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Abstract

In many real-world scenarios (e.g., academic
networks, social platforms), different types of
entities are not only associated with texts but
also connected by various relationships, which
can be abstracted as Text-Attributed Heteroge-
neous Graphs (TAHGs). Current pretraining
tasks for Language Models (LMs) primarily
focus on separately learning the textual infor-
mation of each entity and overlook the cru-
cial aspect of capturing topological connections
among entities in TAHGs. In this paper, we
present a new pretraining framework for LMs
that explicitly considers the topological and
heterogeneous information in TAHGs. Firstly,
we define a context graph as neighborhoods of
a target node within specific orders and pro-
pose a topology-aware pretraining task to pre-
dict nodes involved in the context graph by
jointly optimizing an LM and an auxiliary het-
erogeneous graph neural network. Secondly,
based on the observation that some nodes are
text-rich while others have little text, we de-
vise a text augmentation strategy to enrich text-
less nodes with their neighbors’ texts for han-
dling the imbalance issue. We conduct link pre-
diction and node classification tasks on three
datasets from various domains. Experimen-
tal results demonstrate the superiority of our
approach over existing methods and the ratio-
nality of each design. Our code is available at
https://github.com/Hope-Rita/THLM.

1 Introduction

Pretrained Language Models (PLMs) (Devlin et al.,
2019; Yang et al., 2019; Brown et al., 2020; Lan
et al., 2020) that built upon the Transformer archi-
tecture (Vaswani et al., 2017) have been success-
fully applied in various downstream tasks such as
automatic knowledge base construction (Bosselut
et al., 2019) and machine translation (Herzig et al.,
2020). Due to the design of pretraining tasks (e.g.,
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masked language modeling (Devlin et al., 2019),
next-token prediction (Radford et al., 2018), autore-
gressive blank infilling (Du et al., 2022)), PLMs
can learn general contextual representations from
texts in the large-scale unlabelled corpus.

Keyword (textless): Brief terms
Graph neural networks

Paper (text-rich): Title&Abstract
Heterogeneous Graph Transformer. Recent 

years have witnessed the emerging…

Author (textless): Name
Jure Leskovec

first-order 
neighbors

high-order 
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Figure 1: As an instance of TAHG, an academic net-
work contains three types of nodes (papers, authors,
and keywords) with textual descriptions as well as their
multi-relational connections.

In fact, texts not only carry semantic information
but also are correlated with each other, which could
be well represented by Text-Attributed Heteroge-
neous Graphs (TAHGs) that include multi-typed
nodes with textual descriptions as well as relations.
See Figure 1 for an example. Generally, TAHGs
usually exhibit the following two challenges that
are struggled to be handled by existing PLMs.

Abundant Topological Information (C1). Both
first- and higher-order connections exist in TAHGs
and can reflect rich relationships. For instance, a pa-
per can be linked to its references via first-order ci-
tations and can also be correlated with other papers
through high-order co-authorships. However, the
commonly used pretraining tasks (Radford et al.,
2018; Devlin et al., 2019; Du et al., 2022) just learn
from texts independently and thus ignore the con-
nections among different texts. Although some
recent works have attempted to make PLMs aware
of graph topology (Yasunaga et al., 2022; Chien
et al., 2022), they only consider first-order relation-
ships and fail to handle higher-order signals.

Imbalanced Textual Descriptions of Nodes (C2).
In TAHGs, nodes are heterogeneous and their car-
ried texts are often in different magnitudes. For
example, papers are described by both titles and
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abstracts (rich-text nodes), while authors and key-
words only have names or brief terms (textless
nodes). Currently, how to pretrain LMs to com-
prehensively capture the above characteristics of
TAHGs still remains an open question.

In this paper, we propose a new pretraining
framework to integrate both Topological and
Heterogeneous information in TAHGs into LMs,
namely THLM. To address C1, we define a con-
text graph as the neighborhoods of the central node
within K orders and design a topology-aware pre-
training task (context graph prediction) to predict
neighbors in the context graph. To be specific, we
first obtain the contextual representation of the cen-
tral node by feeding its texts into an LM and com-
pute the structural representation of nodes in the
given TAHG by an auxiliary heterogeneous graph
neural network. Then, we predict which nodes are
involved in the context graph based on the repre-
sentations, aiming to inject the multi-order topol-
ogy learning ability of graph neural networks into
LMs. To tackle C2, we devise a text augmentation
strategy, which enriches the semantics of textless
nodes with their neighbors’ texts and encodes the
augmented texts by LMs. We conduct extensive ex-
periments on three TAHGs from various domains
to evaluate the model performance. Experimental
results show that our approach could consistently
outperform the state-of-the-art on both link predic-
tion and node classification tasks. We also provide
an in-depth analysis of the context graph predic-
tion pretraining task and text augmentation strategy.
Our key contributions include:

• We investigate the problem of pretraining LMs
on a more complicated data structure, i.e.,
TAHGs. Unlike most PLMs that can only
learn from the textual description of each
node, we present a new pretraining framework
to enable LMs to capture the topological con-
nections among different nodes.

• We introduce a topology-aware pretraining
task to predict nodes in the context graph of a
target node. This task jointly optimizes an LM
and an auxiliary heterogeneous graph neural
network, enabling the LMs to leverage both
first- and high-order signals.

• We devise a text augmentation strategy to en-
rich the semantics of textless nodes to mitigate
the text-imbalanced problem.

2 Preliminaries

A Pretrained Language Model (PLM) can map
an input sequence X = (x1, x2, · · · , xL) of L to-
kens into their contextual representations H =
(h1,h2, · · · ,hL) with the design of pretraining
tasks like masked language modeling (Devlin et al.,
2019), next-token prediction (Radford et al., 2018),
autoregressive blank infilling (Du et al., 2022). In
this work, we mainly focus on the encoder-only
PLMs (e.g., BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019)) and leave the explorations of
PLMs based on encoder-decoder or decoder-only
architecture in the future.

A Text-Attributed Heterogeneous Graph
(TAHG) (Shi et al., 2019) usually consists of multi-
typed nodes as well as different kinds of relations
that connect the nodes. Each node is also associ-
ated with textual descriptions of varying lengths.
Mathematically, a TAHG can be represented by
G = (V, E ,U ,R,X ), where V , E , U and R de-
note the set of nodes, edges, node types, and edge
types, respectively. Each node v ∈ V belongs
to type ϕ(v) ∈ U and each edge eu,v has a type
ψ(eu,v) ∈ R. X is the set of textual descrip-
tions of nodes. Note that a TAHG should satisfy
|U|+ |R| > 2.

Existing PLMs mainly focus on textual descrip-
tions of each node separately, and thus fail to
capture the correlations among different nodes in
TAHGs (as explained in Section 1). To address
this issue, we propose a new framework for pre-
training LMs with TAHGs, aiming to obtain PLMs
that are aware of the graph topology as well as the
heterogeneous information.

3 Methodology

Figure 2 shows the overall framework of our pro-
posed approach, which mainly consists of two com-
ponents: topology-aware pretraining task and text
augmentation strategy. Given a TAHG, the first
module extracts the context graph for a target node
and predicts which nodes are involved in the con-
text graph by jointly optimizing an LM and an
auxiliary heterogeneous graph neural network. It
aims to enable PLMs to capture both first-order
and high-order topological information in TAHGs.
Since some nodes may have little textual descrip-
tions in TAHGs, the second component is further
introduced to tackle the imbalanced textual descrip-
tions of nodes, which enriches the semantics of
textless nodes by neighbors’ texts. It is worth notic-
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ing that after the pretraining stage, we discard the
auxiliary heterogeneous graph neural network and
only apply the PLM for various downstream tasks.

3.1 Topology-aware Pretraining Task

To tackle the drawback that most existing PLMs
cannot capture the connections between nodes with
textual descriptions, some recent works have been
proposed (Yasunaga et al., 2022; Chien et al., 2022).
Although insightful, these methods solely focus on
the modeling of first-order connections between
nodes while ignoring high-order signals, which
are proved to be essential in fields like network
analysis (Grover and Leskovec, 2016; Cui et al.,
2019), graph learning (Kipf and Welling, 2017;
Hamilton et al., 2017) and recommender system
(Wang et al., 2019; He et al., 2020). To this end, we
propose a topology-aware pretraining task (namely,
context graph prediction) for helping LMs capture
multi-order connections among different nodes.

Context Graph Extraction. We first illus-
trate the definition of the context graph of a
target node. Let Nu be the set of first-order
neighbors of node u in a given TAHG G =
(V, E ,U ,R,X ). The context graph GK

u of node
u is composed of neighbors that u can reach within
K orders (including node u itself) as well as
their connections, which is represented by GK

u =
(VK

u , EK
u ). VK

u =
{
v′|v′ ∈ Nv ∧ v ∈ VK−1

u

}
∪

VK−1
u is the node set of GK

u and EK
u ={

(u′, v′) ∈ E|u′ ∈ VK
u ∧ v′ ∈ VK

u

}
) denotes the

edge set of GK
u . It is obvious that V0

u = {u} and
V1
u = Nu ∪ {u}. Based on the definition, we can

extract the context graph of node u based on the
given TAHG G. Note that when K ≥ 2, the con-
text graph GK

u will contain multi-order correlations
between nodes, which provides an opportunity to
capture such information by learning from GK

u .
Context Graph Prediction. TAHGs not only

contain multiple types of nodes and relations but
also involve textual descriptions of nodes. Instead
of pretraining on single texts like most PLMs do,
we present the Context Graph Prediction (CGP)
for pretraining LMs on TAHGs to capture the rich
information. Since LMs have been shown to be
powerful in modeling texts (Devlin et al., 2019;
Brown et al., 2020), the objective of CGP is to
inject the graph learning ability of graph neural
networks (Bing et al., 2022) into LMs.

Specifically, we first utilize an auxiliary hetero-
geneous graph neural network to encode the input

TAHG G and obtain the representations of all the
nodes in V as follows,

HG = fHGNN (G) ∈ R|V|×d, (1)

where fHGNN (·) can be implemented by any ex-
isting heterogeneous graph neural networks. d is
the hidden dimension. Then, we encode the textual
description of target node u by an LM and derive
its semantic representation by

hu
LM = MEAN(fLM (Xu)) ∈ Rd, (2)

where fLM (·) can be realized by the existing LMs.
Besides, to capture the heterogeneity of node u, we
introduce a projection header in the last layer of the
PLM. Xu denotes the textual descriptions of node
u. Next, we predict the probability that node v is
involved in the context graph GK

u of u via a binary
classification task

ŷu,v = sigmoid
(
hu
LM

⊤Wϕ(v)H
G
v

)
, (3)

where Wϕ(v) ∈ Rd×d is a trainable transform ma-
trix for node type ϕ(v) ∈ R. The ground truth
yu,v = 1 if GK

u contains v, and 0 otherwise.
Pretraining Process. In this work, we use BERT

(Devlin et al., 2019) and R-HGNN (Yu et al., 2022)
to implement fLM (·) and fHGNN (·), respectively.
Since it is intractable to predict the appearing prob-
abilities of all the nodes v ∈ V in Equation (3), we
adopt negative sampling (Mikolov et al., 2013) to
jointly optimize fLM (·) and fHGNN (·). To gener-
ate positive samples, we uniformly sample k neigh-
bors from a specific relation during each hop. The
negative ones are sampled from the remaining node
set V \ VK

u with a negative sampling ratio of 5 (i.e.,
five negative samples per positive sample). In ad-
dition to the CGP task, we incorporate the widely
used Masked Language Modeling (MLM) task to
help LMs better handle texts. The final objective
function for each node u ∈ V is

Lu = LMLM
u + LCGP

u = − logP (X̃u|Xu\X̃u
)−

∑

v∈VK
u

log ŷu,v −
5∑

i=1

Ev′
i∼Pn(V\VK

u ) log
(
1− ŷu,v′

i

)
,

(4)

where X̃u is the corrupted version of node u’s
original textual descriptions Xu with a 40% mask-
ing rate following (Wettig et al., 2023). Pn(·) de-
notes the normal noise distribution. Additionally,
the input feature of each node for the auxiliary het-
erogeneous graph neural network is initialized by
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Figure 2: Framework of the proposed approach.

its semantic representation based on Equation (2)
1, which is shown to be better than a randomly-
initialized trainable feature in the experiments.

3.2 Text Augmentation Strategy

As discussed in Section 1, the textual descriptions
of different types of nodes in TAHGs are varying
with different lengths, resulting in rich-text nodes
and textless nodes. The exhaustive descriptions of
rich-text nodes can well reveal their characteristics,
while the brief descriptions of textless nodes are
insufficient to reflect their semantics and solely en-
coding such descriptions would lead to suboptimal
performance. Therefore, we devise a text augmen-
tation strategy to tackle the imbalance issue, which
first enriches the semantics of textless nodes by
combining the textual descriptions of their neigh-
bors according to the connections in TAHGs and
then computes the augmented texts by LMs.

To be specific, for rich-text node u, we use
its texts with special tokens (Devlin et al., 2019)
as the input Mu, which is denoted as [CLS] Xu

[SEP]. For textless node u, we concatenate its
texts and k sampled neighbors’ texts as the input
Mu, i.e., [CLS] Xu [SEP] XN 1

u
[SEP] ... [SEP]

XN k
u

[SEP],2 where N i
u represents the i-th sam-

pled neighbor of u. Furthermore, in the case of
nodes lacking text information, we employ the con-
catenation of text sequences from neighbors. This
approach enables the generation of significant se-
mantic representations for such nodes, effectively
addressing the issue of text imbalance. After the
augmentation of texts, we change the input of Equa-
tion (2) from Xu to Mu to obtain representation

1Note that the initialization is executed only once by using
the official checkpoint of BERT (Devlin et al., 2019).

2Among the neighbors in Nu, we select rich-text nodes in
priority. Moreover, if the size of Nu is smaller or equal to k,
we will choose all the neighbors.

hu
LM with more semantics. We empirically find

that text augmentation strategy can bring nontrivial
improvements without a significant increment of
the model’s complexity.

3.3 Fine-tuning in Downstream Tasks

After the pretraining process, we discard the
auxiliary heterogeneous graph neural network
fHGNN (·) and solely apply the pretrained LM
fLM (·) to generate the semantic representations of
nodes based on Equation (2). We select two graph-
related downstream tasks for evaluation including
link prediction and node classification. We em-
ploy various headers at the top of fLM (·) to make
exhaustive comparisons, including MultiLayer Per-
ceptron (MLP), RGCN (Schlichtkrull et al., 2018),
HetSANN (Hong et al., 2020), and R-HGNN (Yu
et al., 2022). For downstream tasks, fLM (·) is
frozen for efficiency and only the headers can be
fine-tuned. Please refer to the Appendix A.2 for
detailed descriptions of the headers.

4 Experiments

4.1 Datasets and Baselines

Datasets. We conduct experiments on three real-
world datasets from different domains, including
the academic network (OAG-Venue (Hu et al.,
2020b)), book publication (GoodReads (Wan and
McAuley, 2018; Wan et al., 2019)), and patent ap-
plication (Patents3). All the datasets have raw texts
on all types of nodes, whose detailed descriptions
and statistics are shown in the Appendix A.1.

Compared Methods. We compare THLM with
several baselines to generate the representations
of nodes and feed them into the headers for down-
stream tasks. In particular, we select six methods to

3https://www.uspto.gov/
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compute the node representations: BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) are
widely used PLMs; MetaPath (Dong et al., 2017)
is a representative method for heterogeneous net-
work embedding; MetaPath+BERT combines the
textual and structural information as the represen-
tations, LinkBERT (Yasunaga et al., 2022) and GI-
ANT (Chien et al., 2022) are first-order topology-
aware PLMs. Besides, we apply OAG-BERT (Liu
et al., 2022) to compare the performance of OAG-
Venue. Detailed information about baselines is
shown in the Appendix A.1. It is worth noticing
that LinkBERT and GIANT are designed for ho-
mogeneous graphs instead of TAHGs. Hence, we
maintain the 2-order connections among rich-text
nodes and remove the textless nodes to build ho-
mogeneous graphs for these two methods for eval-
uation. See Appendix A.6 for more details.

4.2 Experimental Settings

Following the official configuration of BERTbase
(110M params, (Devlin et al., 2019)), we limit the
input length of the text to 512 tokens. For the
context graph prediction task, the number of or-
ders K in extracting context graphs is searched in
[1, 2, 3, 4]. For the text augmentation strategy, we
search the number of neighbors k for concatena-
tion in [1, 2, 3]. We load the weights in BERTbase
checkpoint released from Transformers tools4 for
initialization. For R-HGNN, we set the hidden di-
mension of node representations and relation repre-
sentations to 786 and 64, respectively. The number
of attention heads is 8. We use the two-layered
R-HGNN in the experiments. To optimize THLM,
we use AdamW (Loshchilov and Hutter, 2019) as
the optimizer with (β1, β2) = (0.9, 0.999), weight
decay 0.01. For BERTbase, we warm up the learn-
ing rate for the first 8,000 steps up to 6e-5, then
linear decay it. For R-HGNN, the learning rate
is set to 1e-4. We set the dropout rate (Srivastava
et al., 2014) of BERTbase and R-HGNN to 0.1. We
train for 80,000 steps, and batch sizes of 32, 48,
and 64 sequences with 512 tokens for OAG-Venue,
GoodReads, and Patents, and with maximize uti-
lization while meeting the device constraints. The
pretraining process took about three days on four
GeForce RTX 3090 GPUs (24GB memory). For
downstream tasks, please see Appendix A.4 for
detailed settings of various headers.

4https://huggingface.co/bert-base-cased

4.3 Evaluation Tasks

Link Prediction. On OAG-Venue, GoodReads,
and Patents, the predictions are between paper-
author, book-publisher, and patent-company, re-
spectively. We use RMSE and MAE as evalua-
tion metrics, whose descriptions are shown in Ap-
pendix A.3. Considering the large number of edges
on the datasets, we use a sampling strategy for
link prediction. Specifically, the ratio of the edges
used for training, validation, and testing is 30%,
10%, and 10% in all datasets. Each edge is as-
sociated with five/one/one negative edge(s) in the
training/validation/testing stage.

Node Classification. We classify the cate-
gory of papers, books, and patents in OAG-Venue,
GoodReads, and Patents. We use Micro-Precision,
Micro-Recall, Macro-Precision, Macro-Recall, and
NDCG to evaluate the performance of different
models. Descriptions of the five metrics are shown
in Appendix A.3. Each paper in OAG-Venue only
belongs to one venue, which could be formalized
as a multi-class classification problem. Each patent
or each book is categorized into one or more labels,
resulting in multi-label classification problems.

4.4 Performance Comparison

Due to space limitations, we present the perfor-
mance on RMSE and MAE for link prediction,
as well as Micro-Precision and Micro-Recall for
node classification, in Table 1. For the performance
on Macro-Precision, Macro-Recall, and NDCG on
three datasets in the node classification task, please
refer to Appendix A.5. From Table 1 and Appendix
A.5, we have the following conclusions.

Firstly, except for MetaPath, BERT and
RoBERTa exhibit relatively poorer performance
in link prediction across three datasets compared
to other baselines. This suggests that incorpo-
rating the structural information from the graph
can greatly enhance the performance of down-
stream link prediction tasks. Moreover, RoBERTa
achieves notable performance in node classification
when compared to other baselines. This implies
that leveraging better linguistic representations can
further improve the overall performance.

Secondly, we observe that MetaPath, which
solely captures the network embeddings, performs
the worst performance among the evaluated meth-
ods. However, when MetaPath is combined with se-
mantic information, it achieves comparable or even
superior performance compared to RoBERTa. This

10320

https://huggingface.co/bert-base-cased


Table 1: Performance of different methods on three datasets in two downstream tasks. The best and second-best
performances are boldfaced and underlined. *: THLM significantly outperforms the best baseline with p-value <
0.05

Datasets Model
Link Prediction Node Classification

RMSE MAE Micro-Precision(@1) Micro-Recall(@1)
HetSANN RGCN R-HGNN HetSANN RGCN R-HGNN MLP HetSANN RGCN R_HGNN MLP HetSANN RGCN R-HGNN

OAG-Veune

BERT 0.1987 0.2149 0.1802 0.0648 0.0886 0.0447 0.2257 0.3146 0.3136 0.3473 0.2257 0.3146 0.3136 0.3473
RoBERTa 0.1931 0.2152 0.1689 0.0635 0.0814 0.0400 0.2527 0.3193 0.3341 0.3516 0.2527 0.3193 0.3341 0.3516
MetaPath 0.2199 0.2415 0.1946 0.0842 0.0972 0.0544 0.1132 0.2693 0.2851 0.3011 0.1132 0.2693 0.2851 0.3011

MetaPath+BERT 0.2213 0.2149 0.1651 0.0981 0.0734 0.0377 0.2307 0.3311 0.3317 0.3472 0.2307 0.3311 0.3317 0.3472
LinkBERT⋆ 0.1867 0.2229 0.1739 0.0628 0.0892 0.0424 0.2278 0.3108 0.3115 0.3508 0.2278 0.3108 0.3115 0.3508

GIANT⋆ 0.2045 0.2022 0.1709 0.0730 0.0761 0.0408 0.2280 0.3116 0.3074 0.3274 0.2280 0.3116 0.3074 0.3274
OAG-BERT 0.1918 0.2030 0.1772 0.0634 0.0744 0.0386 0.2577 0.3214 0.3152 0.3425 0.2577 0.3214 0.3152 0.3425

THLM 0.1857∗ 0.1893∗ 0.1591∗ 0.0614∗ 0.0722∗ 0.0352∗ 0.2637∗ 0.3409∗ 0.3398∗ 0.3575∗ 0.2637∗ 0.3409∗ 0.3398∗ 0.3575∗

GoodReads

BERT 0.1424 0.1738 0.1103 0.0408 0.0586 0.0190 0.7274 0.8238 0.8240 0.8396 0.6984 0.7909 0.7911 0.8061
RobERTa 0.1349 0.1268 0.1044 0.0360 0.0298 0.0189 0.7363 0.8271 0.8314 0.8404 0.7069 0.7941 0.7982 0.8069
MetaPath 0.1782 0.1740 0.1520 0.0639 0.0639 0.0470 0.1492 0.6448 0.6479 0.6883 0.1432 0.6190 0.6220 0.6608

MetaPath+BERT 0.1314 0.1195 0.1403 0.0325 0.0280 0.0300 0.7240 0.8258 0.8320 0.8396 0.6951 0.7928 0.7988 0.8061
LinkBERT⋆ 0.1471 0.1362 0.1135 0.0443 0.0396 0.0212 0.7131 0.8209 0.8259 0.8369 0.6846 0.7882 0.7930 0.8035

GIANT⋆ 0.1323 0.1179 0.1089 0.0375 0.0271 0.0191 0.7580 0.8250 0.8300 0.8391 0.7277 0.7921 0.7969 0.8057
THLM 0.1206∗ 0.1159∗ 0.1000∗ 0.0286∗ 0.0271∗ 0.0162∗ 0.7769∗ 0.8399∗ 0.8437∗ 0.8496∗ 0.7459∗ 0.8102∗ 0.8134∗ 0.8157∗

Patents

BERT 0.3274 0.3135 0.2764 0.1945 0.1829 0.1284 0.6248 0.6603 0.6910 0.6448 0.3791 0.4006 0.4192 0.3912
RoBERTa 0.3149 0.2926 0.2585 0.1836 0.1545 0.1119 0.6380 0.6735 0.7022 0.6985 0.3871 0.4087 0.4261 0.4238
MetaPath 0.4816 0.4842 0.4842 0.3372 0.3352 0.3353 0.1996 0.4385 0.4548 0.4654 0.1211 0.2660 0.2759 0.2824

MetaPath+BERT 0.2922 0.2840 0.2371 0.1483 0.1440 0.0944 0.6243 0.6583 0.6881 0.6877 0.3788 0.3994 0.4175 0.4173
LinkBERT⋆ 0.3080 0.3033 0.2601 0.1803 0.1738 0.1142 0.6504 0.6749 0.7048 0.7075 0.3946 0.4095 0.4277 0.4293

GIANT⋆ 0.2734 0.2454 0.2276 0.1537 0.1238 0.0976 0.6508 0.6709 0.6992 0.6939 0.3949 0.4071 0.4242 0.4210
THLM 0.2522∗ 0.2513 0.2190∗ 0.1233∗ 0.1210∗ 0.0848∗ 0.7066∗ 0.7159∗ 0.7324∗ 0.7363∗ 0.4287∗ 0.4344∗ 0.4444∗ 0.4467∗

highlights the importance of incorporating both
structural information and textual representations
for each node to enhance overall performance.

Third, we note that LinkBERT and GIANT
achieve superior results in the majority of met-
rics for link prediction. This highlights the ad-
vantage of learning textual representations that
consider the graph structure. However, both GI-
ANT and LinkBERT may not yield satisfactory re-
sults in node classification on the OAG-Venue and
GoodReads. This could be attributed to two rea-
sons: 1) these models primarily focus on first-order
graph topology while overlooking the importance
of high-order structures, which are crucial in these
scenarios; 2) these models are designed specifically
for homogeneous graphs and do not consider the
presence of multiple types of relations within the
graph. Consequently, their effectiveness is limited
in TAHGs and may impede their performance.

Moreover, OAG-BERT demonstrates competi-
tive results in link prediction and strong perfor-
mance in node classification, thanks to its ability to
capture heterogeneity and topology during pretrain-
ing. This can be attributed to its capability to learn
the heterogeneity and topology of graphs. How-
ever, it should be noted that OAG-BERT primar-
ily captures correlations between papers and their
metadata, such as authors and institutions, over-
looking high-order structural information. These
findings highlight the importance of considering
both graph structure and high-order relationships
when developing models for graph-based tasks.

Finally, THLM significantly outperforms the ex-
isting models due to: 1) integrating multi-order
graph topology proximity into language models,
which enables the model to capture a more com-
prehensive understanding of the graph topology;
2) enhancing the semantic representations for text-
less nodes via aggregating the neighbors’ textual
descriptions, that generates more informative rep-
resentations for textless nodes.

4.5 Analysis of Context Graph Prediction

To explore the impact of incorporating multi-order
graph topology into language models, we conduct
several experiments. These experiments aim to in-
vestigate the effects of both first- and high-order
topology information, as well as the model’s ability
to capture structural information using R-HGNN.
For the remaining experiments on the analysis of
different components like CGP and the text aug-
mentation strategy, we intentionally removed the
MLM task to isolate its effects in THLM, namely
THLM⋆ in Figure 3 and Table 2.

Evaluation on Multi-order Topology Infor-
mation. To assess the significance of multi-order
neighbors’ topology, we vary the number of or-
ders K in extracting the context graph from 1 to 4.
The corresponding results are illustrated in Figure
3. Besides, to examine the impact of high-order
neighbors, we solely predict the 2-order neighbors
in the context graph prediction task, as indicated
by w/ 2-order CGP in Table 2.

From the results, it is evident that THLM
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achieves superior performance when predicting
multi-order neighbors compared to solely predict-
ing 1-order or 2-order neighbors. This suggests
that modeling both first- and high-order structures
enables LMs to acquire more comprehensive graph
topology. Additionally, we observe that THLM
exhibits better results when K is 2 in context graph
prediction. However, its performance gradually
declines as we predict neighbors in higher layers,
potentially due to the reduced importance of topo-
logical information in those higher-order layers.

MLP HetSANN RGCN R-HGNN

0.69

0.70

0.71

0.72

0.73

1 2 3 4

Precision

(b) Performance on Patents

0.72

0.74

0.76

0.78

0.80

1 2 3 4

0.82

0.84

Precision

(a) Performance on GoodReads

Figure 3: Effects of learning multi-order topology infor-
mation in TAHGs on node classification.

Table 2: Evaluation of the ability to learn informative
representations via R-HGNN on node classification

Datasets GCP MLP HetSANN RGCN R-HGNN

OAG-Venue

w/ MLP 0.2591 0.3195 0.3043 0.3379
w/ RGCN 0.2728 0.3323 0.3220 0.3547

w/ 2-order CGP 0.2609 0.3357 0.3121 0.3488
w/ random feats 0.2602 0.3271 0.3133 0.3487

THLM⋆ 0.2629 0.3383 0.3228 0.3554

GoodReads

w/ MLP 0.7528 0.8352 0.8376 0.8445
w/ RGCN 0.7608 0.8380 0.8411 0.8512

w/ 2-order CGP 0.7512 0.8319 0.8355 0.8431
w/ random feats 0.7523 0.8384 0.8406 0.8483

THLM⋆ 0.7549 0.8382 0.8425 0.8485

Patents

w/ MLP 0.6903 0.6963 0.7201 0.7208
w/ RGCN 0.6911 0.6986 0.7184 0.7218

w/ 2-order CGP 0.6827 0.6876 0.7057 0.7068
w/ random feats 0.6908 0.7001 0.7107 0.7198

THLM⋆ 0.6948 0.7050 0.7275 0.7280

Evaluation on Learning Informative Node
Features of R-HGNN. In this work, we adopt one
of the state-of-the-art HGNNs, i.e., R-HGNN with
pre-initialized semantic features on nodes to obtain
node representations. To examine the importance
of learning informative node representations and
complex graph structure in R-HGNN, we conduct
experiments using two variants. Firstly, we replace
R-HGNN with an MLP encoder or an alternative
HGNN framework, i.e., RGCN (Schlichtkrull et al.,
2018) in this experiment, denoted as w/ MLP and
w/ RGCN respectively. Secondly, we substitute the
semantic node features with randomly initialized
trainable features, referred to as w/ random feats.
The performance results are presented in Table 2.

From the obtained results, we deduce that both
the initial features and effective HGNNs contribute
significantly to capturing graph topology and em-
bedding informative node representations effec-
tively. Firstly, unlike MLP, which fails to capture
the contextualized graph structure in the context
graph prediction task, RGCN allows for the em-
bedding of fine-grained graph structural informa-
tion, which facilitates better learning of the graph
topology. Furthermore, the utilization of effective
HGNNs such as R-HGNN enables the embedding
of expressive structural representations for nodes.
Secondly, R-HGNN demonstrates its superior abil-
ity to learn more comprehensive graph structures
from nodes compared to using randomly initialized
features. These findings underscore the importance
of integrating both semantic and structural infor-
mation to learn informative node representations.

4.6 Analysis of Text Augmentation Strategy

Table 3: Results on the node classification task in evalu-
ating the effectiveness of our text augmentation strategy.

Dataset Methods MLP HetSANN RGCN R-HGNN

OAG-Venue

neighbors-only 0.2597 0.3274 0.3165 0.3495
textless-only 0.2625 0.3290 0.3044 0.3516

TAS(1-Neighbor) 0.2611 0.3349 0.3201 0.3507
TAS(2-Neighbor) 0.2627 0.3380 0.3217 0.3549
TAS(3-Neighbor) 0.2629 0.3383 0.3228 0.3554

GoodReads

neighbors-only 0.4855 0.7278 0.7132 0.7624
textless-only 0.7453 0.8351 0.8397 0.8436

TAS(1-Neighbor) 0.7480 0.8353 0.8421 0.8469
TAS(2-Neighbor) 0.7547 0.8381 0.8426 0.8475
TAS(3-Neighbor) 0.7549 0.8382 0.8425 0.8485

Patents

neighbors-only 0.6971 0.7040 0.7228 0.7224
textless-only 0.6856 0.6923 0.7139 0.7164

TAS(1-Neighbor) 0.6959 0.7004 0.7211 0.7221
TAS(2-Neighbor) 0.6960 0.7050 0.7219 0.7233
TAS(3-Neighbor) 0.6948 0.7050 0.7275 0.7281

To explore the potential of enhancing semantic
information for textless nodes through our text aug-
mentation strategy, we design three experimental
variants. Firstly, we remove the text sequences of
textless nodes and solely rely on the texts of their
neighbors as inputs, denoted as "neighbors-only".
We set the number of neighbors k as 3 for con-
catenation. Secondly, we only use the original text
descriptions of textless nodes to derive textual em-
beddings, namely "textless-only". Additionally, we
employ the text augmentation strategy by varying
the number of neighbors for concatenation from
1 to 3, denoted as "TAS(1-Neighbor)", "TAS(2-
Neighbor)", and "TAS(3-Neighbor)", respectively.
For all variants, we focus exclusively on the con-
text graph prediction task to isolate the effects of
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other factors. Due to space limitations, we present
the Micro-Precision(@1) metric for node classifi-
cation in the experiments. Similar trends could be
observed across other metrics.

From Table 3, we observe that both neighbors
and textless nodes themselves are capable of learn-
ing the semantic information for textless nodes.
However, relying solely on either of them may
lead to insufficient textual representations for nodes.
Furthermore, it is found that using texts from more
neighbors can enhance the semantic quality of text-
less nodes. Nevertheless, considering the limita-
tions on the input sequence length of language mod-
els, we observe that THLM achieves similar perfor-
mance when the number of k is increased beyond 2.
Therefore, to strike a balance between performance
and computational efficiency while accommodat-
ing sequence length limitations, we choose k as 3
for concatenation in the text augmentation strategy.
To ensure the reliability of our findings, we conduct
the task five times using different seeds ranging
from 0 to 4. Remarkably, all obtained p-values are
below 0.05, indicating statistical significance and
confirming the accuracy improvement achieved by
our text augmentation strategy.

4.7 Effects of Two Pretraining Tasks

To study the importance of two pretraining tasks for
downstream tasks, we use two variants of THLM
to conduct the experiments, and the performance
is shown in Figure 4. Specifically, THLM w/o
CGP removes the context graph prediction task,
which does not predict the context neighbors for the
input node. THLM w/o MLM reduces the masked
language modeling task, which ignores the textual
dependencies in the sentences and only predicts
the multi-order graph topology in the pretraining
process, i.e., by predicting the neighbors involved
in the context graphs for input nodes.
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Figure 4: Importance of two pretraining tasks on the
node classification task.

From Figure 4, we can conclude that THLM

achieves the best performance when it employs
both two pretraining tasks for training. Removing
either of these tasks leads to a decrease in the re-
sults. In particular, the context graph prediction
task significantly contributes to the overall perfor-
mance, demonstrating the substantial benefits of
incorporating graph topology into our LM. Addi-
tionally, the masked language modeling task helps
capture the semantics within texts better and fur-
ther enhances the model performance. Besides, we
find that THLM w/o MLM performs better than the
original BERT on two datasets, which contributes
to our text augmentation strategy for textless nodes.
This enhancement allows for better connectivity
between the brief terms of textless nodes and their
neighboring text sequences, resulting in improved
contextual understanding and representation in pre-
training PLMs.

5 Related work

5.1 Pretrained Language Models

The objective of PLMs is to learn general represen-
tations of texts from large and unlabeled corpora
via pretraining tasks, which could be applied to a
variety of downstream tasks. Pretraining tasks that
most PLMs widely used include 1) masked lan-
guage modeling in BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019); 2) next token predic-
tion in GPT models (Radford et al., 2018; Brown
et al., 2020); and 3) autoregressive blank infilling in
GLM (Du et al., 2022). However, these tasks sep-
arately focus on the modeling within single texts
and ignore the correlation among multiple texts.

Recently, several works have been proposed to
capture the connections between different texts
Levine et al. (2022); Chien et al. (2022); Yasunaga
et al. (2022). For example, Chien et al. (2022) inte-
grated the graph topology into LMs by predicting
the connected neighbors of each node. Yasunaga
et al. (2022) designed the document relation pre-
diction task to pretrain LMs, which aims to clas-
sify the type of relation (contiguous, random, and
linked) existing between two input text segments.
Although insightful, these methods just consider
the first-order connections between texts and can-
not leverage high-order signals, which may lead
to suboptimal performance. In this paper, we aim
to present a new pretraining framework for LMs
to help them comprehensively capture multi-order
relationships as well as heterogeneous information
in a more complicated data structure, i.e., TAHGs.
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5.2 Heterogeneous Graph Learning

Graph Neural Networks (GNNs) (Kipf and Welling,
2017; Hamilton et al., 2017) have gained much
progress in graph learning, which are extensively
applied in modeling graph-structure data. Recently,
many researchers have attempted to extend GNNs
to heterogeneous graphs (Zhang et al., 2019; Fu
et al., 2020; Hong et al., 2020; Yu et al., 2020; Hu
et al., 2020b; Lv et al., 2021), which are powerful
in handling different types of nodes and relations as
well as the graph topological information. In this
work, we aim to inject the graph learning ability of
heterogeneous graph neural networks into PLMs
via a topology-aware pretraining task.

5.3 Text-rich Network Mining

Many real-world scenarios (academic networks,
patent graphs) can be represented by text-rich net-
works, where nodes are associated with rich text
descriptions. Existing methods for text-rich net-
work mining can be divided into two categories.
The first branch designs the cascade architecture
to learn the textual information by Transformer
(Vaswani et al., 2017) and network topology by
graph neural networks separately (Zhu et al., 2021;
Li et al., 2021; Pang et al., 2022). Another group
nests GNNs into LMs to collaboratively explore
the textual and topological information (Yang et al.,
2021; Jin et al., 2022, 2023a,b). However, these
works either mainly focus on the homogeneous
graph or modify the architecture of LMs by incor-
porating extra components. For example, Heter-
formers (Jin et al., 2023b) is developed for text-
rich heterogeneous networks, which aims to embed
nodes with rich text and their one-hop neighbors
by leveraging the power of both LMs and GNNs
during pretraining and downstream tasks. Different
from these works, we learn about the more compli-
cated TAHGs and employ auxiliary heterogeneous
graph neural networks to assist LMs in capturing
the rich information in TAHGs. After the pretrain-
ing, we discard the auxiliary networks and only
apply the pretrained LMs for downstream tasks
without changing their original architectures.

6 Conclusion

In this paper, we pretrained language models on
more complicated text-attributed heterogeneous
graphs, instead of plain texts. We proposed the
context graph prediction task to inject the graph
learning ability of graph neural networks into LMs,

which jointly optimizes an auxiliary graph neural
network and an LM to predict which nodes are
involved in the context graph. To handle imbal-
anced textual descriptions of different nodes, a text
augmentation strategy was introduced, which en-
riches the semantics of textless nodes by combin-
ing their neighbors’ texts. Experimental results
on three datasets showed that our approach could
significantly and consistently outperform existing
methods across two downstream tasks.

7 Limitations

In this work, we pretrained language models on
TAHGs and evaluated the model performance on
link prediction and node classification tasks. Al-
though our approach yielded substantial improve-
ments over baselines, there are still several promis-
ing directions for further investigation. Firstly, we
just focused on pretraining encoder-only LMs, and
it is necessary to validate whether encoder-decoder
or decoder-only LMs can also benefit from the
proposed pretraining task. Secondly, more down-
stream tasks that are related to texts (e.g., retrieval
and reranking) can be compared in the experiments.
Thirdly, it is interesting to explore the pretraining
of LMs in larger scales on TAHGs.
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A Appendix

A.1 Datasets and Baselines
Datasets. Specific statistics of datasets are shown
in Table 4 and detailed descriptions of datasets are
shown as follows.

• OAG-Venue: OAG-Venue5 is a heteroge-
neous graph followed by Hu et al. (2020b),
which includes papers (P), authors (A), fields
(F) and institutions (I). Each paper is pub-
lished in a single venue. We treat papers as
rich-text nodes and extract the title and ab-
stract parts as their text descriptions. Authors,
fields, and institutions are regarded as textless
nodes, whose text descriptions are composed
of their definitions or names.

• GoodReads: Following (Wan and McAuley,
2018; Wan et al., 2019), we receive a subset
of GoodReads6, which contains books (B),
authors (A) and publishers (P). Each book is
categorized into one or more genres. We treat
books as rich-text nodes and extract brief in-
troductions as their text descriptions. Authors
and publishers are regarded as textless nodes,
whose text descriptions are their names.

• Patents: Patents is a heterogeneous graph
collected from the USPTO7, which contains
patent documents (P), applicants (A) and
applied companies (C). Each patent is as-
signed several International Patent Classifica-
tion (IPC) codes. We treat patents as rich-text
nodes and extract the title and abstract parts
as their text descriptions. Applicants and com-
panies use their names as text descriptions,
regarded as textless nodes.

Baselines. We compare our model with the fol-
lowing baselines: BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) are popular encoder-
only pretraining language models. MetaPath (Dong
et al., 2017) leverages meta-path-based random
walks in the heterogeneous graph to generate node
embeddings. MetaPath+BERT combines the tex-
tual embeddings embedded from BERTbase and
structural representations learned from MetaPath as
node features. LinkBERT (Yasunaga et al., 2022)
captures the dependencies across documents by

5https://github.com/UCLA-DM/pyHGT
6https://sites.google.com/eng.ucsd.edu/

ucsdbookgraph/home
7https://www.uspto.gov/

predicting the relation between two segments on
Wikipedia and BookCorpus. GIANT (Chien et al.,
2022) extracts graph-aware node embeddings from
raw text data via neighborhood prediction in the
graph. OAG-BERT (Liu et al., 2022) is a pre-
trained language model specialized in academic
knowledge services, allowing for the incorporation
of heterogeneous entities such as authors, institu-
tions, and keywords into paper embeddings.

A.2 Headers in Downstream Tasks

We apply four methods on downstream tasks,
which could be shown as follows,

• MLP relies exclusively on node features as
input and uses the multilayer perceptron for
prediction, which does not consider the graph
information.

• RGCN incorporates the different relation-
ships among nodes by using transformation
matrices respectively in the knowledge graphs
(Schlichtkrull et al., 2018).

• HetSANN aggregates different types of re-
lations information from neighbors with a
type-aware attention mechanism (Hong et al.,
2020).

• R-HGNN learns the relation-aware node rep-
resentation by integrating fine-grained repre-
sentation on each set of nodes within separate
relations, and semantic representations across
different relations (Yu et al., 2022).

A.3 Evaluation Metrics

Seven metrics are adopted to comprehensively eval-
uate the performance of different models in link
prediction and node classification. In link predic-
tion, we use Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE) metrics. In node clas-
sification, we use Micro-Precision, Micro-Recall,
Macro-Precision, Macro-Recall, and Normalized
Discounted Cumulative Gain (NDCG) metrics for
evaluation. Details of the metrics are shown below.

RMSE evaluates the predicted ability for truth
values, which calculates the error between predic-
tion results and truth values. Given the prediction
for all examples ŷ = {ŷ1, ŷ2, · · · , ŷm}, and the
truth data y = {y1, y2, · · · , ym}, we calculate the
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Table 4: Statistics of the datasets.

Datasets Nodes Edges
Average

Text Length
Category

Classification
Split Sets

Link Prediction
Split Sets

OAG-Venue

# Paper (P): 167,004
# Author (A): 511,122

# Field (F): 45,775
# Institution (I): 9,090

# P-F: 1,709,601
# P-P: 864,019
# A-I: 614,161
# P-A: 480,104

P: 243.497
A: 5.667
F: 3.690
I: 5.882

242
Train: 106,724

Validation: 24,433
Test: 35,847

Train: 144,030
Validation: 48,010

Test: 48,010

GoodReads
# Book (B): 364,115

# Author (A): 154,418
# Publisher (P): 40,135

# B-A: 572,654
# B-P: 466,626

B: 163.577
A: 4.100
P: 5.120

8
Train: 254,880

Validation: 54,617
Test: 54,618

Train: 139,988
Validation: 46,662

Test: 46,662

Patents
# Patent (P): 363,528

# Applicant (A): 182,561
# Company (C): 1,000

# P-C: 367,598
# P-A: 334,906

P: 139.436
A: 6.418
C: 8.436

565
Train: 254,469

Validation: 54,529
Test: 54,530

Train: 110,277
Validation: 36,759

Test: 36,759

total RMSE as follows,

RMSE(ŷ, y) =

√√√√ 1

m

m∑

i=1

(ŷi − yi)
2.

MAE measures the absolute errors between pre-
dictions and truth values. Given the prediction for
all examples ŷ = {ŷ1, ŷ2, · · · , ŷm}, and the truth
data y = {y1, y2, · · · , ym}, we calculate the total
MAE as follows,

MAE(ŷ, y) =
1

m

m∑

i=1

|ŷi − yi|.

Micro-averaged precision measures the ability
that recognizes more relevant elements than irrel-
evant ones in all classes. We select the top-K pre-
dicted labels as predictions for each sample. Hence,
Micro-Precision@K is the proportion of positive
predictions that are correct over all classes, which
is calculated by,

Micro-Precision@K =

∑
ci∈C TP(ci)∑

ci∈C TP(ci) + FP(ci)
,

where TP(ci), FP(ci) is the number of true posi-
tives, and false positives for class ci respectively.

Micro-averaged recall evaluates the model’s abil-
ity in selecting all the relevant elements in all
classes. We select the top-K probability predicted
labels as predictions for each sample. Hence,
Micro-Recall@K is the proportion of positive la-
bels that are correctly predicted over all classes,
which is calculated by,

Micro-Recall@K =

∑
ci∈C TP(ci)∑

ci∈C TP(ci) + FN(ci)
,

where TP(ci), FN(ci) is the number of true posi-
tives, and false negatives for class ci respectively.

Macro-averaged precision reflects the average
ability to recognize the relevant elements rather
than irrelevant ones in each class. We select the
top-K probability predicted labels as predictions.
Hence, Macro-Precision@K is calculated by aver-
aging all the precision values of all classes,

Macro-Precision@K =

∑
ci∈C P(Ŝ, S, ci)

|C| ,

where Ŝ, S represents the predicted values and
truth labels in the datasets, P(Ŝ, S, ci) is the preci-
sion value of class ci.

Macro-averaged recall evaluates the average abil-
ity to select all the relevant elements in each class.
We select the top-K probability predicted labels as
predictions. Hence, Macro-Recall@K is calculated
by averaging all the recall values of all classes,

Macro-Recall@K =

∑
ci∈C R(Ŝ, S, ci)

|C| ,

where Ŝ, S represents the predicted values and
truth labels in the datasets, R(Ŝ, S, ci) is the recall
value of class ci.

NDCG measures the ranking quality by consid-
ering the orders of all labels. For each sample pi,
NDCG is calculated by

NDCG@K(pi) =

∑K
k=1

δ(Ŝk
i ,Si)

log2(k+1)
∑min(K,|Si|)

k=1
1

log2(k+1)

,

where Ŝk
i denotes the k-th predicted label of ex-

ample pi. δ (v, S) is 1 when element v is in set S,
otherwise 0. We calculate the average NDCG of
all examples as a metric.
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A.4 Detailed Settings in Downstream Tasks

In downstream tasks, we search the hidden di-
mension of node representation for headers in
[32, 64, 128, 256, 512]. For methods that use atten-
tion mechanisms, (i.e., HetSANN and R-HGNN),
the number of attention heads is searched in
[1, 2, 4, 8, 16]. The training process is following
R-HGNN (Yu et al., 2022).

A.5 Detailed Experimental Results

We show the Macro-Precision(@1) and Macro-
Recall(@1) in the node classification task on three
datasets in Table 7. Since the values of NDCG(@1)
are the same as Micro-Precision(@1), we do not
show duplicate results. Besides, since node classi-
fication tasks on GoodReads and Patents belong to
multi-label node classification, we show the perfor-
mance on five metrics when K is 3 and 5 in Table
8 and Table 9 respectively.

A.6 LinkBERT & GIANT

In our baselines, LinkBERT and GIANT are specif-
ically designed for homogeneous text-attributed
graphs, which cannot be directly applied in TAHGs.
To address this, we convert the TAHGs into homo-
geneous graphs that contain the set of rich-text
nodes and their connections to ensure that all nodes
contain rich semantic information in the graphs.
For Patents and GoodReads, we extract the 2-order
relationships in the graph and discard the textless
nodes along with their relative edges to construct
the homogeneous graphs. In the case of the OAG-
Venue dataset, due to the high density of the second-
order graph, we choose to construct a homogeneous
graph using a subset of crucial meta-path informa-
tion to save the graph topology as much as possible.
Inspired by Yu et al. (2022). we utilize the meta-
path "P-F-P" (Paper-Field-Paper) and the direct
relation "P-P" (Paper-Paper) to build the homoge-
neous graph for conducting experiments.

In addition to previous experiments, we con-
ducted another experiment to capture the first-order
information in the TAHGs while preserving the
graph topology as much as possible. Specifically,
we discard the heterogeneity of nodes and relation-
ships in the graph to build a homogeneous graph,
and the results are shown in Table 5.

From Table 5, it is evident that pretraining
LinkBERT and GIANT on TAHGs solely for 1-
order prediction may not yield optimal results.
There are two key reasons for this observation: 1)

Table 5: Performance on node classification in
LinkBERT and GIANT.

Datasets Model
Micro-Precision(@1)

MLP HetSANN RGCN R-HGNN

GoodReads
LinkBERT(1-order) 0.6790 0.8100 0.8044 0.8302

GIANT(1-order) 0.6967 0.8247 0.8284 0.8398
THLM 0.7769 0.8399 0.8437 0.8496

Patents
LinkBERT(1-order) 0.5972 0.6421 0.6773 0.6734

GIANT(1-order) 0.4793 0.6234 0.6323 0.6391
THLM 0.7066 0.7159 0.7324 0.7363

textless nodes always lack sufficient textual content,
leading to scarce semantic information. Hence, pre-
dicting relationships between textless nodes and
their neighbors becomes challenging for language
models. 2) Apart from first-order neighbors, high-
order neighbors provide more complex structure in-
formation within the graph. By considering the re-
lationships beyond the immediate neighbors, LMs
could capture the graph topology across nodes
more effectively and comprehensively. These find-
ings highlight the importance of considering both
first-order and high-order structure information in
TAHGs and addressing the challenges of limited
semantics on textless nodes. By tackling both prob-
lems, our model can learn better in TAHGs.

A.7 Effect of Distinguishing Treasured
Structural Information

MLP HetSANN RGCN R-HGNN

0.69

0.70

0.71

0.72

0.73

1 3 5 7

Precision

(b) Performance on Patents

0.3

0.4

0.5

0.6

0.7

1 3 5 7

0.8

Precision

(a) Performance on GoodReads

Figure 5: Precision on node classification with different
numbers in sampling negative candidates in the pretrain-
ing process.

We investigate the effect of treasured structural
information in the TAHGs. Specifically, we solely
change the number of negative candidates for each
positive entity in the context graph prediction task
in [1, 3, 5, 7] in the pretraining stage. We present
the performance of GoodReads and Patents on the
Micro-Precision(@1) metric in the node classifica-
tion task.

From Figure 5, we could observe that the per-
formance with a smaller number or larger number
in sampling negative candidates would be worse.
This observation can be explained by two factors.
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Firstly, the model may receive limited structural in-
formation when selecting a smaller number of nega-
tive candidates, which hampers the model’s ability
to understand the underlying topology structure
effectively. Secondly, sampling a larger number
of negative candidates may bring noise topologi-
cal information and make it difficult to distinguish
meaningful patterns and relationships. Hence, the
optimal performance is achieved when the num-
ber of sampled negative candidates falls within a
proper range. By striking a balance between learn-
ing sufficient topological information and avoiding
excessive noise, the model can effectively capture
the graph structure and achieve better performance
in downstream tasks.

A.8 Performance on Large-scale Datasets
In our evaluation, we further test THLM on large-
scale datasets (i.e., obgn-mag dataset (Hu et al.,
2020a)) for the node classification task. The per-
formance is shown in Table 6. We observe that
THLM demonstrates scalability to larger datasets,
outperforming baselines such as LinkBERT and
GIANT. This outcome highlights the effectiveness
of THLM, particularly its superior performance on
the obgn-mag dataset.

Table 6: The accuracy results for node classification on
the obgn-mag dataset.

Model MLP HetSANN RGCN
BERT 0.3754 0.5298 0.5484

RoBERTa 0.3770 0.5300 0.5490
LinkBERT⋆ 0.3775 0.5230 0.5491

GIANT⋆ 0.3903 0.5184 0.5256
THLM 0.3933 0.5353 0.5517
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Table 7: Performance of different methods on three datasets in node classification. The best and second-best
performances are boldfaced and underlined.

Datasets Model
Macro-Precision(@1) ↑ Macro-Recall(@1) ↑

MLP HetSANN RGCN R-HGNN MLP HetSANN RGCN R-HGNN

OAG-Venue

BERT 0.2110 0.3104 0.3119 0.3359 0.1992 0.3118 0.3060 0.3415
RoBERTa 0.2429 0.3264 0.3258 0.3598 0.2387 0.3187 0.3169 0.3412
MetaPath 0.0959 0.2593 0.2830 0.3005 0.0717 0.2731 0.2663 0.3019

MetaPath+BERT 0.2094 0.3202 0.3248 0.3363 0.1991 0.3150 0.3180 0.3368
LinkBERT⋆ 0.2054 0.2921 0.3014 0.3479 0.2060 0.3057 0.2902 0.3233

GIANT⋆ 0.2026 0.3078 0.3080 0.3381 0.2005 0.3097 0.2858 0.3188
THLM 0.2506 0.3375 0.3408 0.3562 0.2464 0.3330 0.3331 0.3537

GoodReads

BERT 0.7352 0.8273 0.8253 0.8421 0.7040 0.7960 0.7969 0.8112
RoBERTa 0.7420 0.8290 0.8328 0.8428 0.7134 0.7994 0.8039 0.8120
MetaPath 0.1786 0.6599 0.6560 0.6966 0.1371 0.6204 0.6225 0.6624

MetaPath+BERT 0.7285 0.8286 0.8356 0.8425 0.7015 0.7978 0.8026 0.8104
LinkBERT⋆ 0.7178 0.8239 0.8276 0.8389 0.6917 0.7932 0.7987 0.8091

GIANT⋆ 0.7622 0.8273 0.8329 0.8418 0.7331 0.7970 0.8018 0.8109
THLM 0.7798 0.8472 0.8493 0.8515 0.7516 0.8148 0.8184 0.8209

Patents

BERT 0.3526 0.3876 0.4073 0.2994 0.1587 0.1864 0.1795 0.1335
RoBERTa 0.3262 0.3918 0.4185 0.4227 0.1506 0.1941 0.1801 0.1846
MetaPath 0.0854 0.1894 0.1862 0.2059 0.0153 0.0941 0.0930 0.0946

MetaPath+BERT 0.3330 0.3827 0.4072 0.4263 0.1577 0.1866 0.1842 0.1929
LinkBERT⋆ 0.3458 0.3838 0.4182 0.4515 0.1649 0.1858 0.1884 0.1920

GIANT⋆ 0.3506 0.3904 0.4194 0.4327 0.1764 0.1995 0.1928 0.1944
THLM 0.4374 0.4364 0.4466 0.4974 0.2090 0.2128 0.2115 0.2281
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Table 8: Performance of different methods on GoodReads in node classification. The best and second-best
performances are boldfaced and underlined.

Metric Model
K=3 K=5

MLP HetSANN RGCN R-HGNN MLP HetSANN RGCN R-HGNN

Macro-Precision

BERT 0.3402 0.3645 0.3520 0.3637 0.2146 0.2193 0.2095 0.2136
RoBERTa 0.3418 0.3602 0.3552 0.3707 0.2145 0.2174 0.2104 0.2166
MetaPath 0.1463 0.3374 0.3283 0.3417 0.1415 0.2187 0.2107 0.2142

MetaPath+BERT 0.3377 0.3676 0.3605 0.3749 0.2138 0.2202 0.2137 0.2182
LinkBERT⋆ 0.3350 0.3688 0.3543 0.3647 0.2118 0.2209 0.2114 0.2133

GIANT⋆ 0.3526 0.3671 0.3609 0.3702 0.2186 0.2187 0.2146 0.2189
THLM 0.3458 0.3753 0.3647 0.3717 0.2139 0.2232 0.2125 0.2136

Macro-Recall

BERT 0.9368 0.9766 0.9755 0.9804 0.9814 0.9941 0.9935 0.9947
RoBERTa 0.9431 0.9791 0.9792 0.9819 0.9851 0.9948 0.9945 0.9952
MetaPath 0.3950 0.8608 0.8585 0.8863 0.6461 0.9445 0.9395 0.9554

MetaPath+BERT 0.9357 0.9762 0.9788 0.9803 0.9806 0.9939 0.9949 0.9950
LinkBERT⋆ 0.9283 0.9756 0.9760 0.9785 0.9768 0.9938 0.9935 0.9942

GIANT⋆ 0.9502 0.9766 0.9775 0.9803 0.9862 0.9947 0.9945 0.9951
THLM 0.9615 0.9829 0.9846 0.9836 0.9899 0.9961 0.9959 0.9957

Micro-Precision

BERT 0.3252 0.3391 0.3386 0.3403 0.2046 0.2071 0.2070 0.2072
RoBERTa 0.3274 0.3399 0.3399 0.3409 0.2053 0.2072 0.2072 0.2073
MetaPath 0.1438 0.2999 0.2991 0.3086 0.1410 0.1976 0.1964 0.1995

MetaPath+BERT 0.3249 0.3389 0.3399 0.3404 0.2044 0.2071 0.2073 0.2073
LinkBERT⋆ 0.3222 0.3388 0.3388 0.3397 0.2037 0.2071 0.2070 0.2071

GIANT⋆ 0.3299 0.3390 0.3393 0.3404 0.2056 0.2072 0.2072 0.2073
THLM 0.3338 0.3413 0.3418 0.3414 0.2063 0.2075 0.2075 0.2074

Micro-Recall

BERT 0.9368 0.9767 0.9753 0.9802 0.9821 0.9942 0.9936 0.9947
RoBERTa 0.9430 0.9790 0.9791 0.9820 0.9854 0.9948 0.9945 0.9954
MetaPath 0.4142 0.8638 0.8614 0.8888 0.6767 0.9484 0.9427 0.9578

MetaPath+BERT 0.9357 0.9762 0.9791 0.9805 0.9813 0.9941 0.9952 0.9952
LinkBERT⋆ 0.9281 0.9758 0.9758 0.9785 0.9777 0.9941 0.9936 0.9943

GIANT⋆ 0.9502 0.9764 0.9774 0.9804 0.9868 0.9948 0.9946 0.9953
THLM 0.9613 0.9831 0.9846 0.9835 0.9902 0.9962 0.9960 0.9957

NDCG

BERT 0.8526 0.9164 0.9158 0.9252 0.8713 0.9236 0.9233 0.9312
RoBERTa 0.8600 0.9192 0.9209 0.9266 0.8776 0.9257 0.9273 0.9321
MetaPath 0.3008 0.7740 0.7735 0.8070 0.4089 0.8088 0.8072 0.8354

MetaPath+BERT 0.8507 0.9170 0.9214 0.9253 0.8695 0.9244 0.9280 0.9314
LinkBERT⋆ 0.8413 0.9149 0.9168 0.9231 0.8617 0.9224 0.9241 0.9295

GIANT⋆ 0.8732 0.9168 0.9195 0.9252 0.8883 0.9243 0.9266 0.9313
THLM 0.8879 0.9288 0.9310 0.9314 0.8998 0.9342 0.9357 0.9364
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Table 9: Performance of different methods on Patents in node classification. The best and second-best performances
are boldfaced and underlined.

Metric Model
K=3 K=5

MLP HetSANN RGCN R-HGNN MLP HetSANN RGCN R-HGNN

Macro-Precision

BERT 0.2012 0.2502 0.2634 0.2365 0.1425 0.1800 0.1883 0.1866
RoBERTa 0.2010 0.2421 0.2648 0.2886 0.1414 0.1725 0.1836 0.2136
MetaPath 0.0655 0.1321 0.1389 0.1579 0.0523 0.1062 0.1102 0.1234

MetaPath+BERT 0.2041 0.2541 0.2626 0.2914 0.1418 0.1818 0.1860 0.2098
LinkBERT⋆ 0.2144 0.2443 0.2715 0.2933 0.1490 0.1758 0.1877 0.2194

GIANT⋆ 0.2181 0.2459 0.2692 0.2854 0.1518 0.1799 0.1882 0.2137
THLM 0.2541 0.2671 0.2827 0.3133 0.1761 0.1864 0.1950 0.2300

Macro-Recall

BERT 0.3036 0.3553 0.3592 0.2765 0.3824 0.4326 0.4493 0.3619
RoBERTa 0.3017 0.3598 0.3603 0.3618 0.3827 0.4430 0.4560 0.4526
MetaPath 0.0335 0.1889 0.1949 0.1884 0.0484 0.2446 0.2543 0.2465

MetaPath+BERT 0.3027 0.3603 0.3610 0.3682 0.3810 0.4383 0.4522 0.4527
LinkBERT⋆ 0.3186 0.3597 0.3714 0.3699 0.4038 0.4483 0.4631 0.4568

GIANT⋆ 0.3344 0.3591 0.3713 0.3654 0.4131 0.4324 0.4616 0.4511
THLM 0.3933 0.4023 0.4067 0.4111 0.4890 0.4886 0.5038 0.4976

Micro-Precision

BERT 0.3502 0.3636 0.3785 0.3599 0.2426 0.2502 0.2590 0.2488
RoBERTa 0.3566 0.3694 0.3845 0.3826 0.2472 0.2541 0.2626 0.2615
MetaPath 0.1286 0.2580 0.2695 0.2729 0.0971 0.1874 0.1941 0.1962

MetaPath+BERT 0.3498 0.3646 0.3773 0.3775 0.2428 0.2507 0.2582 0.2584
LinkBERT⋆ 0.3609 0.3699 0.3841 0.3851 0.2494 0.2542 0.2625 0.2627

GIANT⋆ 0.3596 0.3656 0.3804 0.3775 0.2484 0.2505 0.2600 0.2583
THLM 0.3843 0.3863 0.3951 0.3959 0.2626 0.2627 0.2684 0.2686

Micro-Recall

BERT 0.6375 0.6618 0.6890 0.6552 0.7360 0.7591 0.7856 0.7548
RoBERTa 0.6491 0.6724 0.6998 0.6964 0.7499 0.7709 0.7968 0.7933
MetaPath 0.2341 0.4697 0.4905 0.4967 0.2945 0.5684 0.5888 0.5951

MetaPath+BERT 0.6367 0.6636 0.6868 0.6871 0.7367 0.7606 0.7834 0.7838
LinkBERT⋆ 0.6570 0.6734 0.6992 0.7010 0.7567 0.7711 0.7963 0.7970

GIANT⋆ 0.6546 0.6655 0.6923 0.6871 0.7537 0.7598 0.7888 0.7835
THLM 0.6996 0.7032 0.7192 0.7207 0.7967 0.7970 0.8144 0.8148

NDCG

BERT 0.6725 0.7025 0.7297 0.6921 0.7066 0.7353 0.7610 0.7262
RoBERTa 0.6854 0.7140 0.7417 0.7387 0.7200 0.7470 0.7726 0.7697
MetaPath 0.2467 0.4902 0.5103 0.5188 0.2734 0.5296 0.5487 0.5573

MetaPath+BERT 0.6717 0.7024 0.7272 0.7280 0.7066 0.7351 0.7586 0.7594
LinkBERT⋆ 0.6953 0.7154 0.7413 0.7444 0.7291 0.7478 0.7725 0.7748

GIANT⋆ 0.6936 0.7084 0.7354 0.7305 0.7275 0.7397 0.7665 0.7617
THLM 0.7442 0.7488 0.7652 0.7675 0.7752 0.7785 0.7950 0.7963
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