
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 9947–9959
December 6-10, 2023 ©2023 Association for Computational Linguistics

Variator: Accelerating Pre-trained Models with
Plug-and-Play Compression Modules

Chaojun Xiao1, Yuqi Luo1, Wenbin Zhang1, Pengle Zhang2, Xu Han1,3∗, Yankai Lin4,5∗,
Zhengyan Zhang1, Ruobing Xie6, Zhiyuan Liu1,3, Maosong Sun1,3, Jie Zhou6

1NLP Group, DCST, IAI, BNRIST, Tsinghua University, Beijing
2Zhili College, Tsinghua University, Beijing 3Quan Cheng Laboratory

4Gaoling School of Artificial Intelligence, Renmin University of China, Beijing
5Beijing Key Laboratory of Big Data Management and Analysis Methods 6Tencent Inc.

xiaocj20@mails.tsinghua.edu.cn, hanxu2022@tsinghua.edu.cn, mrlyk423@gmail.com

Abstract

Pre-trained language models (PLMs) have
achieved remarkable results on NLP tasks but
at the expense of huge parameter sizes and the
consequent computational costs. In this pa-
per, we propose Variator, a parameter-efficient
acceleration method that enhances computa-
tional efficiency through plug-and-play com-
pression plugins. Compression plugins are de-
signed to reduce the sequence length via com-
pressing multiple hidden vectors into one and
trained with original PLMs frozen. Different
from traditional model acceleration methods,
which compress PLMs to smaller sizes, Varia-
tor offers two distinct advantages: (1) In real-
world applications, the plug-and-play nature
of our compression plugins enables dynamic
selection of different compression plugins with
varying acceleration ratios based on the cur-
rent workload. (2) The compression plugin
comprises a few compact neural network layers
with minimal parameters, significantly saving
storage and memory overhead, particularly in
scenarios with a growing number of tasks. We
validate the effectiveness of Variator on seven
datasets. Experimental results show that Vari-
ator can save 53% computational costs using
only 0.9% additional parameters with a per-
formance drop of less than 2%. Moreover,
when the model scales to billions of param-
eters, Variator matches the strong performance
of uncompressed PLMs. Our code and check-
points can be found in https://github.com/
thunlp/Compression-Plugin.

1 Introduction

Large pre-trained language models (PLMs) have
made significant advancements in natural language
processing tasks (Han et al., 2021; Brown et al.,
2020; Qiu et al., 2020; Bommasani et al., 2021;
OpenAI, 2023). It is widely observed that ampli-
fying the model scale correlates positively with

∗Corresponding authors.

1x 2x 4x

PLM

PLM

PLM

2x
PLM

4x
(a) Traditional Model Acceleration

(b) Acceleration with Compression Plugins

Figure 1: Illustration of model acceleration with com-
pression plugins.

enhanced downstream performance. Nevertheless,
the expansive parameter scale intrinsic to PLMs
demands significant computational and storage re-
sources. Such formidable overheads necessitate
investigating alternative strategies to maintain per-
formance while reducing costs.

Many efforts have been devoted to improving
the training and inference efficiency of PLMs (Sun
et al., 2019; Liu et al., 2022; Fan et al., 2020;
Xia et al., 2022; Stock et al., 2021). These meth-
ods compress PLMs into fixed smaller sizes, and
cannot fulfill the following requirements: (1) Dy-
namic Workload. In real-world scenarios, the sys-
tem workload varies dynamically over time, while
the computational resources are fixed. This im-
plies that we can use more resources for higher
performance when the workload is low, and en-
sure response efficiency when the workload is high.
(2) Storage Efficiency. These methods typically
depend on a large number of additional parame-
ters to construct compressed models, which require
amounts of memory space for model training and
storage across various tasks and acceleration ratios.

To address these issues, we propose a novel plug-
and-play acceleration framework named Variator.
As shown in Figure 1, different from compressing

9947

https://github.com/thunlp/Compression-Plugin
https://github.com/thunlp/Compression-Plugin

PLMs into smaller sizes, Variator enables PLMs ac-
celeration via devising compression plugins, which
can be inserted into PLMs to enhance the inference
speed. Various plugins entail different acceleration
ratios, and the system can dynamically choose the
appropriate one to trade off response speed and
model performance depending on the workload.
Moreover, Variator only necessitates plugins with
minimal parameters and freezes the original pa-
rameters of PLMs, which substantially lowers the
memory and storage requirements.

To achieve plug-and-play acceleration, there
are two main challenges: (1) Plugin Architecture:
Compression plugins do not modify PLMs scales,
and how to devise plugins to reduce the inference
time is a challenge. (2) Plugin Training: Compres-
sion plugins only contain limited parameters, and
how to effectively train plugins so that they can
enhance the model speed while preserving down-
stream performance.

As for plugin architecture, inspired by previous
findings about redundancy in hidden vectors (Goyal
et al., 2020; Ye et al., 2021), we design compression
plugins for data compression rather than parame-
ter compression. Specifically, compression plugins
consist of hidden compression layers and hidden
decompression layers. The goal of the hidden com-
pression layers is to compress multiple hidden vec-
tors into one, thereby diminishing the sequence
length for PLMs and enabling model acceleration.
Simultaneously, to preserve token-level informa-
tion, we also devise decompression layers that re-
cover the processed shorter sequence to the original
length. Compression plugins can be applied in any
layer of PLMs, enabling various levels of acceler-
ation. As for plugin training, we adopt a two-step
training strategy. Firstly, we train compression plu-
gins on pre-trained PLMs with pre-training corpus.
Then the compression plugins trained in the first
step are used as initialization for task-specific mod-
els. In both steps, we apply knowledge distillation
objectives to train the compression plugins not to
alter the hidden vectors produced by PLMs.

To verify the effectiveness of Variator, we con-
duct experiments with a widely-used pre-trained
backbone, T5 (Raffel et al., 2020), on seven widely-
used language understanding benchmarks. The
experimental results show that Variator can save
53% computational costs using only 0.9% param-
eters with absolute average performance drops of
< 2% compared to original downstream PLMs.

When the model scales to billions of parameters,
Variator can achieve nearly no performance drop.
We also examine the effectiveness of Variator on a
decoder-only LLM, LLaMA (Touvron et al., 2023).
In addition, we conduct neuron-level analysis for
compression plugins, and find that compression
plugins can effectively store important information
in the compressed vectors to achieve satisfactory
performance with limited computational costs.

2 Related Work

2.1 Model Acceleration

Improving the computational efficiency of PLMs
has been widely studied in recent years (Gupta
and Agrawal, 2022; Zhang et al., 2022a). The
related work can be divided into four categories:
knowledge distillation, which guides the training
of compressed models with the output or middle
states of original PLMs (Hinton et al., 2015; Sanh
et al., 2019; Sun et al., 2019, 2020); model pruning,
which removes unimportant parameters or layers
from PLMs (Fan et al., 2020; Michel et al., 2019;
Chen et al., 2020; Xia et al., 2022); model quantiza-
tion, which converts model parameters into low-bit
precision values, thus achieving acceleration on
compatible devices (Stock et al., 2021; Xiao et al.,
2022); and conditional computation, which only
selects parts of parameters to compute outputs for
each input (Zhang et al., 2022b; Xin et al., 2020).
Some researchers make preliminary exploration for
dynamic acceleration, such as early exit (Xin et al.,
2020; Matsubara et al., 2023), which attempts to
skip layer computation based on instance complex-
ity. But these works rely heavily on confidence
judgment and are thus only applicable to specific
tasks and model architectures. Our model, which
focuses on dynamic acceleration based on system
workload, parallels these works and can be intu-
itively combined with them to reduce computa-
tional costs further.

Besides, within the realm of conditional com-
putation there are a line of reasearches find out
the redundancy of hidden vectors and focus on dis-
carding tokens at each layer of PLMs to accelerate
model inference (Goyal et al., 2020; Ye et al., 2021;
Kim and Cho, 2021; Kim et al., 2022; Dai et al.,
2020; Murahari et al., 2022), which inspire the de-
sign of our compression and decompression layers.
But these works require to retrain the whole PLMs
to achieve accleration, while Variator focuses on
the parameter-efficient acceleration setting and thus

9948

enable dynamic acceleration ratio selection with
minimal additional memory requirements. In ad-
dition to merge tokens, the compression layer can
also be designed to dynamically prune the parame-
ters, which we leave for future work.

2.2 Parameter-Efficicent Learning

The huge parameter scale of PLMs imposes sub-
stantial costs on model training and storage. To
alleviate this problem, parameter-efficient learning,
also known as delta tuning, is proposed to perform
task adaptation via tuning a small portion of pa-
rameters and keep other parameters frozen (Liu
et al., 2021; Ding et al., 2022; He et al., 2022).
According to the operation of tunable parameters,
delta tuning methods can be divided into: addition-
based models, which introduce additional layers
into PLMs (Houlsby et al., 2019; Lester et al.,
2021); specification-based models, which specify
existing weights of PLMs as tunable (Zaken et al.,
2022; Guo et al., 2021); and reparameterization-
based models, which rewrite the computation pro-
cess of specific layers into parameter-efficient man-
ners (Hu et al., 2021). In addition, some researchers
attempt to construct plug-and-play modules for re-
trieval augmentation (Shi et al., 2023; Yu et al.,
2023), knowledge injection (Wang et al., 2021;
Zhang et al., 2023; Xiao et al., 2023), controllable
text generation (Pascual et al., 2021; Madotto et al.,
2020), and model debiasing (Lauscher et al., 2021).
In this paper, we propose a parameter-efficient ac-
celeration model with hidden vector compression,
which can save the memory and storage costs com-
pared to traditional compression methods.

3 Methodology

In this section, we first describe the paradigm and
basic annotations for our plug-and-play model ac-
celeration. Then we present the framework and
training recipes of Variator to accelerate model in-
ference with minimal additional parameters. To
showcase the efficiency of Variator, we also con-
duct an analysis of the computational and storage
complexity.

3.1 Preliminary

Our primary goal is to design a plug-and-play ac-
celeration framework, which can dynamically im-
prove the computational efficiency with multiple
compression plugins. Specifically, given an PLM
M, and the fine-tuned downstream model MT de-

rived from M, Variator aims to construct a com-
pression plugin P , which can be inserted into MT
to improve the computational efficiency. That is,
given an input squence s, the computation costs of
(MT + P)(s) should be lower than MT(s). Varia-
tor is designed for dynamic workload, which means
plugins with different acceleration ratios can be ap-
plied in the same downstream model MT. There-
fore, the original MT should be frozen during the
training of the compression plugin P .

3.2 Overall Framework
Previous researches find out the redundancy in hid-
den vectors, which means eliminating hidden vec-
tors is a promising direction for acceleration (Goyal
et al., 2020; Ye et al., 2021). Inspired by these
works, our compression plugins are designed to
compress hidden vectors, and thus the sequence
length is reduced to speed up inference.

As shown in Figure 2, compression plugins con-
sist of two layers: a hidden compression layer and
a hidden decompression layer, which are inserted
before and after a vanilla neural layer, respectively.
In this way, the compression layer can reduce com-
putational overhead for the following neural layer
and the decompression layer aim to restore token-
level information into the output vectors. Then we
will introduce these two layers in detail.

Hidden Compression Layer. Hidden compres-
sion layers aim to reduce the sequence length. Pre-
vious token pruning methods assign importance
scores for each hidden vector and discard hidden
vectors with low scores, which may suffer from loss
of useful information when the required compres-
sion ratio is high. Different from directly dropping
hidden vectors, our hidden compression layer is
designed to merge multiple vectors into one.

Specifically, given the input vector sequence
with n tokens, H = {h0, ...,hn−1}, we first split
the sequence into several groups with each group
containing k vectors, gi = {hik, ...,h(i+1)k−1}.
Then the compressed vector is calculated as the
weighted average of input vectors:

a = Softmax(WcConcat(gi) + bc),

gi =

k−1∑

j=0

ajhik+j ,

where Wc ∈ Rk×kd(k ≪ d) and bc ∈ Rk are
trainable parameters, and d is the dimension of
hidden vectors. Then the compressed vectors are
fed into the original neural layers.

9949

Att / FFN

Compress

…

De-Compress

…

Att / FFN
…

…

…
a1 a2 ak

…

…

Adapter

…

…

Transformers

Compression
Plugin Insertion

Figure 2: Illustration of Variator, which improves the computational efficiency via compressing the hidden vectors.

Hidden Decompression Layer. Compression
layers merge multiple hidden vectors into a global
vector with information for all tokens in the corre-
sponding group. To preserve the ability to solve
token-level tasks, we design hidden decompression
layers, which are inserted after the original neural
layer, to restore token-level information into the
output vectors.

Given the output of the original neural layer
go
i generated from the compressed vector gi, we

need to compute the output vectors for all k vec-
tors in gi. We first concatenate the original vector
hik+j and the compressed output vector go

i to com-
bine the token-level and group-level information.
Then, instead of applying a linear projection layer
with high computation complexity, we adopt an
Adapter (Houlsby et al., 2019) layer and a resid-
ual layer to project the concatenated vector to the
output vector oik+j :

o∆ik+j = W2
u(W

1
uConcat(go

i ,hik+j) + b1
u) + b2

u,

oik+j = go
i + o∆ik+j .

Here, W1
u ∈ Rr×2d, b1

u ∈ Rr, W2
u ∈ Rd×r, b1

u ∈
Rd are trainable parameters, and r ≪ d refers to
the bottleneck dimension of adapter layers.

Both two layers only involve minimal additional
parameters and computation overhead and can sig-
nificantly reduce the sequence length. Besides, our
proposed compression plugins can be flexibly ap-
plied in any neural layers, such as self-attention
layers and feed-forward layers, allowing for dif-
ferent acceleration ratios. Notably, the compres-
sion and decompression layers can be implemented
with other efficient operations including convolu-
tional neural networks. Due to the high computa-

tional requirements of feed-forward layers in Trans-
former (Zhang et al., 2022b), we attempt to apply
compression plugins in feed-forward layers in most
of our experiments.

3.3 Plugin Training
To mitigate information loss during the sequence
compression of Variator, we design a two-step train-
ing strategy with plugin pre-training and plugin
adaptation.

Plugin Pre-training. Plugin pre-training aims to
learn general information compression ability and
obtain a good initialization of compression plugins
for downstream models. In this step, compression
plugins are trained to mitigate redundancy in the
original input text. Specifically, we insert the com-
pression plugins into the original PLM M, and
train compression plugins on a pre-training corpus.
Notably, the pre-training process is task-agnostic.
It is conducted only once and caters to the require-
ments of all downstream tasks, which make com-
pression plugins pratical even when PLMs scale to
billions of parameters.

Plugin Adaptation. Plugin adaptation is de-
signed to drive compression plugins to preserve
task-specific information during compression. Dif-
ferent tasks tend to pay attention to different infor-
mation in the sequence. For example, sentiment
analysis tasks usually need to maintain the infor-
mation contained in emotional words, while read-
ing comprehension tasks usually need to maintain
information about the question. Therefore, it is im-
portant for compression plugins to learn different
task information preferences in plugin adaptation.
During plugin adaptation, compression plugins are
inserted into downstream model MT , and trained

9950

with task data.
Both steps adopt knowledge distillation as the

training objectives, guiding the compression plu-
gins not to modify the output distribution. Given
output vectors of the model without compression
plugins O′, and output vectors of the model with
compression plugins O, the final training loss is
computed as the mean squared error (MSE) be-
tween O′ and O:

L = ||O′ −O||2. (1)

3.4 Complexity Analysis
In this section, we provide a complexity analysis
of computational and storage overhead. Here we
present the analysis with compression plugins ap-
plied in feed-forward networks (FFNs), with the
input length as n, hidden vector dimension as d,
and the middle dimension of FFNs as 4d. As men-
tioned in previous sections, k and r refer to the
compression ratio and bottleneck dimension of de-
compression layers.

Computational Complexity. Compression and
decompression layers involve several linear pro-
jections with tiny matrices. Therefore, our com-
pression plugins only require minimal computation
costs. For each token, compression plugins contain
three linear projection operations and two addition
operations. The floating point operations (FLOPs)
required by the compression and decompression
layer are (kd+2d+3)n and (3rd+2d+r)n, respec-
tively. In contrast, the FLOPs of the feed-forward
network are 8nd2. The computation costs of com-
pression plugins are only about 1

8d(4 + k + 3r)
of FFN, where k, r ≪ d. And compression plu-
gins can reduce the computation costs of FFN to
1
k . Therefore, compression plugins can achieve
significant inference speed-up for PLMs.

Storage Complexity. Different from training
the entire models to accelerate model inference,
Variator relies on two projection layers to compress
hidden vectors. Compression and decompression
layers consist of three linear projection layers, with
only k2d+ k and 3rd+ r + d parameters, respec-
tively. In contrast, an FFN layer consists of 8d2

parameters.
To demonstrate the effectiveness of our

parameter-efficient compression plugins more in-
tuitively, we assume that k = 4, r = 64, and
d = 768. In this way, compression plugins can
save 71.7% computational costs with only 3.4%
additional parameters for FFNs.

4 Experiments

4.1 Datasets
To evaluate the effectiveness of Variator, we use
seven typical NLP datasets as evaluation bench-
marks, including text classification and sequence-
to-sequence generation tasks. Specifically, we
adopt three natural language inference datasets,
MNLI-m (Williams et al., 2018), QNLI (Rajpurkar
et al., 2016), RTE (Wang et al., 2019), two sen-
tence similarity datasets, QQP (Wang et al., 2019),
MRPC (Dolan and Brockett, 2005), a sentiment
analysis dataset, SST-2 (Socher et al., 2013), and
a reading comprehension dataset, SQuAD (Ra-
jpurkar et al., 2016). We apply F1 scores for MRPC,
F1 scores and exact match scores (EM) for SQuAD,
and accuracy for other datasets as evaluation met-
rics. We also present the average scores on these
seven datasets, where we use EM scores of SQuAD
for average. Please refer to Appendix for statistics.

4.2 Implementation Details
We adopt the widely-used pre-trained model, T5-
base and T5-large (Raffel et al., 2020), as our model
backbone. Please refer to Appendix for results of
compression plugins on BERT backbone (Devlin
et al., 2019). For the main experiments, we only
insert the compression plugins around the feed-
forward network layers in the encoder, which ac-
counts for the majority of computational require-
ments. As for the training objective, we compute
the MSE loss with the output vectors from the last
layers. The compression ratio k is set as 4 for the
main experiments and the bottleneck dimension r
of the Adapter layers is set as 64.

For plugin pre-training, we apply the widely-
used Wikipedia corpus. The learning rate is set
as 10−3 and batch size is set as 256. We pre-train
compression plugins for 60k steps. For plugin adap-
tation, we apply grid search for hyper-parameter
selection. We select batch size in {16, 32}, learn-
ing rate in {10−4, 5 × 10−5}. The total training
steps for each task are set as 26k, and we evalu-
ate the models every 1k steps. We train all mod-
els with half-precision floating-point on NVIDIA
A100 GPUs. For both plugin pre-training and adap-
tation, we use Adam for parameter optimization.
Please refer to Appendix for more details.

4.3 Baselines
In this paper, we compare Variator with several
competitive baseline models, including: (1) The

9951

Dataset MNLI-m QNLI QQP RTE SST-2 MRPC SQuAD Avg. Para. FLOPsAcc. Acc. Acc. Acc. Acc. F1 EM/F1

T5-Base

Original 86.7 93.0 91.2 82.9 94.3 92.6 82.8/90.0 89.1 – –
Distillation 84.6 91.8 89.3 81.4 93.1 93.1 81.1/89.3 87.8 61.9% 44.3%
LTP 84.0 91.7 86.5 76.8 92.6 92.5 81.1/89.2 86.4 100.0% 44.3%
Variator 84.6 91.5 88.4 81.1 93.6 93.8 80.4/88.1 87.6 0.9% 46.8%

T5-Large

Original 88.9 94.0 91.5 88.6 95.4 93.0 85.3/92.5 91.0 – –
Distillation 88.4 94.2 90.4 84.3 94.5 91.9 81.3/90.9 89.3 59.1% 52.5%
LTP 87.0 93.1 88.0 82.5 94.4 93.3 84.3/91.7 88.9 100% 52.5%
Variator 87.1 93.5 89.4 85.4 93.7 92.8 83.1/90.7 89.3 0.7% 54.1%

Table 1: Comparison results between Variator and baseline models. Here Avg. refers to the average scores on seven
datasets. Para. and FLOPs refer to the ratio of the number of additional parameters and floating point operations
required by the compressed methods to the original PLMs.

original fine-tuned downstream PLMs without ac-
celeration, which are also used as teacher models
to guide the training of other compressed models.
(2) The widely used model compression method,
model distillation (Sanh et al., 2019). (3) Our
method aims to reduce the sequence length for
PLMs, which is inspired by previous token pruning
models. Therefore, we also compare Variator with
a typical token pruning model, LTP (Kim et al.,
2022), which adopts the attention scores as im-
portance scores, and only keeps tokens with the
most scores for each layer. Notably, original token
pruning models directly discard tokens for entire
Transformer layers, and our models in main exper-
iments focus on the acceleration of FFNs. There-
fore, to make a fair comparison, we implement
token pruning models with only skipping computa-
tion of FFNs and only keeping 25% tokens in each
layer. We apply knowledge distillation objectives
to train all downstream tasks for a fair comparison.

4.4 Main Results

The comparison results are shown in Table 1. To
further demonstrate the effectiveness of Variator,
we show the additional parameters, and FLOPs for
each input required by compressed models. Here
we assume the input length is 512 and batch size
is 1 for calculating FLOPs. From the results, we
can observe that: (1) Variator can achieve com-
parable results with the original PLMs using min-
imal additional parameters with absolute perfor-
mance drops of < 2%. Specifically, Variator can
save 53.2% and 45.9% computation costs for T5-
base and T5-large, using only 0.9% and 0.7% addi-
tional parameters. In contrast, traditional accelera-
tion methods need to construct compressed models

Dataset MNLI-m SST-2 SQuAD
Acc. Acc. EM/F1

Variator 84.6 93.6 80.4/88.1
w/o PT 84.1 92.7 79.3/87.3
w/o PA 59.6 87.8 11.6/19.4
w/o Com 83.5 92.3 79.4/87.1
w/o DeCom 73.8 86.1 38.2/50.6

Table 2: The results for ablation study.

from scratch, which require amounts of additional
parameters. Limited by amounts of parameters,
switching traditional methods between different
compression ratios requires large memory space
or repeatedly loading compressed models from the
disk. (2) Compared to the widely-used model dis-
tillation, our parameter-efficient model accelera-
tion method achieve competitive performance with
much fewer parameters, which indicates the po-
tential of parameter-efficient model compression.
(3) Compared to the token pruning baselines, our
models can achieve better performance with even
a small portion of parameters, which proves that
merging tokens can better preserve sequence infor-
mation compared to directly dropping them.

4.5 Ablation Study

To verify the effectiveness of each component of
Variator, we conduct an ablation study in this sec-
tion. Specifically, we show the results of compres-
sion plugins without plugin pre-training (w/o PT)
or plugin adaptation (w/o PA). Besides, we also
examine the effectiveness of compression and de-
compression layers in the ablation study. We show
the model performance with compression layers
replaced with a mean-pooling operation (w/o Com)
or decompression layers replaced with a copy op-
eration (w/o DeCom). We run w/o Com and w/o

9952

5 10 15 20 25 30
k

84

86

88

90

92

94

Ac
cu

ra
cy Task

MNLI
SST-2

Figure 3: Model performance with different compres-
sion ratios. The horizontal lines indicate the perfor-
mance of original PLMs without compression plugins.

DeCom without plugin pre-training to speed up
experiments. We select three tasks for the abla-
tion study, including sentence classification, SST-2,
sentence-pair classification, MNLI-m, and reading
comprehension, SQuAD.

The results are shown in Table 2. From the re-
sults, we can observe that: (1) Both two training
steps contribute to the main model, as when any-
one step is missing, the model performance drops
significantly. (2) Plugin adaptation is important for
all tasks. Plugin pre-training guides compression
plugins to discard general redundant information
contained in the input text. Therefore, for SST-2,
which usually only focuses on parts of important
words, compression plugins without task-specific
adaptation can also achieve satisfactory results. In
contrast, for SQuAD and MNLI-m, which require
models to collect information from entire contexts,
plugins without adaptation lead to a large perfor-
mance drop. (3) Compression and decompression
layers play an important role in selecting informa-
tion for hidden merging and restoring token-level
information, as without anyone of them, model per-
formance drops significantly. Especially, decom-
pression layers are quite important for preserving
token-level information, and training compression
plugins without decompression layers lead to large
drops for the span extraction task, SQuAD.

4.6 Effects of Compression Ratios

Variator apply compression plugins to compress
multiple hidden vectors into one, thus achieving
inference speedup. In this section, we explore the
effects of compression ratios for our compression
plugins. We construct compression plugins with
compression ratios as {2, 4, 8, 16, 32}. The results
are shown in Figure 3.

From the results, we can find that: (1) With

Dataset MNLI-m SST-2
Acc. Acc.

Original 86.7 94.3
Variator (FFN) 84.1 92.7
Variator (Att) 81.0 91.9
Variator (Att-KV) 83.1 92.1

Table 3: The results for compression plugins inserted
around the self-attention layers.

the compression ratio increasing, the model per-
formance decreases as expected. But the decline
rate is becoming slow, which indicates the poten-
tial for Variator to achieve higher compression ra-
tios. (2) Variator can achieve competitive perfor-
mance even when the compression ratio reaches
32, where Variator maintains 95.4% and 96.7% ac-
curacy scores of original PLMs for MNLI-m and
SST-2, respectively, while reducing 69% computa-
tional costs. The satisfactory performance ensures
the response speed of real-world applications when
the system load is high.

4.7 Compression for Attention Layers

In our main experiments, we insert the compression
plugins around the FFN layers. In this section, we
examine the performance of Variator when we in-
sert compression plugins around the self-attention
layers. Here we do not perform plugin pre-training.
The results are shown in Table 4. For comparison,
we also present the results of original models and
Variator with plugins in FFN layers.

From the results, we can observe that Variator
with plugins in self-attention layers perform worse
than plugins in FFN layers. That is because self-
attention layers are designed to fuse token-level
information, and inserting hidden compression lay-
ers before self-attention layers would lead to the
loss of token information. Thus in the self-attention
layers, only the k-gram information integration is
performed, resulting in a significant performance
drop. To address this issue, we improve compres-
sion plugins for self-attention layers by only com-
pressing key and value vectors, denoted as Variator
(Att-KV). With compression only for key and value
vectors, Variator (Att) can achieve comparable re-
sults with Variator (FFN). And compressing key
and value vectors can be further adopted in decoder-
only models to reduce the sequence length of past
key-value vectors, which we leave for future work.

9953

109 1010

Model Parameters

92

93

94

95

96

97

Ac
cu

ra
cy

Task
SST-2
SST-2-Variator

Figure 4: Performance with different backbone sizes.

4.8 Scaling to PLMs with Billions of
Parameters

In this section, we attempt to apply our compres-
sion plugins to PLMs with billions of parameters.
We adopt four variants of T5 as our backbones,
including T5-base (200 million parameters), T5-
large (700 million parameters), T5-XLarge (3 bil-
lion parameters), and T5-XXLarge (11 billion pa-
rameters). Following the main experiments, for
each model, we conduct the two-step training pro-
cess with 6k-step plugin pre-training and 26k-step
plugin adaptation. We apply a parameter-efficient
learning method, LoRA (Hu et al., 2021), to train
the task-specific downstream models to speed up
the experiments. We show the results of the SST-2.

As shown in Figure 4, the performance continues
to improve with the increasing of backbone model
sizes. Similar to previous parameter-efficient learn-
ing methods (Lester et al., 2021; Ding et al., 2022),
the performance gap between Variator and original
PLMs becomes small when the model scales to
billions of parameters. It shows the potential of
Variator to be applied in nowadays general PLMs
with more than 100 billion parameters, such as
ChatGPT and GPT-4 (OpenAI, 2023).

LLaMA-7B Variator (w/o PT)

SST-2 97.3 96.3

Table 4: The results for compression plugins in LLaMA.

Besides, to present the effectiveness of Variator
on decoder-only LLMs, we evaluate Variator with
recent popular backbone LLaMA (Touvron et al.,
2023) with 7 billion parameters. Variator can be
used for the input encoding acceleration and reduce
the service latency in real-world applications. We
conduct experiments with a compression ratio of 2
on the FFN layers and without plugin-pretraining to
accelerate experiments. The results suggest that our

0 5 10 15 20 25 30
k

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ra
tio

 o
f A

ct
iv

at
ed

 N
eu

ro
ns

 (%
)

Task
MNLI
SST-2

Figure 5: The ratio of activated neurons with different
compression ratios on two datasets.

approach can reduce the computational overhead
while maintaining comparable performance with
the original model for decoder-only LLMs.

4.9 Neuron-Level Analysis

Our compression plugins enable the feed-forward
layers to process information from multiple tokens
simultaneously to save computational costs. In this
section, we attempt to explore the computational
mechanism of our compression plugins from the
perspective of activated neurons. Previous works
find out that FFNs can be regarded as memory net-
works (Geva et al., 2021; Dai et al., 2022), and
the activated neurons can be used as indicators to
reflect what information is preserved in the input
hidden vectors. T5 adopts ReLU (Nair and Hin-
ton, 2010) as the activation function, and following
Zhang et al. (2022b), we define activated neurons
as ones with positive (non-zero) activation values.

We present the average ratio of activated neu-
rons with different compression ratios, k =
{1, 2, 4, 8, 16, 32}, in Figure 5. From the results,
we can observe that the ratios of activated neurons
drop with the increase in compression ratios. When
the compression ratio reaches 32, only less than 2‰
neurons are activated to process sequence informa-
tion. In indicates that compressed hidden vectors
only contain the necessary information for the se-
quences and discard unimportant ones. Besides,
the low activated ratios also indicate the potential
of the combination of Variator and neuron pruning
methods (Zhang et al., 2022b) to further improve
the computational efficiency.

Then we further explore the relationship between
the activated neurons of FFNs with compression
plugins and the activated neurons of original FFNs.
Specifically, we denote the intersection set and
union set of activated neurons of k hidden vec-

9954

k 2 4 8 16 32

|C ∩ I|/|I| 0.89 0.85 0.79 0.66 0.61
|C ∩ U|/|C| 0.88 0.89 0.93 0.98 0.99

Table 5: The relationship between activated neurons of
Variator and original models.

tors as I and U . The set of activated neurons of
compressed vector as C. The intersection set I can
be regarded as important global information for k
hidden vectors, and U can be regarded as all infor-
mation contained in the k hidden vectors. Compres-
sion layers are used to select important information
and feed them into neural layers. Therefore, we
hope that I is approximately a subset of C and C is
approximately a subset of U . In Table 5, we present
what fraction of neurons in I are in C and what frac-
tion of neurons in C are in U . From the results, we
can observe that when the compression ratios are
no more than 8, the relationship between the three
sets approximately satisfies the abovementioned
inclusion assumption. It proves the effectiveness
of our compression plugins in preserving global
information. When the compression ratios become
larger (such as 16, 32), only no more than 70%
neurons in I are contained in C. That is because
with the increase of compression ratios, selecting
global important information from multiple vectors
becomes challenging for compression layers with
limited parameters. It also shows the potential to
add regularization from the neuron level for com-
pression plugs to preserve important information.

5 Conclusion

In this paper, we explore the parameter-efficient
acceleration setting and propose Variator, which
reduces the computational costs with compres-
sion plugins. The extensive experiments on seven
datasets show that we can reduce 53% computa-
tional costs with only 0.9% additional parameters.
In the future, we will explore more effective token-
merging frameworks to improve compression plug-
ins. Besides, we will further decouple compression
plugins from specific tasks, thus we can construct
compression plugins once and for all with transfer-
ability across multiple tasks.

Acknowledgement

This work is supported by the National Key
R&D Program of China (No.2022ZD0116312), Na-
tional Natural Science Foundation of China (No.

62236004), Tsinghua-Toyota Joint Research Fund,
and Institute Guo Qiang at Tsinghua University.

Author Contributions In the preparation and
discussion of the project, Chaojun Xiao, Yuqi
Luo, and Xu Han designed the model architec-
tures. Chaojun Xiao and Yuqi Luo wrote the
code and conducted the experiments. Besides,
Wenbin Zhang and Pengle Zhang wrote the code
for baseline models and ablation study. Chao-
jun Xiao wrote the initial draft. Xu Han, Yankai
Lin, Zhengyan Zhang, Ruobing Xie, and Zhiyuan
Liu significantly edited and improved the paper.
Maosong Sun and Jie Zhou provided valuable ad-
vice to the research.

Limitations

We discuss the limitations of Variator in this sec-
tion: (1) In the experiments, we implement Variator
with T5 as our backbone. It is worth exploring ap-
plying Variator in other large-scale decoder-only
pre-trained models. (2) In this paper, we mainly fo-
cus on accelerating the encoding process of PLMs.
Language decoding also plays an essential role in
real-world applications. In the experiments, we
show the potential of Variator to compress key
and value vectors for acceleration. We believe
Variator can also serve as a flexible framework to
speed up decoding. (3) Our plug-and-play compres-
sion framework parallels other model compression
methods. It is worth exploring the combination
of multiple acceleration methods to achieve more
efficient and effective model inference frameworks.

References
Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ

Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dal-
las Card, Rodrigo Castellon, Niladri S. Chatterji,
Annie S. Chen, Kathleen Creel, Jared Quincy
Davis, Dorottya Demszky, Chris Donahue, Moussa
Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea
Finn, Trevor Gale, Lauren Gillespie, Karan Goel,
Noah D. Goodman, Shelby Grossman, Neel Guha,
Tatsunori Hashimoto, Peter Henderson, John He-
witt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing
Huang, Thomas Icard, Saahil Jain, Dan Jurafsky,
Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keel-
ing, Fereshte Khani, Omar Khattab, Pang Wei Koh,
Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi,
and et al. 2021. On the opportunities and risks of
foundation models. CoRR, abs/2108.07258.

9955

http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/2108.07258

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Proceedings of NeurIPS.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The lottery ticket hypothesis for pre-
trained BERT networks. In Proceedings of NeruIPS.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons
in pretrained transformers. In Proceedings of ACL,
pages 8493–8502.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le.
2020. Funnel-transformer: Filtering out sequential
redundancy for efficient language processing. In
Proceedings of NeurIPS.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT, pages
4171–4186.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,
Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei
Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong
Sun. 2022. Delta tuning: A comprehensive study of
parameter efficient methods for pre-trained language
models. CoRR, abs/2203.06904.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of IWP@IJCNLP.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In Proceedings of ICLR.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of EMNLP, pages
5484–5495.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh
Raje, Venkatesan T. Chakaravarthy, Yogish Sabhar-
wal, and Ashish Verma. 2020. Power-bert: Accel-
erating BERT inference via progressive word-vector
elimination. In Proceedings of ICML, volume 119,
pages 3690–3699.

Demi Guo, Alexander M. Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of ACL-IJCNLP, pages 4884–
4896.

Manish Gupta and Puneet Agrawal. 2022. Compression
of deep learning models for text: A survey. TKDD,
16(4):61:1–61:55.

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao
Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao, Ao Zhang,
Liang Zhang, Wentao Han, Minlie Huang, Qin Jin,
Yanyan Lan, Yang Liu, Zhiyuan Liu, Zhiwu Lu,
Xipeng Qiu, Ruihua Song, Jie Tang, Ji-Rong Wen,
Jinhui Yuan, Wayne Xin Zhao, and Jun Zhu. 2021.
Pre-trained models: Past, present and future. AI
Open, 2:225–250.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In Proceedings of ICLR.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of ICML, volume 97, pages 2790–2799.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large
language models. CoRR, abs/2106.09685.

Gyuwan Kim and Kyunghyun Cho. 2021. Length-
adaptive transformer: Train once with length drop,
use anytime with search. In Proceedings of ACL-
IJCNLP, pages 6501–6511.

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gho-
lami, Woosuk Kwon, Joseph Hassoun, and Kurt
Keutzer. 2022. Learned token pruning for transform-
ers. In Proceedings of KDD, pages 784–794.

Anne Lauscher, Tobias Lüken, and Goran Glavas. 2021.
Sustainable modular debiasing of language models.
In Findings of ACL: EMNLP, pages 4782–4797.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of EMNLP, pages 3045–
3059.

Chang Liu, Chongyang Tao, Jiazhan Feng, and Dongyan
Zhao. 2022. Multi-granularity structural knowledge
distillation for language model compression. In Pro-
ceedings of ACL, pages 1001–1011.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
CoRR, abs/2107.13586.

Andrea Madotto, Etsuko Ishii, Zhaojiang Lin, Sumanth
Dathathri, and Pascale Fung. 2020. Plug-and-play
conversational models. In Findings of ACL, volume
EMNLP 2020, pages 2422–2433.

9956

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b6af2c9703f203a2794be03d443af2e3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b6af2c9703f203a2794be03d443af2e3-Abstract.html
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://proceedings.neurips.cc/paper/2020/hash/2cd2915e69546904e4e5d4a2ac9e1652-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2cd2915e69546904e4e5d4a2ac9e1652-Abstract.html
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.48550/arXiv.2203.06904
https://doi.org/10.48550/arXiv.2203.06904
https://doi.org/10.48550/arXiv.2203.06904
https://aclanthology.org/I05-5002/
https://aclanthology.org/I05-5002/
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
http://proceedings.mlr.press/v119/goyal20a.html
http://proceedings.mlr.press/v119/goyal20a.html
http://proceedings.mlr.press/v119/goyal20a.html
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.1145/3487045
https://doi.org/10.1145/3487045
https://doi.org/10.1016/j.aiopen.2021.08.002
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
http://arxiv.org/abs/1503.02531
http://proceedings.mlr.press/v97/houlsby19a.html
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
https://doi.org/10.18653/v1/2021.acl-long.508
https://doi.org/10.18653/v1/2021.acl-long.508
https://doi.org/10.18653/v1/2021.acl-long.508
https://doi.org/10.1145/3534678.3539260
https://doi.org/10.1145/3534678.3539260
https://doi.org/10.18653/v1/2021.findings-emnlp.411
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2022.acl-long.71
https://doi.org/10.18653/v1/2022.acl-long.71
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
https://doi.org/10.18653/v1/2020.findings-emnlp.219
https://doi.org/10.18653/v1/2020.findings-emnlp.219

Yoshitomo Matsubara, Marco Levorato, and Francesco
Restuccia. 2023. Split computing and early exiting
for deep learning applications: Survey and research
challenges. CUSR, 55(5):90:1–90:30.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Proceed-
ings of NeurIPS, pages 14014–14024.

Vishvak Murahari, Carlos E. Jimenez, Runzhe Yang,
and Karthik Narasimhan. 2022. Datamux: Data mul-
tiplexing for neural networks. In Proceedings of
NeurIPS.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of ICML, pages 807–814.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Damian Pascual, Beni Egressy, Clara Meister, Ryan
Cotterell, and Roger Wattenhofer. 2021. A plug-
and-play method for controlled text generation. In
Findings of ACL, volume EMNLP 2021, pages 3973–
3997.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
CoRR, abs/2003.08271.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR, 21:140:1–140:67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In Proceedings of
EMNLP, pages 2383–2392.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon
Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and
Wen-tau Yih. 2023. REPLUG: retrieval-augmented
black-box language models. CoRR, abs/2301.12652.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of EMNLP, pages 1631–1642.

Pierre Stock, Angela Fan, Benjamin Graham, Edouard
Grave, Rémi Gribonval, Hervé Jégou, and Armand
Joulin. 2021. Training with quantization noise for ex-
treme model compression. In Proceedings of ICLR.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of EMNLP-IJCNLP, pages
4322–4331.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of ACL, pages 2158–2170.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proceed-
ings of ICLR.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin
Jiang, and Ming Zhou. 2021. K-adapter: Infusing
knowledge into pre-trained models with adapters. In
Findings of ACL, volume ACL/IJCNLP 2021, pages
1405–1418.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Pro-
ceedings of NAACL-HLT, pages 1112–1122.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022.
Structured pruning learns compact and accurate mod-
els. In Proceedings of ACL, pages 1513–1528.

Chaojun Xiao, Zhengyan Zhang, Xu Han, Chi-Min
Chan, Yankai Lin, Zhiyuan Liu, Xiangyang Li,
Zhonghua Li, Zhao Cao, and Maosong Sun. 2023.
Plug-and-play document modules for pre-trained
models. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 15713–15729. Association for
Computational Linguistics.

Guangxuan Xiao, Ji Lin, Mickaël Seznec, Julien De-
mouth, and Song Han. 2022. Smoothquant: Accurate
and efficient post-training quantization for large lan-
guage models. CoRR, abs/2211.10438.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. Deebert: Dynamic early exiting
for accelerating BERT inference. In Proceedings of
ACL, pages 2246–2251.

Deming Ye, Yankai Lin, Yufei Huang, and Maosong
Sun. 2021. TR-BERT: dynamic token reduction
for accelerating BERT inference. In Proceedings
of NAACL-HLT, pages 5798–5809.

9957

https://doi.org/10.1145/3527155
https://doi.org/10.1145/3527155
https://doi.org/10.1145/3527155
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/6fc46679a7ba2ec82183cf01b80e5133-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6fc46679a7ba2ec82183cf01b80e5133-Abstract-Conference.html
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/2021.findings-emnlp.334
https://doi.org/10.18653/v1/2021.findings-emnlp.334
http://arxiv.org/abs/2003.08271
http://arxiv.org/abs/2003.08271
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.48550/arXiv.2301.12652
https://doi.org/10.48550/arXiv.2301.12652
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://openreview.net/forum?id=dV19Yyi1fS3
https://openreview.net/forum?id=dV19Yyi1fS3
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/2022.acl-long.107
https://doi.org/10.18653/v1/2022.acl-long.107
https://doi.org/10.48550/arXiv.2211.10438
https://doi.org/10.48550/arXiv.2211.10438
https://doi.org/10.48550/arXiv.2211.10438
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2021.naacl-main.463
https://doi.org/10.18653/v1/2021.naacl-main.463
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://aclanthology.org/2022.emnlp-demos.40
https://aclanthology.org/2022.emnlp-demos.40

Zichun Yu, Chenyan Xiong, Shi Yu, and Zhiyuan Liu.
2023. Augmentation-adapted retriever improves gen-
eralization of language models as generic plug-in.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2023, Toronto, Canada, July
9-14, 2023, pages 2421–2436. Association for Com-
putational Linguistics.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of ACL, pages 1–9.

Zhengyan Zhang, Baitao Gong, Yingfa Chen, Xu Han,
Guoyang Zeng, Weilin Zhao, Yanxu Chen, Zhiyuan
Liu, and Maosong Sun. 2022a. Bmcook: A task-
agnostic compression toolkit for big models. In Pro-
ceedings of EMNLP, pages 396–405.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li,
Maosong Sun, and Jie Zhou. 2022b. Moefication:
Transformer feed-forward layers are mixtures of ex-
perts. In Findings of ACL, pages 877–890.

Zhengyan Zhang, Zhiyuan Zeng, Yankai Lin, Huadong
Wang, Deming Ye, Chaojun Xiao, Xu Han, Zhiyuan
Liu, Peng Li, Maosong Sun, and Jie Zhou. 2023.
Plug-and-play knowledge injection for pre-trained
language models. In Proceedings of ACL, pages
10641–10658. Association for Computational Lin-
guistics.

A Training Details

In this section, we describe some training details,
including the datasets and hyper-parameters used
in our experiments.

A.1 Datasets
As for the plugin pre-training corpus, we adopt
a widely-used Wikipedia corpus for pre-training.
To facilitate the pre-training process, we split each
document into several paragraphs with 128 tokens.

As for the plugin adaptation datasets, we adopt
seven widely used language understanding datasets
as our evaluation benchmarks. As we use T5 (Raf-
fel et al., 2020) as our backbone, we formalize all
these tasks into sequence-to-sequence formats. The
detailed statistics and the input template are shown
in Table 6.

A.2 Implementation Details
In this subsection, we describe the implementation
details used in our experiments.

As for plugin pre-training, we use 8 A100 (80G)
GPUs to train Variator on T5-base for 4.9 hours and
T5-large for 9.9 hours. We adopt the knowledge
distillation objectives to pre-train plugins. Follow-
ing settings in Raffel et al. (2020), the mean length
of the masked span is set as 3, and the mask ratio
is set as 0.15.

As for baseline implementation, we fine-tune
the original T5 with learning rate searched from
{10−5, 3×10−5, 5×10−5} and batch size searched
from {16, 32}. The checkpoints with the best vali-
dation performance are used as the teacher models
to distill all other baselines. For distillation models,
we first conduct task-agnostic distillation for 10k
steps on the Wikipedia corpus, where the learning
rate is set as 10−4 and the batch size is set as 256.
For both distilled models and token pruning mod-
els, we fine-tune them on downstream data using
distillation objectives, with learning rate searched
from {10−5, 5 × 10−5}, and batch size searched
from {16, 32}.

B Training Objectives

In this paper, we adopt knowledge distillation to
guide the training of compression plugins to pre-
serve token-level and sequence-level information.
It is intuitive to adopt the task-specific loss func-
tion to optimize the parameters of compression
plugins. In this section, we explore the effects of
task-specific objectives and knowledge-distillation

9958

https://doi.org/10.18653/v1/2022.findings-acl.71
https://doi.org/10.18653/v1/2022.findings-acl.71
https://doi.org/10.18653/v1/2022.findings-acl.71

Dataset Train Validation Input Template

MNLI-m 393k 9.8k Sentence 1: PREMISE Sentence 2: HYPOTHESIS Does sentence 1
entails sentence 2? <extra_id_0>

QNLI 105k 5.5k Question: QUESTION Sentence: SENTENCE Does the sentence con-
tains the answer to the question? <extra_id_0>

QQP 364k 40.4k Question 1: QUESTION1 Question 2: QUESTION2 Are the two ques-
tions paraphrase of each other? <extra_id_0>

RTE 2.5k 277 Sentence 1: SENTENCE1 Sentence 2: SENTENCE2 Does sentence 1
entails sentence 2? <extra_id_0>

SST-2 67.3k 872 Sentence: SENTENCE Does this sentence express positive or nega-
tive emotions? <extra_id_0>

MRPC 3.7k 408 Sentence 1: SENTENCE1 Sentence 2: SENTENCE2 Are the two sen-
tences paraphrase of each other? <extra_id_0>

SQuAD 87.k 10.6k Question: QUESTION Context: CONTEXT Answer: <extra_id_0>

Table 6: The statistics and input templates of downstream datasets. In the templates, the task-specific inputs are
denoted in monospaced font, and <extra_id_0> refers to the special mask token for T5.

Dataset MNLI-m SST-2
Acc. Acc.

λ = 0 84.6 93.6
λ = 0.1 83.3 92.2
λ = 0.5 83.1 92.4

Table 7: The performance with different training objec-
tives.

Dataset MNLI-m SST-2
Acc. Acc.

Original 83.3 93.0
Variator (BERT) 80.0 90.3

Table 8: The performance with compression plugins in
BERT.

objectives. Here, we denote the task-specific loss
as Lt and the distillation loss as Ld. The final loss
is calculated as L = λLt + Ld. We present the
performance of Variator with compression ratio k
as 4 on T5-base.

As shown in Table 7, we can find that training
with task-specific objectives leads to performance
drop on both MNLI-m and SST-2 datasets. That is
because task-specific loss is usually easier to opti-
mize than distillation loss, and adding task-specific
loss functions makes our compression plugins more
likely to fall into the local optimum of the model.
Therefore, in other experiments, we only utilize the
distillation loss functions to optimize compression
plugins.

C Compression Plugins for BERT

Our compression plugins can be applied in
Transformer-based pre-trained models. In this sec-
tion, we explore inserting compression plugins into
the widely-used encoder-only pre-trained model,
BERT (Devlin et al., 2019). We adopt the 100-
million-parameter version, BERT-base, as our back-
bone. Following the main experiments, we set the
compression ratio as 4 and the bottleneck dimen-
sion as 64. We conduct plugin pre-training for 24k
steps. The results are shown in Table 8. From the
results, we can observe that Variator on BERT can
also show competitive results, and longer plugin
pre-training is supposed to lead to better perfor-
mance.

9959

