asturian, Ayacucho Quechua, Balinese, Bambara,
Banjar (Arabic script), Banjar (Latin script), Bashkir, Basque, Belarusian, Bemba, Bosnian, Buginese, Bulgarian,
Catalan, Cebuano, Central Atlas Tamazight, Central Aymara, Central Kanuri (Arabic script), Central Kanuri (Latin
script), Central Kurdish, Chinese (Simplified), Chinese (Traditional), Chokwe, Crimean Tatar, Croatian, Czech, Danish,
Dari, Dutch, Dyula, Dzongkha, Eastern Yiddish, Egyptian Arabic, Esperanto, Estonian, Ewe, Faroese, Fijian, Finnish,
Fon, French, Friulian, Galician, Ganda, Georgian, German, Greek, Guarani, Haitian Creole, Halh Mongolian, Hausa,
Hebrew, Icelandic, Ilocano, Indonesian, Irish, Italian, Javanese, Jingpho, Kabiyè, Kabuverdianu, Kabyle, Kamba,
Kashmiri (Arabic script), Kazakh, Kikongo, Kikuyu, Kimbundu, Kinyarwanda, Kyrgyz, Latgalian, Ligurian, Limburgish,
Lingala, Lithuanian, Lombard, Luba-Kasai, Luo, Luxembourgish, Macedonian, Maltese, Maori, Mesopotamian Arabic,
Minangkabau (Latin script), Mizo, Modern Standard Arabic, Moroccan Arabic, Mossi, Najdi Arabic, Nigerian Fulfulde,
North Azerbaijani, North Levantine Arabic, Northern Kurdish, Northern Sotho, Northern Uzbek, Norwegian Bokmål,
Norwegian Nynorsk, Nuer, Nyanja, Occitan, Papiamento, Plateau Malagasy, Polish, Portuguese, Romanian, Rundi,
Russian, Samoan, Sango, Sardinian, Scottish Gaelic, Serbian, Shona, Sicilian, Silesian, Sindhi, Slovak, Slovenian,
Somali, South Azerbaijani, South Levantine Arabic, Southern Pashto, Southern Sotho, Southwestern Dinka, Spanish,
Standard Latvian, Standard Malay, Sundanese, Swahili, Swati, Swedish, Tagalog, Tajik, Tatar, Ta’izzi-Adeni Arabic,
Tigrinya, Tok Pisin, Tosk Albanian, Tsonga, Tswana, Tumbuka, Tunisian Arabic, Turkish, Turkmen, Twi, Ukrainian,
Umbundu, Urdu, Uyghur, Venetian, Vietnamese, Waray, Welsh, West Central Oromo, Western Persian, Wolof, Xhosa,
Yoruba, Zulu

Table 2: The 164 languages analyzed in this work, subselected from the 200 NLLB languages (section 3).

Figure 4: Distribution of target sentences found to contain toxic terms, split by the type of word in the source
HOLISTICBIAS sentence that the toxic term is aligned to: a word in the descriptor, a word in the sentence template,
or the person noun (e.g., grandma, kid). The 40 languages with the greatest prevalence of toxic sentences are shown,
in order of decreasing toxicity.

model indicated by low source contribution, may
play some small role in creating toxic translations.
Conversely, we find no statistically significant cor-
relation between the mean source contribution and
toxicity on the level of entire languages instead
of single translations: Pearson’s r is +0.02 with
a 95% confidence interval from bootstrapping of
−0.12 to +0.18, and Spearman’s rank correlation
coefficient is +0.13 with a 95% confidence interval
of −0.03 to +0.27.

E Appendix: Robustness of translations

Table 3 shows the amount of toxicity in the region
of low source contribution and low robustness (sec-
tion 5) split by languages that have a low, medium,
or high rate of toxicity overall, given the thresholds
defined in section 2. As the amount of toxicity
in the language increases, the level of toxicity in
this region increases relative to the entire popu-
lation, making the correspondence between low
source contribution, low robustness, and high toxi-
city more prominent.
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Toxicity range Num. languages % toxic in region % toxic overall Ratio

Low (< 0.1%) 57 0.03% 0.02% 1.25
Medium (0.1% to 0.5%) 68 0.35% 0.23% 1.50
High (> 0.5%) 19 2.42% 1.33% 1.82

Table 3: Amount of toxicity in the highlighted region of Figure 3 as a function of the overall toxicity of each
language.

F Appendix: Language shown during
human evaluations

The following language was shown for the human
evaluation of false positives: “In the list of Posi-
tives (sentences where at least one toxicity list entry
was detected), check the corresponding box if: (1)
the detected entry is a context-independent toxic
item (for example, an entry such as ‘fucking’ in En-
glish, which is always toxic regardless of context),
or (2) the detected entry is a context-dependent
toxic item that is truly toxic in the context of the
sentence. Don’t check the corresponding box if the
detected entry is a context-dependent toxic item
that isn’t toxic in the context of the sentence (for ex-
ample, the word ‘prick’ in the sentence ‘You should
feel nothing but a small prick.’)”

The following language was shown for the hu-
man evaluation of false negatives: “In the list of
Negatives (sentences where no toxicity list entries
were detected), check the corresponding box if you
identify a word that: (1) is toxic AND (2) is a mor-
phological variant of a toxicity list entry. Don’t
check the box if you identify a word that you would
personally consider toxic BUT isn’t a morphologi-
cal variant of a toxicity list entry.”

G Appendix: Human evaluation on
FLORES-200 dataset translations

Table 4 summarizes the human evaluation findings
on translations of the FLORES-200 devtest set pro-
duced by the same model as the translations of
the HOLISTICBIAS dataset analyzed in this paper
(see section 6). As can be seen, the FLORES-200
devtest set produces no confirmed toxicity in six
of the eight analyzed languages (the only detected
entries in those languages are false positives), only
1 example of confirmed toxicity in Simplified Chi-
nese, and 4 in Kinyarwanda. For the sake of com-
parison, the table includes the true positive counts
for the HOLISTICBIAS translations.

H Appendix: Toxicity Mitigation

Following our first recommendation, which is cu-
rating training data sets, we provide some initial
experiments on filtering unbalanced toxicity for
the 8 language pairs selected in previous sections,
i.e. from English to Catalan, Chinese (Simplified
and Traditional), French, Spanish, Western Persian,
Basque and Kinyarwanda. For each of these pairs,
we train bilingual systems with 4 different versions
of the training data:

• baseline: no toxicity filtering is performed.

• max_add_1: sentence pairs with added toxic-
ity greater than 1 (|src_tox−tgt_tox| > 1)
are filtered out.

• no_add: sentence pairs with added toxicity
(|src_tox− tgt_tox| > 0) are filtered out.

• no_tox: a draconian baseline, used for refer-
ence purposes only, where sentence pairs with
any toxicity at all (src_tox+ tgt_tox > 0)
are filtered out.

The training datasets are filtered with the stopes
library (Andrews et al., 2022) and tokenized us-
ing the same sentencepiece model (Kudo and
Richardson, 2018b) as NLLB Team et al. (2022).
The models use a transformer architecture using
6 encoder and decoder layers, 4 attention heads,
embeddings of size 512 and a dropout rate of 0.3.
They are trained with fairseq (Ott et al., 2019)
using the Adam optimizer (Kingma and Ba, 2015)
with an inverse square root learning rate schedule
with warmup, and an effective batch size of 217

tokens. Each model is trained on a machine with
8 NVIDIA Tesla V100 Volta 32GB GPUs for a
maximum of 12 hours.

The results, reported in Table 5, display a clear
trend of reduction in toxicity as filter strength is
increased. The lowest toxicity counts are seen,
unsurprisingly, when using a draconian filter that
removes any sentence pairs with toxicity from the
training data. The more reasonable approach that
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Language Positives FP FP Rate TP HOLISTICBIAS TP

Catalan 1 1 100.0% 0 158
Chinese (Simplified) 2 1 50.0% 1 20
Chinese (Traditional) 0 0 n/a 0 0
French 0 0 n/a 0 897
Spanish 0 0 n/a 0 1827
Western Persian 9 9 100.0% 0 765
Basque 2 2 100.0% 0 4757
Kinyarwanda 23 19 82.6% 4 4951

Table 4: Results for the human evaluation of false positives (FP) and true positives (TP) in the FLORES-200 dataset
translations (as well as the TP count for HOLISTICBIAS translations in comparison).

removes only added toxicity, no_add, still man-
ages to reduce the vast majority of detected toxicity
across all inspected languages. Table 5 includes
results in chrf with Flores-200. We do not see a
big difference in translation quality because of the
filtering.
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Language baseline max_add_1 no_add no_tox

ETOX chrf ETOX chrf ETOX chrf ETOX chrf

Basque 1167 50.7 1373 50.6 129 50.2 14 50.4
Catalan 1910 62.5 1483 62.4 360 62.4 0 62.5
Chinese (Simplified) 101 17.4 14 16.7 1 17.1 0 17.1
Chinese (Traditional) 17 10.9 22 11.3 0 11.1 0 11.3
French 7168 46.4 6071 63.2 966 62.9 1182 63.2
Kinyarwanda 3697 47.4 3029 47.6 70 47.0 55 47.4
Spanish 2320 50.1 1171 49.3 247 50.0 0 49.9
Western Persian 700 48.2 844 48.2 80 48.3 53 48.2

Table 5: Toxicity detection and translation quality in terms of chrf for different bilingual systems and filters.
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