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Abstract

Target similarity tuning (TST) is a method of
selecting relevant examples in natural language
(NL) to code generation through large language
models (LLMs) to improve performance. Its
goal is to adapt a sentence embedding model
to have the similarity between two NL inputs
match the similarity between their associated
code outputs. In this paper, we propose differ-
ent methods to apply and improve TST in the
real world. First, we replace the sentence trans-
former with embeddings from a larger model,
which reduces sensitivity to the language dis-
tribution and thus provides more flexibility in
synthetic generation of examples, and we train
a tiny model that transforms these embeddings
to a space where embedding similarity matches
code similarity, which allows the model to re-
main a black box and only requires a few ma-
trix multiplications at inference time. Second,
we how to efficiently select a smaller number
of training examples to train the TST model.
Third, we introduce a ranking-based evaluation
for TST that does not require end-to-end code
generation experiments, which can be expen-
sive to perform.

1 Introduction

Code generation from natural language utterances
is an important and useful ability of large language
models (LLMs). Experienced developers can save
time, and less experienced users can use natural
language to perform data transformation tasks that
they would otherwise have to carry out manually
(Liu et al., 2023). Improving the code generation
capabilities of LLMs is a popular research area
(Wang et al., 2021).

Target similarity tuning (TST) was proposed
as a method for selecting relevant examples to
exploit the in-context learning ability of LLMs
and improve performance (Poesia et al., 2022).
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Figure 1: Example of a target utterance and associated
code, the examples selected by TST and by relying on
default embeddings.

TST improves the alignment between sentence em-
beddings of utterances by fine-tuning their cosine
similarities to match the similarity of their asso-
ciated code snippets. Sentence-BERT (Reimers
and Gurevych, 2019) is used as embedding model.
Especially for rare programming languages, the
model benefits from seeing relevant code (+3% for
SQL versus +16% for SMCalFlow using GPT-3).

Example. Figure 1 shows an example of how TST
improves over default embeddings by teaching the
model which parts of the utterance are important.
The embeddings focus heavily on the “into rows”
part of the utterance (where the user might have
made a mistake). With TST, we can teach it to
focus on the “delimiter” part by focusing on the
similarity between code snippets.

This paper addresses four limitations of TST
when applying it in the real world: (1) sensitivity
to language, (2) inference with transformer models,
(3) dataset curation and (4) evaluation.

Limitations (1) and (2) are due to the sentence
embedding model. Training utterances and real ut-
terances often come from different distributions, for
example, from users with different skill levels, and
smaller models might be unable to capture this vari-
ation. When hosted, third-party LLMs are used for
code generation, performing inference with trans-
former models might not be possible, making TST
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hard to use in production.
We address both these challenges by replacing

the sentence transformer with embeddings from a
hosted, third-party model and training a fully con-
nected neural network (FCNN) to transform the
embeddings to capture the code similarity. The
large model provides stronger embeddings and the
FCNN only requires a (few) matrix-vector multi-
plication during inference.

Dataset curation (3) is important, as given n
(utterance, code) pairs, we can sample n(n− 1)/2
pairs to create training examples for TST, most of
consist of irrelevant code pairs. Since we care about
distinguishing the best examples, these irrelevant
pairs are not desired. We address this challenge
by selecting positive and negative examples close
to the important decision boundary and create a
smaller dataset that yields better performance and
is much faster to train on.

Our method proposed method of training the
FCNN on top of frozen embeddings on a relevant
set of examples is called TSTR (tastier), where R
stands for real world.

Finally, optimizing hyperparameters of the TST
model is expensive to evaluate when LLM calls
are required. We show that an evaluation based on
ranking of examples close to the decision boundary
matches the end-to-end performance, providing a
cheap way to evaluate TST models.

We make the following contributions:

(1 + 2) We show that training a small model on
top of frozen embeddings makes TSTR

easier to train and use, and less sensitive
to variations in language.

(3) We show that selecting examples close to
the important decision boundary allows
us to train a TST model with much fewer
examples.

(4) We show that ranking (train, test) utter-
ance pairs correlates to the performance
of end-to-end code generation, providing
a cheap way to evaluate TST models.

2 Related Work

Code generation from natural language is a popular
area of research (Le et al., 2022; Li et al., 2022).
Instead of starting from scratch, fine-tuning a pre-
trained natural language understanding model to
generate code is a popular approach, for example,

CodeBERT (Feng et al., 2020) was trained from
BERT, CodeT5 (Wang et al., 2021) was trained
from T5 and Codex (Chen et al., 2021) was trained
from GPT-3.

A powerful method to generate code from natu-
ral language is prompting large language models
(Chen et al., 2021). As opposed to fine-tuning, this
does not require large training datasets and expen-
sive compute. Few-shot prompting consistently
improves the performance of LLMs across a vari-
ety of tasks (Brown et al., 2020). Besides helping
the model pick the correct programming language
(Athiwaratkun et al., 2023) the provided few-shots
can teach the model about specific functions or
parameters and contextualization.

One way of selecting relevant examples is by us-
ing sentence embeddings (Liu et al., 2021). In some
cases, however, similar natural language does not
correspond to similar code, and vice versa. Syn-
chromesh (Poesia et al., 2022) introduced target
similarity tuning (TST) to address this challenge
and fine-tunes the sentence embedding similarity
to match the associated code similarity.

This work builds on the concept of TST and
improves on important implementation details for
training (selecting examples and allowing synthetic
data generation), evaluating (cheap evaluation with
a proxy metric) and deploying (API call and small
FCNN do not have hardware requirements) TST in
practice.

3 TSTR

We briefly recap TST, how that transfers to TSTR

and how examples closer to the relevant decision
boundary are selected to improve training

3.1 TST

Given two (utterance, code) pairs (u1, c1) and
(u2, c2), vanilla TST fine-tunes a semantic textual
similarity (STS) model Sm to minimize

∥Sm (u1, u2)− Sc(c1, c2)∥ (1)

with Sc a similarity between code pairs. The STS
model is SBERT, which pools BERT tokens and
fine-tunes pooled embeddings to capture similarity
between pairs of sentences. TST then transforms
the embedding to capture properties of utterances
that make their associated code similar.
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3.2 TST with Embeddings

We decouple the embedding from the similarity
and compute

Sm(u1, u2) = cos(tθ(m(u1)), tθ(m(u2))) (2)

with cos the cosine similarity between vectors, m a
d-dimensional embedding model (such as SBERT)
and tθ : Rd → Rd′ a trainable transformation. The
parameters of m are frozen. To keep tθ simple, we
use a fully connected network with tanh activation.

3.3 Training

The training data consists of (u1, u2, Sc(c1, c2))
triplets. Instead of randomly sampling (u1, c1) and
(u2, c2) pairs, we aim to find examples close to
the relevant decision boundary. That is, we care
about examples for which: (1) Sc(c1, c2) is high,
or (2) Sc(c1, c2) is low but cos(m(u1),m(u2)) is
high—that are similar in the original embedding
space but have dissimilar code. In other words,
we care about examples with properties that we
need to learn and that we need to unlearn. For each
pair (ui, ci) we therefore rank all other (uj , cj) by
Sc(ci, cj) and select the top-λk best ones. We then
skip λs examples to ensure that code similarity
is not too high, rank the remaining examples by
Sc(m(ui),m(uj)) and again select the top-λk best
ones in this new ranking. λk and λs are hyper-
parameters.

4 Evaluation Setup

This section describes the datasets, metrics, models
and hyperparameters used in our experiments.1

4.1 Datasets

We evaluate TSTR on three NL-to-code datasets
across different low-resource languages. For each
language, we also report the evaluation metric and
code similarity Sc.

4.1.1 Power Query M
The Power Query M language (or M) is used for
transforming data in Power Query. We use the
data from Khatry et al. (2023) consisting of code
snippets sourced from StackOverflow (test) and the
Power Query Community Forum2 (train and test).
The testing set contains 500 snippets annotated

1https://github.com/microsoft/
prose-benchmarks/tree/main/TSTR

2https://community.fabric.microsoft.com/t5/
Power-Query/bd-p/power-bi-services

by experts. The training set includes 8000 snip-
pets annotated via an LLM (text-davinci-002).
We report execution match and sketch match,
two standard metrics for code generation (Poe-
sia et al., 2022; Singh et al., 2022). Execution
match (boolean) is determined by executing both
the ground truth and generated code snippets on
a table and checking for equality. Sketch match
(∈ [0, 1]) is computed as the normalized (Leven-
shtein) edit similarity between the ground truth
and generated code snippets after masking con-
stants (strings and numbers) and identifiers (col-
umn names). We use sketch match as Sc.

4.1.2 SMCalFlow
SMCalFlow is a task-oriented dialogue dataset of
user-agent conversations, where each user query
is annotated with a program in a domain-specific
language that facilitates a dialogue over a dataflow
graph (Andreas et al., 2020). In line with previous
work (Poesia et al., 2022), we select the first turn
from each dialogue to define an NL-to-code task
and sample 2000 training examples (out of 40K).
The test set consists of 2673 examples. We follow
Poesia et al. (2022) and use the normalized edit
similarity for both evaluation and Sc.

4.1.3 Bash
The nl2bash dataset consists of bash code snip-
pets, each with an expert-curated natural language
description (Lin et al., 2018). The train and test
sets contain 8090 and 606 examples, respectively.
We use the template match metric proposed in the
original paper for both evaluation and Sc.

4.2 Models and Hyperparameters
We use text-embedding-ada-002 (ada) and
text-davinci-003 (GPT-3) (both from OpenAI)
as the embedding and code generation models. In
TSTR, we use two fully connected layers with 512
parameters (see Section 5.2). To prevent overfitting,
we apply dropout (0.3) between the embedding and
the fully connected layer. λk and λs are set to 4.

4.3 Baselines
Across experiments, we use the following baselines
for example selections with embeddings. For each
baseline, we select eight examples.

• Vanilla ada and SentenceBERT embeddings.

• TST (Poesia et al., 2022) trained on examples
selected according to our selection strategy
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Table 1: TSTR performance across languages on end-
to-end code generation task. We find that TST easily
overfits on the language distribution of the training data,
but TSTR does not.

Technique M SMCF Bash

Static 0.20 0.43 0.56
SentenceBERT 0.53 0.87 0.65
ada 0.54 0.89 0.67
TST 0.52 0.89 0.63
TSTR 0.55 0.90 0.68

(Section 3.3) for one epoch. Using random
examples performed worse.

• A hybrid approach with frozen SentenceBERT
embeddings instead of ada (called TSTf ).

5 Evaluation

We perform experiments to compare TSTR against
baseline embedding retrieval methods (5.1), we
show that ranking relevant examples serves as a
proxy metric to optimize hyperparameters without
LLMs (5.2), we evaluate how embeddings from
large models (ada) are more robust with respect to
variations in language (5.3), and we show the effect
of selecting relevant examples to train TSTR (5.4).

5.1 Performance

Table 1 shows results of TSTR and baselines, as
well as a static prompt with eight randomly se-
lected examples. TSTR consistently performs bet-
ter (+1%) over vanilla embeddings.

Surprisingly, the original TST approach to fine
tune SentenceBERT hurts performance on M (-
1%) and Bash (-2%). This may be attributed to
overfitting on the language of the training set, and
not being able to relate new variations in language
to the code similarity (see Section 5.3).

5.2 Standalone Evaluation

We create a pairwise ranking dataset to evaluate
TSTR without performing end-to-end code genera-
tion and evaluate this approach on M.

Each test point consists of a triplet (ur, up, un)
where ur is a reference utterance from the testing
dataset, up and un are candidate utterances from
the training dataset, and Sc(cp, cr) > Sc(cn, cr).
We consider two ways of sampling up and un and
thus create two testing datasets: at random (⋆) or
close to the relevant decision boundary, similar to

how the training dataset is created (•). We count
proportion of correct pairwise decisions.

We compare the execution match (end-to-end)
and pairwise ranking evaluation for different
embedding-based example selection strategies in
Figure 2. Besides baselines, we also consider the
theoretical maximum for a given similarity using
the code–code similarity.

Our ranking evaluation captures the alignment
of the TST model with relevant examples, the ones
that are the most similar to a target code snippet, ob-
served by the distinct relation between the trained
TST models (•) and the theoretical maximum. This
relation does not hold when considering randomly
sampled negative examples (⋆). Embeddings rank
poorly for relevant examples, but very good for
random examples. These observations highlight
the need to select relevant examples for standalone
ranking: some nuances of similarities in natural
language should be unlearned.

Figure 3 shows end-to-end and ranking results
for different configurations of TSTR on the •
benchmark. A model with too few parameters does
not learn enough, and too large models (likely)
overfit. More interesting is the relation between
ranking performance and execution match, where
we can use the former as a proxy to determine the
number of parameters of TSTR.
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Figure 2: Relation between execution match (top-1)
and our pairwise ranking evaluation with random (⋆)
and relevant (•) negative examples on the M dataset.
Ranking with relevant examples shows a relation with
code generation performance.

5.3 Variation in Language

We show how TSTR handles variations in language
by creating three different testing datasets, with ur
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Figure 3: Relation between execution match (top-1) and
our pairwise ranking (•) for different fully connected
layer configurations of TSTR on the M dataset. There
is a clear relation between both metrics.

and (up, un) coming from train–train, test–train
and test–test.

Results on • are shown in Table 2. We see that
TSTR is significantly less sensitive to language that
it has not seen during training (test–train). TST per-
forms best when the samples are from the same dis-
tribution as the training corpus (train–train). This
shows that the model overfits on the training distri-
bution, as performance does not carry over to other
language distributions.

Table 2: Evaluating influence of variations in language.
TSTf uses a FCL on top of frozen sentence embeddings.

test–train train–train test–test

TSTR 0.68 0.72 0.58
TST 0.57 0.90 0.57
TSTf 0.49 0.66 0.51

5.4 Relevant Examples

We show how selecting examples closer to the rele-
vant decision boundary improves training of TSTR.
As baselines, we select (1) random training pairs,
(2) ten times as many random training pairs, and
(3) the best k positive examples (highest code simi-
larity) and negative examples at random.

Table 3 highlights the benefit of selecting the
right training set configuration. Even with many
more training pairs, random sampling performs
poorly. Selecting positive samples based on code
similarity improves performance—the system sees
more desired examples during training. Selecting
relevant negative examples, which are close to the

relevant decision boundary, shows the model what
to forget and improves training of TST.

Table 3: Influence of sampling up and un for training.

sampling M SMCF Bash

random 0.46 0.23 0.15
random × 10 0.49 0.22 0.17
positive only 0.61 0.35 0.20
TSTR 0.68 0.67 0.42

6 Conclusion

We introduce TSTR as a practical improvement
of TST for selecting relevant examples in code
generation from natural language. TSTR replaces
a fine-tuned SentenceBERT model with a small,
trainable transformation on top of a frozen embed-
ding model, and provides a strategy for selecting
better training examples. Additionally, we show
that TST can be evaluated on pairs of utterances
from the training set that are ranked with respect
to a reference utterance from the testing set, which
does not require end-to-end code generation.

Our experiments show that TSTR outperforms
classical TST when the language distribution of the
example bank does not match that of the tests, that
selecting examples closer to the relevant decision
boundary improves performance, and that a pair-
wise ranking evaluation correlates to end-to-end
code generation performance.

7 Limitations

TST assumes that similar code makes for good
examples, and this assumption directly transfers
to TSTR. When the code is similar overall, but
specific details are omitted, this can still result in
suboptimal examples.

An additional call to an embedding model or
endpoint is required to select relevant examples.
Whereas embedding calls are generally cheap3, the
network overhead can cause lower latency than
inference with a small transformer.
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