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Abstract

Narrative understanding involves capturing the
author’s cognitive processes, providing insights
into their knowledge, intentions, beliefs, and de-
sires. Although large language models (LLMs)
excel in generating grammatically coherent
text, their ability to comprehend the author’s
thoughts remains uncertain. This limitation
hinders the practical applications of narra-
tive understanding. In this paper, we con-
duct a comprehensive survey of narrative un-
derstanding tasks, thoroughly examining their
key features, definitions, taxonomy, associated
datasets, training objectives, evaluation met-
rics, and limitations. Furthermore, we explore
the potential of expanding the capabilities of
modularized LLMs to address novel narrative
understanding tasks. By framing narrative un-
derstanding as the retrieval of the author’s imag-
inative cues that outline the narrative structure,
our study introduces a fresh perspective on en-
hancing narrative comprehension.

1 Introduction

When reading a narrative, it is common for read-
ers to analyze the author’s cognitive processes, in-
cluding their knowledge, intentions, beliefs, and
desires (Castricato et al., 2021; Kosinski, 2023). In
general, narrative is a medium for personal experi-
ences (Somasundaran et al., 2018). Although Large
Language Models (LLMs) have the capability to
generate grammatically coherent texts, their ability
to accurately capture the author’s thoughts, such
as the underlying skeletons or outline prompts de-
vised by the authors themselves (Mahowald et al.,
2023), remains questionable. This is supported by
cognitive research that bilingual individuals tend to
convey more precise thoughts compared to mono-
lingual English speakers (Chee, 2006). The po-
tential deficiency in tracing thoughts within nar-
ratives would hinder the practical application of
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narrative understanding and, thereby preventing
readers from fully understanding the true intention
of the authors.

Narrative understanding has been explored
through various approaches that aim to recognize
thoughts within narratives (Mostafazadeh et al.,
2020; Kar et al., 2020; Lee et al., 2021; Sang
et al., 2022). Still, these approaches are often frag-
mented, focusing on diverse tasks scattered across
multiple datasets, obfuscating the fundamental el-
ements (e.g., the characters, the events and their
relationships) of the narrative structure (Ouyang
and McKeown, 2014, 2015; Cutting, 2016). To ad-
dress this gap, in this paper, we lay the foundation
and provide a comprehensive synthesis of the afore-
mentioned narrative understanding tasks. We start
with the key features of this genre, followed by a
formal definition of narrative understanding. We
then present a taxonomy of narrative understanding
tasks and their associated datasets, exploring how
these datasets are constructed, the training objec-
tives, and the evaluation metrics employed. We
proceed to investigate the limitations of existing
approaches and provide insights into new frontiers
that can be explored by leveraging current modular-
ized LLMs (e.g., GPT with RLHF (Ouyang et al.,
2022)), with a particular focus on potential new
tasks.

To sum up, our work firstly aligns disparate
tasks with the LLM paradigm, and categorizes
them based on the choices of context and input-
output format. Then it catalogues datasets based on
the established taxonomy. Subsequently, it intro-
duces Bayesian prompt selection as an alternative
approach to define the task of narrative understand-
ing. Finally, it outlines open research directions.

2 Definition of Narrative Understanding

Narrative texts possess distinct characteristics,
which are different from other forms of discourse.
Elements such as point of view, salient characters,
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and events, which are associated or arranged in
a particular order (Chambers and Jurafsky, 2008;
Ouyang and McKeown, 2015; Piper et al., 2021),
giving rise to a cohesive story synopsis known
as the plots (Hühn et al., 2014). Its scope spans
across various genres, including novels, fiction,
films, theatre, and more, within the domain of lit-
erary theory (Genette, 1988). Although it is un-
necessary to endorse a particular narrative theory,
some elements are commonly encountered in com-
prehension. For example, readers have to under-
stand the causation or relationship that goes be-
yond a timeline and delve into the relationships
between the characters (Worth, 2004). From a
model-theoretic perspective, narrative understand-
ing can be described as a process through which the
audience perceives the narrator’s constructed plot
or thoughts (Czarniawska, 2004; Castricato et al.,
2021).

To this end, we define narrative understanding as
the process of reconstructing the writer’s creative
prompts that sketch the narrative structure (Ouyang
and McKeown, 2014; Fan et al., 2019). In line
with Brown et al. (2020), we adopt the practice of
using the descriptions of NLP tasks as context to
accommodate different paradigms. Additionally,
we employ the LLaMA (Touvron et al., 2023) tax-
onomy to dichotomize this data-oriented task as
either multiple-choice or free-form text comple-
tion. Let {xn, yn}Nn=1 denote the dataset where
x1:N are narratives, and y1:N are the annotated
sketches, narrative understanding aims to predict
Y given X by optimizing pθ(y1:N |x1:N , context).
Existing literature can be roughly categorized
based on the format of yn and how context is
described. To align with the classical NLP tax-
onomy, we specify context as a single prompt
from either Reading Comprehension (Section
2.1), Summarisation (Section 2.2), or Question
Answering (Section 2.3). In the rest of this sec-
tion, the context will be further elaborated and
specialized in more narrowly-defined tasks to re-
fine the taxonomy, resulting in the reformatting of
yn accordingly.

2.1 Narrative Reading Comprehension

In machine reading comprehension, the context
prompt is instantiated as a single prompt of “select-
ing which option is consistent with the story”, and
yn is structured as categorical label(s) that corre-
spond to the available options.

Narrative Consistency Check involves deter-
mining whether an assertion aligns with the nar-
rative or contradicts it. This task encompasses
various scopes, ranging from the entire narrative
structure (Ouyang and McKeown, 2014) to dis-
course structure (Mihaylov and Frank, 2019) and
ultimately, the constituents of the narrative, such as
agents and events (Piper et al., 2021; Wang et al.,
2021).

For example, Granroth-Wilding and Clark
(2016) designed a Multiple Choice Narrative Cloze
(MCNC) prediction task, where stories are struc-
tured as a sequence of events. Each event is rep-
resented by a 3-tuple, which comprises the verb
lemma, the grammatical relation, and the associ-
ated entity. They aimed to predict the subsequent
event from a given set of options, framed in the
context of story cloze. Furthermore, Chaturvedi
et al. (2017) extended this prediction task to en-
compass the prediction of a story ending based
on its existing content. Similarly, the ROC story
cloze task (Mostafazadeh et al., 2016), addressed
by Cai et al. (2017), involves choosing the most
plausible ending. There are various approaches
developed for story ending prediction, such as
the incorporation of commonsense knowledge (Li
et al., 2018b), utilization of skip-thought embed-
dings (Srinivasan et al., 2018), entity-driven recur-
rent networks (Henaff et al., 2017; Liu et al., 2018),
scene structure (Tian et al., 2020), centrality or
salience of events (Zhang et al., 2021), and con-
textualized narrative event representation (Wilner
et al., 2021), respectively. Simple and well-
established, the Story Cloze Test does not cover the
core aspects of narrative structure, though. Roem-
mele and Gordon (2018a) introduced an advance-
ments in this task by predicting causally related
events in stories using the Choice of Plausible Al-
ternatives (COPA) (Roemmele et al., 2011) dataset.
Each instance in the COPA dataset contains three
sentences: a Premise, Alternative 1 and Alterna-
tive 2, with the Premise describing an event and
the Alternatives proposing the plausible cause or
effect of the event. Building upon this, Qin et al.
(2019) aligned the ROC story cloze and COPA
dataset with HellaSwag (Zellers et al., 2019) and
introduced the counterfactual narrative reasoning.
This task involves re-writing the story to restore
narrative consistency. Their proposed TimeTravel
dataset features 29, 849 counterfactual revisions to
initial story endings. Ippolito et al. (2020) further
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Narrative
Understanding

Narrative Question
Answering

Question Generation NarrativeQA (Kočiský et al., 2018), FairytaleQA (Xu et al., 2022)

Answer Generation

Retrieval-Based
Labutov et al. (2018); BookQA (An-

gelidis et al., 2019); Mou et al. (2020)

Generation-Based
NarrativeQA (Kočiský et al., 2018); BookQA (An-

gelidis et al., 2019); Mou et al. (2020); TellMe-
Why (Lal et al., 2021); HowQA (Cai et al., 2022)

Narrative Sum-
marisation

Object-Specific

Multiple Elements Lee et al. (2022)

Character Zhang et al. (2019b); Brahman et al. (2021)

Event Zhao et al. (2022a)

Corpus-Level Extractive Lehr et al. (2013); Papalampidi et al. (2020)

Abstractive Ouyang et al. (2017)

Reading Com-
prehension

Structural Analysis
Component Segmentation William Croft (2017); Papalampidi et al. (2019)

Event-Relation Extraction Kolomiyets et al. (2012); Revi et al. (2021)

Consistency
Checking

Multiple Elements Kar et al. (2020); Mostafazadeh et al. (2020)

Other Elements Wanzare et al. (2019)

Character-Centric

Personality Yu et al. (2023b)

Coreference
Identification

Patil et al. (2018); Ja-
han and Finlayson (2019)

Event-Centric

Counterfactual Qin et al. (2019)

Plausible Alter-
natives(COPA) COPA (Roemmele et al., 2011)

Story Cloze ROC (Mostafazadeh et al., 2016)

Figure 1: Typology of Narrative Understanding. Some literature sources are repeated since they contain both types
of datasets or input-output schemes.

expanded the scope of the story cloze task to the
entire narrative and proposed a sentence-level lan-
guage model for consecutive multiple-choice pre-
diction among candidate sentences on the Toronto
Book Corpus (Zhu et al., 2015).

In addition to event prediction, Wanzare et al.
(2019) introduced the concept of prototypical
events, referred to as scenarios, to incorporate
essential commonsense knowledge in narratives.
They also introduced a benchmark dataset for sce-
nario detection. Building upon their work, Situ-
ated Commonsense Reasoning (Ashida and Sug-
awara, 2022) aimed at deriving possible scenarios
following a given story. Other attributes, such as
a movie’s success and event salience, have been
explored in studies (Kim et al., 2019; Otake et al.,
2020; Wilmot and Keller, 2021).

In line with the event consistency, characters,
also known as participants, play a crucial role in
linking narratives (Patil et al., 2018; Jahan and
Finlayson, 2019). Patil et al. (2018) employed
Markov Logic Network to encode linguistic knowl-
edge for the identification of aliases of participants
in a narrative. They defined participants as enti-
ties and framed the task as Named Entity Recog-

nition (NER) and dependency parsing. In contrast,
a recent approach introduced the TVShowGuess
dataset, which simplified speaker guessing as
multiple-choice selection (Sang et al., 2022). How-
ever, it is difficult for some narrative-specific NLP
tasks, e.g., NER, to determine whether labelling ’a
talking cup’ as a ’person’ is appropriate. To miti-
gate this, some approaches take a character-centric
perspective. Brahman et al. (2021) introduced two
new tasks: Character Identification, which assesses
the alignment between a character and an unidenti-
fied description, and Character Description Gener-
ation, which emphasizes generating summaries for
individual characters. Other work targeted person-
ality prediction (Yu et al., 2023b), or used the off-
the-shelf LLM to perform role extraction (Stamm-
bach et al., 2022). To delve into the psychology of
story characters and understand the causal connec-
tions between story events and the mental states
of characters, Rashkin et al. (2018) introduced a
dataset, StoryCommonsense, which contains the
annotations of motivations and emotional reactions
of story characters.

While much existing work on narrative under-
standing focuses on specific aspects, Kar et al.
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(2020) considered the multifaceted features of nar-
ratives and created a multi-label dataset from both
plot synopses and movie reviews. Chaturvedi et al.
(2018) identified narrative similarity in terms of
plot events, and resemblances between characters
and their social relationships. Mostafazadeh et al.
(2020) built the GeneraLized and COntextualized
Story Explanations (GLUCOSE) dataset from chil-
dren’s stories and focused on explaining implicit
causes and effects within narratives. It includes
events, locations, possessions, and other attributes
of the curated claims within the stories.

Structural Analysis of Events: Plot and Story-
line Extraction The narrative structure encom-
passes a sequence of events that shape a story and
define the roles of its characters (Hearst, 1997; Cut-
ting, 2016). Unlike narrative consistency checking,
which focuses on elementary consistency, this task
involves two key objectives. First, it aims to extract
a clear and coherent timeline that underlies the nar-
rative’s progression. Second, it aims to sequence
the relationship of key factors to construct the plot
of the narrative (Kolomiyets et al., 2012).

In the first line of approaches, Ouyang and McK-
eown (2015) considered significant shifts, referred
to as Turning Points, in a narrative. These turning
points represent the reportable events in the story.
Li et al. (2018a) divided a typical story into five
parts: Orientation, Complicating Actions, Most Re-
portable Event, Resolution and Aftermath, which
are annotated in chronological order, capturing the
temporal progression of the story. The temporal re-
lationships within the narrative can be extracted and
structured into a database of temporal events (Yao
and Huang, 2018). In a similar vein, Papalampidi
et al. (2019) strived to identify turning points by
segmenting screenplays into thematic units, such as
setup and complications. Anantharama et al. (2022)
developed a pipeline approach that involves event
triplet extraction and clustering to reconstruct a
time series of narrative clusters based on identified
topics.

Based on the types of event relations such as tem-
poral, causal, or nested, storylines can be organised
as timelines (Ansah et al., 2019; yang Hsu et al.,
2021), hierarchical trees (Zhu and Oates, 2012), or
directed graphs (Norambuena and Mitra, 2021; Yan
and Tang, 2023). Current approaches often con-
struct storylines using stated timestamps (Ansah
et al., 2019; Revi et al., 2021). However, challenges
arise in narratives where time details may be vague

or absent. To address this issue, William Croft
(2017) proposed to decompose the storyline by con-
sidering individual temporal subevents for each par-
ticipant in a clausal event, which interact causally.
Bamman et al. (2020) focused on resolving coref-
erence in English fiction and presented the LitBank
to resolve the long-distance within-document men-
tions. Building upon this work, Yu et al. (2023a)
released a corpus of fiction and Wikipedia text to
facilitate anaphoric reference discovery. Yan et al.
(2019) introduced a more complex structure called
Functional Schema, which utilizes language mod-
els, to reflect how storytelling patterns make up
the narrative. Mikhalkova et al. (2020) introduces
the Text World Theory (Werth, 1999; Wang et al.,
2016) to regulate the structured annotations of nar-
ratives. This annotation scheme, profiling the world
in narrative, is expanded in (Levi et al., 2022) by
adding new narrative elements. Situated reason-
ing datasets, such as Moral Stories (Emelin et al.,
2021), target the branching developments in narra-
tive plots, specifically focusing on if-else scenarios.
Tools have also been created for annotating the se-
mantic relations among the text segments (Raring
et al., 2022).

In addition to the aforementioned approaches for
plot or storyline construction, several joint mod-
els have been developed to simultaneously uncover
key elements and predict their connections. A no-
table work is PlotMachines (Rashkin et al., 2020)
which involves an outline extraction method for
automatic constructing the outline-story dataset. In
another study, Lee et al. (2021) employed Graph
Convolutional Networks (GCN) to predict entities
and links on the StoryCommonsense and DesireDB
datasets (Rahimtoroghi et al., 2017).

2.2 Narrative Summarisation
Narrative summarisation, often referred to as Story
Retelling (Lehr et al., 2013), can be specified by
restricting yn to be a paraphrase that captures the
essense of the original literature. Similar to other
summarisation tasks, narrative summarisation can
be extractive or abstractive, depending on whether
the paraphrase is text snippets directly extracted
from the story or is generated from input text.

Early tasks, such as Automated Narrative
Retelling Assessment (Lehr et al., 2013), primar-
ily focused on recapitulation story elements in the
form of a tagging task. Subsequently, Narrative
Summarisation Corpora (Ouyang et al., 2017; Pa-
palampidi et al., 2020) were developed to facilitate
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more comprehensive understandings of narratives.
The former is designed for abstractive summariza-
tion, while the latter is intended for informative
sentence retrieval, taking into account the inherent
narrative structure. IDN-Sum (Revi et al., 2020)
provides a unique view of summarisation within
the context of Interactive Digital Narrative (IDN)
games. Recent work has proposed benchmarks that
require machines to capture specific narrative ele-
ments, e.g., synoptic character descriptions (Zhang
et al., 2019b) and story rewriting anchored in six
dimensions (Lee et al., 2022). In the same vein,
Goyal et al. (2022) collected span-level annotations
based on discourse structure to evaluate the coher-
ence of summaries for long documents. Brahman
et al. (2021) presented a character-centric view by
introducing two new tasks: Character Identifica-
tion and Character Description Generation. More
recently, a benchmark called NarraSum (Zhao et al.,
2022a) has been developed for large-scale narrative
summarisation, encompassing salient events and
characters, albeit without explicit framing.

2.3 Narrative Question Answering
Answering implicit, ambiguous, or causality ques-
tions from long narratives with diverse writing
styles across different genres requires a deep level
of understanding (Kalbaliyev and Sirts, 2022).
From the task perspective, Narrative QA can be
categorized based on either the format of yn, or
the task prompt that is referred to as context. The
format of yn could be categorical, where an answer
is provided as a span specified by starting-ending
positions. Alternatively, it can be free-form text
that is generated. The context could be specified as
answer selection/generation or question generation.

Numerous research works have focused on pro-
viding accurate answers to curated questions, with
a specific focus on event frames (Tozzo et al.,
2018), or questions related to external common-
sense knowledge (Labutov et al., 2018). They all
fall into the category of retrieval-based QA, where
relevant information is selected from narratives. In
contrast, the NarrativeQA (Kočiský et al., 2018)
dataset took a different approach by instructing
the annotators to ask questions and express an-
swers in their own words after reading an entire
long document, such as a book or a movie script.
This resulted in high-quality questions designed by
human annotators, and human-generated answers.
The dataset further provided supporting snippets
from human-written abstractive summaries and the

original story.

To effectively handle long context, Tay et al.
(2019) introduced a Pointer-Generator framework
to sample useful excerpts for training, and chose
between extraction and generation for answering.
Meanwhile, the BookQA (Angelidis et al., 2019)
approach targeted Who questions in the Narra-
tiveQA corpus by leveraging BERT to locate rel-
evant content. Likewise, Mou et al. (2020) pro-
posed a two-step approach which consists of evi-
dence retrieval to build a collection of paragraphs
and a question-answering step to produce an an-
swer given the collection. Mou et al. (2021) sur-
veyed open-domain QA techniques and provided
the Ranker-Reader solution, which improves upon
the work of Mou et al. (2020) with a newer ranker
and reader model.

Unlike pipeline approaches, Mihaylov and Frank
(2019) converted the free-text answers from Narra-
tiveQA into text-span answers and used the span
answers as labels for training and prediction. Other
attempts have been made to adapt NarrativeQA
for extractive QA. For example, Frermann (2019)
modified the dataset into an extractive QA format
suitable for passage retrieval and answer span pre-
diction. On the other hand, the TellMeWhy (Lal
et al., 2021) dataset combined the commonsense
knowledge and the characters’ motivations in short
narratives when designing the questions, present-
ing a new challenge for answering why-questions
in narratives. Kalbaliyev and Sirts (2022) reviewed
the WhyQA challenges, and Cai et al. (2022) col-
lected how-to questions from Wikihow articles to
build the HowQA dataset, which serves as a testbed
for a Retriever-Generator model.

Generating meaningful questions is an impor-
tant aspect of human intelligence that holds great
educational potential for enhancing children’s com-
prehension and stimulating their interest (Yao et al.,
2022; Zhang et al., 2022a). Early work in this
area focused on generating questions of multiple
choice word cloze from children’s Books, targeting
named entities, nouns, verbs and prepositions (Hill
et al., 2016). Other studies designed commonsense-
related questions from narratives in simulated
world (Labutov et al., 2018). To enhance chil-
dren’s learning experiences, the FairytaleQA (Xu
et al., 2022) dataset was created for question gener-
ation (QG) tasks, covering seven types of narrative
elements or relations. The dataset was used in
the work of (Yao et al., 2022), which employed a
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pipeline approach comprising heuristics-based an-
swer generation, BART-based question generation,
and DistilBERT-based candidate ranking. Zhao
et al. (2022b) experimented with a question gener-
ation model, which incorporated a summarisation
module, using the same FairytaleQA dataset. Ad-
ditionally, the StoryBuddy (Zhang et al., 2022a)
system provided an interactive interface for parents
to participate in the process of generating question-
answer pairs, serving an educational purpose.

A major taxonomical concern in tasks or datasets
employing similar input-output schemes, particu-
larly NarrativeQA (Kočiský et al., 2018) with the
objective of answering questions relating to narra-
tive consistency, is the potential overlap between
finely-detailed tasks as defined in our taxonomy.
For example, depending on the instructions and
prompts given, the scope of QA can encompass
more specific tasks, including narrative summariza-
tion (Who is Charlie?), and narrative generation
(What would happen after the Princess marries the
Prince?). Despite some similarities, the majority of
instruction templates are indistinguishable (Sanh
et al., 2022). Therefore, they are considered as
equivalent tasks.

3 Dataset

We have conducted a review of datasets (Table 1-3
in Appendix) that are either designed for, or appli-
cable to, tasks related to narrative understanding.
There are three major concerns:

Data Source Due to copyright restrictions, most
datasets focus on public domain works. This limi-
tation has rendered valuable resources, such as the
Toronto Book Corpus (Zhu et al., 2015), unavail-
able. To overcome this challenge, diverse sources
have been explored, such as plot descriptions from
movies and TV episodes (Frermann et al., 2018;
Zhao et al., 2022a). However, there remains a need
for datasets that cover specialized knowledge bases
for specific worldviews in narratives, such as magi-
cal worlds, post-apocalyptic wastelands, and futur-
istic settings. One potential data source that could
be utilized for this purpose is TVTropes 1, which
provides extensive descriptions of character traits
and actions.

Data Annotation The majority of existing
datasets contain short stories, consisting of only
a few sentences, which limits their usefulness for

1http://tvtropes.org

understanding complex narratives found in books
and novels. Due to high annotation costs, there is
a lack of sufficiently annotated datasets for these
types of materials (Zhu et al., 2015; Bandy and Vin-
cent, 2021). Existing work (Frermann et al., 2018;
Chaudhury et al., 2020; Kryscinski et al., 2022)
employed available summaries and diverse meta-
information from books, movies, and TV episodes
to generate sizable, high-quality datasets. Addi-
tionally, efficient data collection strategies, such
as game design (Yu et al., 2023a), character-actor
linking for movies (Zhang et al., 2019b), and lever-
aging online reading notes (Yu et al., 2023b), can
be explored to facilitate the creation of datasets.

Data Reuse Despite the availability of high-
quality annotated datasets for various narrative un-
derstanding tasks, there is limited reuse of these
datasets in the field. Researchers often face chal-
lenges in finding suitable data for their specific
tasks, which leads to the creatation of their own new
and costly datasets. Some chose to build a large,
general dataset (Zhu et al., 2015; Mostafazadeh
et al., 2020), while others chose to gradually an-
notate the same corpus over time (Frermann et al.,
2018). Some made use of platforms such Hug-
gingFace for data sharing (Huang et al., 2019),
or provided dedicated interfaces for public access
(Koupaee and Wang, 2018). To facilitate data reuse
and address the challenges associated with find-
ing relevant data, the establishment of an online
repository could prove beneficial.

4 Evaluation Methods

For classification tasks, such as multiple-choice
QA and next sentence prediction, accuracy, pre-
cision, recall, and the F1 score serve as the most
suitable evaluation metrics. Here we mainly dis-
cuss evaluation metrics for free-form or generative
tasks, crucial yet challenging for narrative under-
standing. Traditional metrics based on N-gram
overlap like BLEU (Papineni et al., 2002), ROUGE
(Lin and Hovy, 2003), METEOR (Lavie and Agar-
wal, 2007), CIDER (Vedantam et al., 2015), WMD
(Kusner et al., 2015), and their variants, such as
NIST (Doddington, 2002), BLEUS (Lin and Och,
2004), SacreBLEU (Post, 2018) remain popular
due to their reproducibility. However, their correla-
tion with human judgment is weak for certain tasks
(Novikova et al., 2017; Gatt and Krahmer, 2018).

Alternative content overlap measures have been
proposed, such as PEAK (Yang et al., 2016), which
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compares weighted Summarization Content Units,
and SPICE (Anderson et al., 2016), which eval-
uates overlap by parsing candidate and reference
texts into scene graphs representing objects and
relations. The advent of BERT introduced a new
approach to evaluation, based on contextualized
embeddings, as seen in metrics such as BERTScore
(Zhang et al., 2019a), MoverScore (Zhao et al.,
2019), and BARTScore (Yuan et al., 2021). Task-
specific evaluations using BERT-based classifiers,
such as FactCC (Kryscinski et al., 2020) for sum-
mary consistency and QAGS (Wang et al., 2020)
to determine if answers are sourced from the docu-
ment, have been explored.

Recently, LLMs have also been employed for
evaluation tasks. For instance, CANarEx (Anan-
tharama et al., 2022) assesses time-series clus-
ter recovery from GPT-3 generated synthetic data.
UniEval (Zhong et al., 2022) uses a pretrained T5
model for evaluation score computation. GPTScore
(Fu et al., 2023) leverages zero-shot capabilities of
ChatGPT for text scoring, while G-Eval (Liu et al.,
2023) applies LLMs within a chain-of-thoughts
framework and form-filling paradigm for output
quality assessment.

To facilitate tracking the research progress, we
list the performance of current SoTA models on
representative benchmarks in Table 4 in the Ap-
pendix. These benchmarks have been categorized
into specific tasks based on the instruction tem-
plates outlined in Section 2. It is worth noting that
methodological development or result analysis is
not the focus of this survey. Sections 2.1-2.3 are in-
tended to serve as timelines depicting the evolution
of different research directions and task compar-
isons. Further, Section 3 offers a review of the
diverse datasets and their respective formats.

5 Applications

Narrative Assessment The “good at language ->
good at thought” fallacy (Mahowald et al., 2023)
has spurred the application of narrative understand-
ing to the automatic assessment of student essays.
Studies on automatic story evaluation (Chen et al.,
2022; Chhun et al., 2022) reveal that the referenced
metrics, e.g., BLEU and ROUGE scores, deviate
from human preferences such as aesthetic and in-
trigue. This calls for the identification of narrative
elements and their relations. For example, Soma-
sundaran et al. (2016) builds a graph of discourse
proximity of essay concepts to predict the essay

quality w.r.t. the development of ideas and ex-
emplification. Somasundaran et al. (2018) anno-
tates multiple dimensions of narrative quality, such
as narrative development and narrative organiza-
tion, to combat the scarcity of scored essays. Such
narrativity is also evaluated in (Steg et al., 2022)
with a focus on detecting the cognitive aspects, i.e.,
suspense, curiosity, and surprise. Other sub-tasks,
such as comment generation, are studied in (Lehr
et al., 2013; Zhang et al., 2022b).

Story Infilling As mentioned in Section 2.1, the
story cloze task selects a more coherent ending
based on the story context. The story infilling com-
pletes a story in a similar way that sequences of
words are removed from the text to create blanks
for a replacement (Ippolito et al., 2019). Mori
et al. (2020) makes a step forward in detecting the
missing or flawed part of a story. The proposed
method predicts the positions and provides alterna-
tive wordings, which serves as a writing assistant.
It is worth mentioning that narrative generation
intersects with this task with the key difference
that story infilling aims to comprehend the nar-
ratives and generate minor parts to complete the
story. Wider applications of this task are auxiliary
writing systems such as an educational question de-
signer (Zhang et al., 2022a) and a creative writing
supporter (Roemmele and Gordon, 2018b).

Narrative Understanding vs. Narrative Genera-
tion The main distinction we make between nar-
rative understanding and generation is that the latter
aims to produce longer sequences conditioned on
prototypical story snippets. An epitome is story
generation conditioned upon prompts (Fan et al.,
2019), where the prompts draft the action plan
and reserve the placeholders for generative models
to complete. Unlike Story Infilling, the out-of-
distribution narrative elements and their relations,
e.g., plot structures (Goldfarb-Tarrant et al., 2020),
novel plots (Ammanabrolu et al., 2019), creative
interactions (DeLucia et al., 2021), and interesting
endings (Gupta et al., 2019), are to be generated,
which poses the main challenge in story genera-
tion (Goldfarb-Tarrant et al., 2019). Other litera-
ture focuses on the significant enrichment of details
to a brief story skeleton (Zhai et al., 2020). Latent
discrete plans illustrated by thematic keywords are
posited (Peng et al., 2018), and latent variable mod-
els are leveraged to steer the generation (Jhamtani
and Berg-Kirkpatrick, 2020). Commonsense rea-
soning also needs to be pondered for storytelling
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everyday scenarios (Mao et al., 2019; Xu et al.,
2020). Evaluation criteria are adjusted accordingly
to measure the aesthetic merit and correlate with hu-
man preferences (Akoury et al., 2020; Chhun et al.,
2022). In this sense, narrative generation is the
opposite task of narrative understanding with a key
emphasis on generating intriguing plots and rich
details based on a small corpus. Despite being the
opposite in the model-theoretic view, narrative gen-
eration needs to comply with certain restrictions,
e.g., pragmatics, coreference consistency (Clark
et al., 2018), long-range cohesion (Zhai et al., 2019;
Goldfarb-Tarrant et al., 2020), and adherence to
genres (Alabdulkarim et al., 2021), to name a few.

6 Challenges and Future Directions

Prompt Tuning and Author Prompt Recapit-
ulation In lieu of the prompt-driven nature of
LLMs that elicits tasks with task descriptions or
few-shot examples rather than task-specific fine-
tuning (Brown et al., 2020; Sanh et al., 2022; Tou-
vron et al., 2023; Tay et al., 2023; Anil et al.,
2023), we propose a unified approach for nar-
rative understanding. This approach involves a
single supervised training process, denoted as
pθ(y1:N |x1:N , context), where context represents
a prompt of task description or few-shot examples,
and y1:N denotes predictable annotations produced
by crowd-sourced platforms such as Amazon Me-
chanical Turk (Mostafazadeh et al., 2016; Papalam-
pidi et al., 2020; Lal et al., 2021). While the frame-
work is universally applicable, the practice of re-
lying on annotators to infer authors’ thoughts or
construct skeleton prompts is inefficient, inaccu-
rate and unreliable (Mahowald et al., 2023), Direct
consultation with the authors is often impractical,
particularly for posthumous masterworks. As sug-
gested in the model-theoretic view (Castricato et al.,
2021), a gap needs to be closed between the nar-
rator and the audience to overcome the reader’s
uncertainty and other environmental limitations.

In this regard, we envisage a Bayesian perspec-
tive (Lyle et al., 2020) for the recovery of the
author’s thoughts. Let pϕ(narrative|sketch, task)
denote the oracle model that simulates the au-
thor’s composition process, where the author fills
in the conceived skeleton out of their own initia-
tive (where sketch is the skeleton prompts and
task is the task description). The recapitulation
of the author’s prompt can then be expressed as
argmaxsketch pϕ(narrative|sketch). Previous ef-

forts have formulated the objective as predicting
the narrative elements or the narrative structure
(as discussed in Section 2), given the intractabil-
ity of the likelihood of generating the narrative,
pϕ(narrative|sketch, task). It is also viable, how-
ever, to probe and optimize sketch directly, con-
sidering the ability of LLMs to compute the error
in close proximation. Hence, pϕ(narrative|sketch)
could be derived as the marginal likelihood
Σtaskpϕ(narrative, task|sketch), and its expecta-
tion form Ep(task|sketch)pϕ(narrative|sketch, task)
can be approximated by sampling an appropriate
task. The dependence between task and sketch
aligns well with the composition practice of choos-
ing a suitable genre to match the author’s creative
intent. In more complex cases where the narra-
tor is known to have employed particular narratol-
ogy techniques (e.g., Flashback (Han et al., 2022)),
task and sketch can be parameterized by generative
models (e.g., LM-driven prompt engineers (Zhou
et al., 2023)), which can be tuned by a prompt base
through gradient descent optimization.

Interactive Narrative LLMs, with their ability
to carry out numerous language processing tasks ef-
fectively in a zero-shot manner (Shen et al., 2023),
are paving the way towards a future of immersive
and interactive narrative environments. These en-
vironments could resemble the dynamic storylines
experienced by individuals, as depicted in the TV
series “Westworld”.
Agent Recent studies (Park et al., 2023; Auto-
GPT, 2023) have shown promising results in us-
ing a database to store an agent’s experiences and
thought processes, effectively serving as a person-
ality repository. By retrieving relevant memories
from this database and incorporating them into
prompts, LLMs can be guided to predict behaviors,
thereby producing human-like responses. How-
ever, extracting comprehensive character-centric
memory from narratives, encompassing aspects
such as “Who”, “When”, “Where”, “Action”, “Feel-
ing”, “Causal relation”, “Outcome”, and “Predic-
tion” (Xu et al., 2022), remain largely unexplored.
Current studies primarily focus on simple corpora
and there is ample room for further investigation in
this area.
Environment Creating immersive and interactive
environments for users and agents presents several
challenges, primarily due to three key factors: (1)
Environment Extraction. Character locations and
environments, often vaguely defined unless crucial
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to the plot, have to be clarified. Most works rely on
pre-built sandbox environments (Côté et al., 2018;
Hausknecht et al., 2020; Park et al., 2023) to ad-
dress this issue. However, challenges remain in
extracting and representing the environment accu-
rately. (2) Environment Generation. Interactive
narratives aim to provide users with greater free-
dom, but this poses the challenge of automatically
generating reasonable and coherent details within
the narrative’s world. It is crucial to maintain con-
sistency and engagement in storytelling, despite
varying user inputs and directions. (3) Environ-
ment Update. Agents’ text commands may change
the state of the world, requiring accurate and cost-
effective updates. Current systems update envi-
ronment states using predefined rules (Côté et al.,
2018; Wang et al., 2022). However, using LLMs
to derive and generate narrative environments chal-
lenges the use of predefined rules, making efficient
and large-scale environment updates a future re-
search direction.

Open World Knowledge Incorporating external
knowledge and commonsense has been a long-
standing challenge in both dataset construction and
model design (Zellers et al., 2019; Wanzare et al.,
2019; Mikhalkova et al., 2020; Ashida and Sug-
awara, 2022). Efforts to address this challenge
have been made over the years, with the emer-
gence of LLMs providing a source potential of
commonsense knowledge (Bosselut et al., 2019;
Petroni et al., 2019). Notably, the Text World The-
ory (TWT) (Werth, 1999; Gavins, 2007) has been
leveraged to provide world knowledge relevant to
everyday life, which is simulated through natu-
ral language descriptions (Labutov et al., 2018).
Similarly, in (Mikhalkova et al., 2020), a text
world framework is established, in which the world-
building elements (e.g., characters, time and space)
are annotated to enhance readers’ perception.

The text world entails nuanced knowledge de-
rived from the interplay of various elements. How-
ever, such supervision provided by the static world
is somewhat limited, as the reward is implicit and
the model needs to extrapolate from the annota-
tions to exploit the world knowledge. In contrast,
the open world (Raistrick et al., 2023) presents an
ideal source of supervisor, where the model can be
rewarded with incentives derived from world mech-
anisms (Assran et al., 2023) that synergistically
complements the audience model with the everyday
commonsense. To this end, the RLHF (Reinforce-

ment Learning with Human Feedback) (Ouyang
et al., 2022) strategy could be applied to the open-
world system, which enables the iterative training
of the narrative understanding process.

7 Conclusion

In this paper, we have systematically examined
the emerging field of narrative understanding, cata-
loguing the approaches and highlighting the unique
challenges it poses along with the potential solu-
tions that have emerged. We have emphasized the
crucial role of LLMs in advancing narrative un-
derstanding. Our intention is for this survey to
serve as a thorough guide for researchers navigat-
ing this intricate domain, drawing attention to both
the commonalities and unique aspects of narrative
understanding in relation to other NLP research
paradigms. We aspire to bridge the gap between
existing works and potential avenues for further
development, thus inspiring meaningful and inno-
vative progress in this fascinating field.

Limitations

This paper provides an overview of narrative un-
derstanding tasks, drawing inspiration from com-
putational narratology (Matthews et al., 2003)
and exploring potential new directions. However,
it does not delve into broader concepts of cog-
nitive computational theory, such as the theory
of mind (Happé, 1994), the philosophy of read-
ing (Mathies, 2020) and pedagogics (Nicolopoulou
and Richner, 2007). Therefore, this survey does not
incorporate cognitive-theoretic insights into the un-
derlying mechanisms that contribute to the success
of models. Another major limitation is the lack
of discussion of methodological improvements, as
the focus of the research progression is primarily
centered around the tasks. Additionally, this survey
does not explore narrative generation tasks.
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Setting For Datasets Related To Narrative Understanding Tasks

Dataset Reference Task Evaluation

Toronto Book Corpus Zhu et al. (2015) Narrative Understanding -
BookCorpusOpen Bandy and Vincent (2021) Narrative Understanding -
ELTeC Odebrecht et al. (2021) Narrative Understanding -
GLUCOSE Mostafazadeh et al. (2020) Reading Comprehension BLEU scores + Human
ROCStories Mostafazadeh et al. (2016) Consistency Checking: Event-Centric Story Cloze Test
ROCStories Winter 2017 Mostafazadeh et al. (2017) Consistency Checking: Event-Centric Story Cloze Test
Possible Stories Ashida and Sugawara (2022) Consistency Checking: Event-Centric Accuracy
COPA Roemmele et al. (2011) Consistency Checking: Plausible Alternatives Accuracy
TIMETRAVEL Qin et al. (2019) Counterfactual Similarity Metrics + Human[1]

HellaSwag Zellers et al. (2019) Counterfactual Accuracy
StoryCommonsense Rashkin et al. (2018) Consistency Checking: Character-Centric F-score + Explanation score[2]

TVShowGuess Sang et al. (2022) Consistency Checking: Character-Centric Accuracy
PERSONET Yu et al. (2023b) Consistency Checking: Character-Centric Accuracy
LitBank Bamman et al. (2020) Coreference Identification F-score
Phrase Detectives Yu et al. (2023a) Coreference Identification Accuracy
- Wanzare et al. (2019) Consistency Checking: Other Elements F-score
SNaC Goyal et al. (2022) Consistency Checking: Multiple Elements F-score
- Pustejovsky and Stubbs (2011) Structural Analysis Accuracy
InScript Modi et al. (2016) Structural Analysis -
Hippocorpus Sap et al. (2020) Structural Analysis Narrative Flow + Event contains
ESC v0.9 Caselli and Vossen (2021) Structural Analysis F-score
DesireDB Rahimtoroghi et al. (2017) Event-Relation Extraction F-score
Moral Stories Emelin et al. (2021) Event-Relation Extraction F-score + Similarity Metrics[3]

CSI Frermann et al. (2018) Corpus-Level Summarisation F-score
Shmoop Chaudhury et al. (2020) Corpus-Level Summarisation Accuracy
NovelChapter Ladhak et al. (2020) Corpus-Level Summarisation Similarity Metrics
BookSum Kryscinski et al. (2022) Corpus-Level Summarisation ROUGE-n, BERTScore, SummaQA
NARRASUM Zhao et al. (2022a) Corpus-Level Summarisation ROUGE-n, SummaC
IDN-Sum Revi et al. (2020) Corpus-Level Summarisation ROUGE-1 + F-score
ABLIT Roemmele et al. (2023) Corpus-Level Summarisation ROUGE-1 + F-score[4]

CMU Movie Summary Bamman et al. (2013) Character-Centric Summarisation Variation of information + Purity score
- Zhang et al. (2019b) Character-Centric Summarisation Recall@K
LiSCU Brahman et al. (2021) Character-Centric Summarisation Accuracy
BookTest Bajgar et al. (2017) Story Cloze Accuracy
MCTest Richardson et al. (2013) Answer Generation Accuracy
Children’s Book Test Hill et al. (2016) Answer Generation Accuracy
MovieQA Tapaswi et al. (2016) Answer Generation Accuracy
WikiHow Koupaee and Wang (2018) Answer Generation + Summarisation METEOR
MCScript2.0 Ostermann et al. (2019) Answer Generation Accuracy
Cosmos QA Huang et al. (2019) Answer Generation Accuracy
NarrativeQA Kočiský et al. (2018) Narrative Question Answering Similarity Metrics
TellMeWhy Lal et al. (2021) Narrative Question Answering Similarity Metrics
FairytaleQA Xu et al. (2022) Narrative Question Answering ROUGE-L F1 score

Table 1: Settings for datasets related to narrative understanding tasks, including references, the tasks the dataset was
created for, and the evaluation methods. Below are some supplementary information that cannot fit in the table: [1]

Similarity Metrics (e.g. BLUE-4, ROUGE-L, BERT, BERT-FT, Word Mover’s Similarity, Sentence + Word Mover’s
Similarity), complemented by human evaluation using Likert scale scores; [2] F-score for category labels, Vector
average and extrema score for annotation explanations; [3] Accuracy and F1 score for classification, as well as
similarity metrics for generation tasks; [4] ROUGE-1 precision score between spans and F-score for sentence labels.
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Domain Information On Datasets Related To Narrative Understanding Tasks

Dataset Domain Dataset Size Average Text Length Language

Toronto Book Corpus Romance, Historical, Adventure, etc. 11,038 books ∼6,704 sentences English
BookCorpusOpen Romance, Historical, Adventure, etc. 17,868 books - English
ELTeC - 1,250 novels - 8 Languages[1]

GLUCOSE Commonsense stories (ROCStories) 4,881 stories 5 sentences English
ROCStories Commonsense Stories 49,255 stories 5 sentences English
ROCStories Winter 2017 Commonsense Stories 98,159 stories 5 sentences English
Possible Stories Short story with multiple endings 1,313 passages 46.3 tokens English
COPA Choice Of Plausible Alternatives 1K questions 1 sentence English
TIMETRAVEL Commonsense stories (ROCStories) 29,849 story rewritings 5 sentences English
HellaSwag Commonsense stories (SWAG) 70K passage 1 sentence English
StoryCommonsense Commonsense stories (ROCStories) 15K stories 5 sentences English
TVShowGuess Scripts of TV series 318 characters 137,568 tokens English
PERSONET Novel 33 books 11,876 sentences English, Chinese
LitBank Fiction 100 fictions 2,105.3 tokens English
Phrase Detectives Fiction and Wikipedia 805 documents 1,712.4 tokens English
Wanzare et al. (2019) Blog (Spinn3r) 504 stories 35.74 sentences English
SNaC LLMs generated book/movie summaries 150 books 41 sentences English
Pustejovsky and Stubbs (2011) - 183 articles - English
InScript Commonsense stories (given scenarios) 910 stories 12.4 sentences English
Hippocorpus Stories of imaged/recalled events 6,854 Stories 17.6 sentences English
ESC v0.9 ECB+ corpus[2] 258 documents - English
DesireDB Blog (Spinn3r) 3,680 instances - English
Moral Stories Social Norms, Morality/Ethics 12K stories - English
CSI Crime Drama 39 episodes (59 cases) 689 sentences per case English
Shmoop Novels, plays, short stories[3] 231 stories 112,080 tokens English
NovelChapter Novel 4,383 chapters 5,165 words English
BookSum Plays, short stories, novels (Gutenberg) 405 books 112,885.15 tokens English
NARRASUM Plot descriptions of Movie/TV episodes 122K narratives 786 tokens English
IDN-Sum Narrative game scripts 8 IDN episodes 3250 sentences English
ABLIT Novels (Gutenberg) 868 chapters 154.1 sentences English
CMU Movie Summary Movie plot summaries 42,306 movies 176 words [4] English
Zhang et al. (2019b) Romance, Werewolf, etc. (Wattpad) 1,036,965 stories 15,600 words English
LiSCU Educational stories 1,220 books 1431.2 tokens [5] English
BookTest Books (Gutenberg) 14,140,82 questions 522 tokens English
MCTest Books (Gutenberg) 500 stories + 2,000 questions 212 words [6] English
Children’s Book Test Books (Gutenberg) 108 books + 687,343 questions 462.7 /30.7 words English
MovieQA Movie scripts 14,944 questions 9.3 words English
WikiHow HowWiki website 230,843 articles 579.8 tokens English
MCScript2.0 Short stories around everyday scenarios 3,487 texts + 19,821 questions 164.4 / 8.2 tokens English
Cosmos QA Paragraph + Questions [7] 35,600 (paragraphs + questions) 69.4 /10.3 tokens English
NarrativeQA Books (Gutenberg), movie scripts 1572 documents + 46,765 questions 61,472 / 9.8 tokens English
TellMeWhy Commonsense stories (ROCStories) 9,636 stories + 30,519 questions 5 sentences English
FairytaleQA Classic fairytale stories 278 stories + 10,580 questions 1401.3 / 3.3 tokens English

Table 2: Domain information on datasets related to narrative understanding tasks, including data domain, dataset
size, average text length (per narrative or character), and the language used. Below are some supplementary
information that cannot fit in the table: [1] 8 Europoean Language including Czech, German, English, French,
Hungarian, Polish, Portuguese and Slovenian; [2] ECB+ corpus focuses on calamity events, such as shooting and
accidents; [3] Short story sources include Shmoop website and Gutenberg; [4] The median length is 176 words since
no average text length is provided; [5] The length pertains to book summaries; [6] Text length ranges from 150-300
words; [7] Questions relate to causes, effects, facts, and counterfactuals.
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Annotation Information On Datasets Related To Narrative Understanding Tasks

Dataset Total Number of Annotations Annotation Type Annotation Procedure

Toronto Book Corpus - - -
BookCorpusOpen - - -
ELTeC - - -
GLUCOSE ∼670K Commonsense Causal Knowledge Human-Crowdsourced (MTurk)
ROCStories - Causal + Temporal Span Human-Crowdsourced (MTurk)
ROCStories Winter 2017 - Causal + Temporal Span Human-Crowdsourced (MTurk)
Possible Stories 8,885 ending + 4,533 questions Alternative Ending + Causal Question Human-Crowdsourced (MTurk)
COPA 2 Alternatives for each question the more Plausible Alternatives Human
TIMETRAVEL 81,407 counterfactual branch Counterfactual Rewritings Human-Crowdsourced (MTurk)
HellaSwag 70K Answers[1] Counterfactual Reasoning Machine-generated
StoryCommonsense 55,747 w/motiv + 104,930 w/emot Motivations + Emotional Reactions Human
TVShowGuess 12,413 scene Character Facts Human (2 experts)
PERSONET 140,268[2] Personalities Traits Automatic collection + Human
LitBank 29,103 mentions Anaphoric Reference + Entity Category Human (3 experts)
Phrase Detectives 282,558 mentions Anaphoric Reference Human-Crowdsourced[3]

Wanzare et al. (2019) 10,754 sentences[4] Scenarios + Segmentation Human(4 student assistants)
SNaC 9.6K Span Coherence Error Span + Type Human[5]

Pustejovsky and Stubbs (2011) - Temporal Span Human (3 students)
InScript 62,062[6] Script Structure Human-Crowdsourced (MTurk)
Hippocorpus - Human Recalled Events Human-Crowdsourced (MTurk)
ESC v0.9 9169 relations[7] Event Relation + Temporal Span Human (2 students)
DesireDB 3,680 Desire Expressions[8] Human-Crowdsourced (MTurk)
Moral Stories 24K action + 48K consequence Story Segment + Sentence Categories Human-Crowdsourced (MTurk)
CSI Story Segment + Sentence Categories Factual/Structural Metadata[9] Human (3 students)
Shmoop 7,234 summaries for 7,234 chapters Segmentation + chapter-level summaries Automatic collection[10]

NovelChapter 8,088 chapter/summary pairs Chapter-level summaries Automatic collection + Human written[11]

BookSum 405 summaries Paragraph, chapter, book-level summaries Automatic alignment + Human inspection
NARRASUM 122K summaries Book-level summaries Automatic alignment + Human inspection
IDN-Sum 10k summaries for 10k documents Interactive narratives summaries Automatic collection[12]

ABLIT 868 Paragraph-level abridged texts Automatic alignment + Human written[13]

CMU Movie Summary 29,802 characters[14] Character metadata Automatic matching
Zhang et al. (2019b) 18,100 characters Character Metadata + Tropes Automatic extraction + Human[15]

LiSCU 9499[16] Character Description Automatic creation + Human evaluation[17]

BookTest 141,408,250 options Cloze-form Automatic creation
MCTest 8000[18] Multiple-choice Human-Crowdsourced (MTurk)
Children’s Book Test 10 choices for each question Multiple-choice Automatic creation
MovieQA 74,720 answers Multiple-choice Human
WikiHow 230,843 summaries Subtopics + Free-form Answer Automatic collection
MCScript2.0 2 choices for each question Answer Generation + Multiple-choice Human-Crowdsourced (MTurk)
Cosmos QA 4 choices for each question Multiple-choice Human-Crowdsourced (MTurk)
NarrativeQA 46,765 answers Free-form Answer Human-Crowdsourced (MTurk)
TellMeWhy 3 answers for each question Free-form Answer Human-Crowdsourced (MTurk)
FairytaleQA 10,580 Answer + Ground-truth Question Pairs Human-5 postgraduate students

Table 3: Annotation information on datasets related to narrative understanding tasks, including the total number of
annotations, annotation type, and annotation procedure (expert vs. crowdsourced, human vs. automatic). Below
are some supplementary information that cannot fit in the table: [1] Adversarial wrong answers for each passage;
[2] 140,268 traits are derived from 110,114 notes, which were automatically collected from reading apps. These
notes were written by the app’s users; [3] The data was sourced via a game-with-a-purpose approach; [4] Annotators
labelled a total of 504 documents, which comprised 10,754 sentences. A label for a scenario could be assigned
from one of the 200 predefined scenarios or marked as "None" for sentences that didn’t fit any scenario; [5] Both
expert evaluators (3 experts) and human crowdsourcing through MTurk were used for annotation; [6] Stories were
annotated across 10 distinct scenarios. Verbs and noun phrases were labelled with event and participant types,
respectively. The text also includes coreference annotations. [7] The dataset includes 6,904 temporal relations and
2,265 explanatory relations.; [8] It has gold standard labels for identifying statements of desire, spans of evidence
supporting the fulfillment of the desire, and annotations indicating whether the stated desire is fulfilled based on the
narrative context; [9] References to the mentioned perpetrator and relation to previous cases; [10] Paired summaries
and narrative texts sourced from websites; [11] Summaries and chapter pairs were automatically collected from
online study guides, written by experts; [12] Paired summaries and narrative texts sourced from websites; [13] The
dataset has an automatically aligned abridged version, which is written by a single human author.; [14] Characters are
matched to actors with a public date of birth; [15] Annotations are collected through questionnaires to 100 authors;
[16] 1708 literature summaries and 9499 character descriptions; [17] 3 judges were asked to evaluate the quality of
the description, focusing on fact coverage and task difficulty; [18] There are 4 questions associated with each story,
and each question offers 4 answer choices.
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Task Representative Dataset Best Model Result

StoryCloze StoryCloze (Mostafazadeh et al., 2016) FLAN 137B zero-shot (Wei et al., 2022) 93.4 Accuracy
CounterfactualReasoning Hellaswag (Zellers et al., 2019) GPT-4 (OpenAI, 2023) 95.3 Accuracy
NarrativeSummarization BookSum (Kryscinski et al., 2022) BART-LS (Xiong et al., 2022) 38.5 Rouge-1
NarrativeQA NarrativeQA (Kočiský et al., 2018) Masque (Nishida et al., 2019) 59.87 Rouge-L
NarrativeQA Children’s Book Test (Hill et al., 2016) NSE (Dhingra et al., 2017) 71.9 Accuracy

Table 4: Performance of the most recent models on representative datasets. The results are extracted from their
respective papers.
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