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Abstract

Large language models (LLMs) have demon-
strated impressive capabilities in natural
language processing. However, their ability
to establish causal relationships, particularly
in the context of temporal interventions and
language hallucinations, remains challenging.
This paper presents CReTIHC, a novel
dataset designed to test and enhance the
causal reasoning abilities of LLMs. The
dataset is constructed using a unique ap-
proach that incorporates elements of verbal
hallucinations and temporal interventions
through the reengineering of existing causal
inference datasets. This transformation
creates complex scenarios that push LLMs to
critically evaluate the information presented
and identify cause-and-effect relationships.
The CReTIHC dataset serves as a pioneering
tool for improving LLM’s causal inference
capabilities, paving the way for a more
nuanced understanding of causal relationships
in natural language processing (NLP) tasks.
The whole dataset is publicly accessible at:
(https://github.com/ChangwooChun/CReTIHC)

1 Introduction

LLMs have emerged as a powerful tool in natu-
ral language processing, with the ability to gener-
ate human-like text by exploiting extensive prior
knowledge. Despite these advancements, LLMs
are based on the Transformer structure (Vaswani
et al., 2017) and have exhibited shortcomings in
establishing causal relationships in their outputs.
This stems from their reliance on empirical reason-
ing and statistical patterns from training data (Zhao
et al., 2023). Specifically, LLMs face challenges
in disentangling true causal relationships from con-
founding biases introduced by language halluci-
nations and temporal interventions (Zhang et al.,
2022).

† Corresponding author

In this study, we introduce a novel set of tasks
and an accompanying dataset, CReTIHC (Causal
Reasoning tasks about Temporal Interventions and
Hallucinated Confoundings), specifically designed
to assess and enhance the causal reasoning capa-
bilities of LLMs. Our tasks are rooted in common-
sense reasoning and involve a sequence of events
that must be analyzed temporally to ascertain cause-
and-effect relationships. By integrating elements
of language hallucinations and temporal interven-
tions, we present LLMs with challenging scenarios
that require critical evaluation of information.

The CReTIHC dataset was derived by redesign-
ing an existing natural language commonsense
causal reasoning dataset, adding complexity by
exploiting the difference between temporal and
causal order and correlation and causation of word
co-occurrences. This made the task of causal rea-
soning easy for humans, but LLMs based on word
co-occurrence probabilities had difficulty clearly
understanding causality from noise caused by tem-
poral intervention and confounders in the form of
chains, forks, and colliders commonly addressed
in existing causality studies (Guo et al., 2020).

In our evaluation, we delve into the dynamic na-
ture of causal relationships in text-based languages
and their susceptibility to influences from tempo-
ral cues and sequences. Our findings indicate that
LLMs require further refinement in their causal in-
ference capabilities, particularly when utilizing the
CReTIHC dataset. This underscores the necessity
for a more fundamental approach to understanding
causality within natural language.

The integration of LLMs into the dataset con-
struction process presents a significant advance-
ment. This not only enables the generation of con-
sistent data based on given instructions but also re-
duces the cost and labor associated with traditional
crowdsourcing methods. This innovative methodol-
ogy paves the way for the creation of larger, more
intricate datasets, demonstrating that the thought-
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ful motivations and innovative ideas of NLP re-
searchers can lead to the generation of diverse and
complex NLP task datasets.

This research is instrumental in addressing the
limitations of LLMs, thereby contributing to the de-
velopment of more robust and causal-aware natural
language processing systems.

2 Related Works

Causal reasoning, the process of identifying and
understanding the cause of certain outcomes and
the influence of changes in these causes, has been
a long-standing focus in various fields (RA, 1958;
Cochran and Chambers, 1965; Rosenbaum, 2022).
In the domain of deep learning-based natural lan-
guage processing, efforts have been made to in-
corporate and interpret causal reasoning to discern
how causal factors contribute to the outcomes gen-
erated by language models (Wood-Doughty et al.,
2018; Sridhar and Getoor, 2019; Veitch et al., 2020;
Keith et al., 2020; Feder et al., 2021).

In the era of deep learning, causal reasoning has
emerged as a crucial capability to ensure that mod-
els generalize well and produce accurate outcomes
when faced with new data that may not conform
to the training data distribution (Schölkopf et al.,
2021). Although the scaling laws have facilitated
the emergence of models with human-like gener-
alization capabilities (Radford et al., 2018; Brown
et al., 2020; Chowdhery et al., 2022), such as GPT-
3, GPT-41, and LLaMA (Touvron et al., 2023), by
leveraging extensive data and large architectures,
these models often struggle to establish causality.
Pre-training on extensive data does not suffice in
ensuring causal inference as causal relationships
are often obscured by interventions, confounding
biases, and language hallucinations (Feder et al.,
2022). Recently, to enhance causal reasoning in
models, methods such as adversarial training and
data augmentation techniques rooted in linguis-
tic theories of causal connectives have been intro-
duced (Staliūnaitė et al., 2021). Notably, these
methods have achieved statistically significant im-
provements on the COPA dataset, including its bal-
anced version designed to avoid surface-level cues.

Recently, there have been efforts in creating
tasks, frameworks, and datasets focusing on com-
monsense causal reasoning, such as COPA (Gor-
don et al., 2012), αNLI (Bhagavatula et al., 2020),

1OpenAI. (2023). ChatGPT & GPT-4 https://openai.
com

ROCK (Zhang et al., 2022), and e-CARE (Du
et al., 2022). These aim at assessing causal in-
ference abilities independently of the sheer vol-
ume of knowledge. However, existing datasets and
tasks have limitations in measuring and evaluating
the dynamic nature of causal relationships, espe-
cially in scenarios involving sequential events lead-
ing to a particular outcome. Furthermore, these
datasets don’t address confounding biases intro-
duced through temporal signals or language hallu-
cinations stemming from word co-occurrences

To address these limitations, our study restruc-
tures the e-CARE2 dataset to present tasks cen-
tered around temporal interventions and halluci-
nated confoundings. These tasks are designed to be
more challenging and representative of real-world
scenarios. This approach aims to provide a foun-
dation for more robust and fine-grained analysis of
causality in natural language processing, particu-
larly in the era following the advent of LLMs.

3 Proposed Method

Our key idea is to investigate changes in the causal
relationship between two events when a new event
appears. We designed the CReTIHC dataset by
adding temporal interventions and hallucinated
confoundings to the e-CARE, an existing natural
language commonsense causal reasoning dataset.
Grounding prior studies regarding causality (Im-
bens and Rubin, 2015; Keith et al., 2020; Zhang
et al., 2022; Feder et al., 2022), we have no-
ticed that unseen, unobserved interventions can
heavily impact the causal relationship between
events. Also, previous causality research shows
that causal relationships guarantee antecedent rela-
tionships, but antecedent relationships do not guar-
antee causal relationships (Russell, 1912; Bunge,
2017; Zhang et al., 2022).

To examine whether LLMs can identify temporal
order and actual causal relationships, both tempo-
ral order relationships confused with actual causal
relationships are needed. However, the original
e-CARE dataset, which is not arranged chronolog-
ically, consists of premises, hypotheses, and ex-
planations that make the hypotheses plausible. As
described in Figure 1, we restructured this dataset
to create a chronologically ordered sequence of
events. When the premise and hypothesis are in
an effect relationship, we reordered them so that
the premise is the event that occurred first and the

2https://github.com/waste-wood/e-care
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Figure 1: CReTIHC: Changing the causal relationship
of the e-CARE dataset

hypothesis is the event that occurred second. Con-
versely, when the premise and hypothesis are in a
cause relationship, we reordered them so that the
hypothesis is the event that occurred first and the
premise is the event that occurred second. The pre-
ceding event is denoted as S1, and the succeeding
event is denoted as S2.

In the next phase, we employed LLMs to ma-
nipulate the causal relationships in the restructured
dataset, presented as a series of consecutive events.
We used temporal interventions (Task 1) and intro-
duced confounders through linguistic manipulation
(Task 2), with the LLM generating sentences that
vary the causal relationship between S1 and S2.
Hallucinated confounders, adding new elements to
make spurious causal relationships, were utilized to
create confusion between word co-occurrence and
actual causality. An event that changes the causal
relationship between S1 and S2 are denoted by Z.

Task 1: Temporal Interventions Task 1 uses a
temporal intervention to manipulate the causal re-
lationship between event S1 and outcome S2 based

on the timing of the causal event S1. If S1 and S2

have a plausible causal relationship, we intervene
with an event that could occur between S1 and S2

to weaken the causal relationship. If S1 and S2 do
not have a causal relationship with each other, an
intervention can strengthen the causal relationship
between the two events. The event Z is positioned
between the two events, forming a chain that al-
ters the relationship between the causally related
events. Depending on its temporal placement, an
intervention can relatively transform the strength
of causality between the two events S1 and S2.

Prompts of Task 1 As described in Table 1,
we consistently used the directive in all prompts:
"Never use words or phrases that have
already been used, and keep them short and
concise, no more than 10 words." This was
implemented to mitigate the tendency of the LLMs
to generate wordy sentences and repetitively use
previously mentioned words or phrases. The aim
was to guide the LLMs towards generating more
concise and diverse expressions. Then, two verbs
were used to create each sentence with the causal
relationship changing in the same direction (e.g.
‘make’ and ‘enhance’ to strengthen causal relation-
ships). This reason is based on the experimental
observation that it is an ideal way to choose the
one that produces better sentences between mak-
ing causal relationships and strengthening them
according to the sample.

Direction Prompt
Weaken Write a sentence that weakens

the causal relationship between S1

and S2.
Eliminate Write a sentence that completely

eliminates the causal relationship
between S1 and S2.

Make Write a sentence that makes the
causal relationship between S1

and S2.
Enhance Write a sentence that enhances

the causal relationship between S1

and S2.

Table 1: A prompt to create a temporal intervention that
transforms the causal relationship between S1 and S2

Task 2: Hallucinated Confoundings Task 2 ex-
amines cases where no causal relationship exists
between event S1 and S2, but a confounding event z
obscures this fact. The task involves two structures:
a Collider and a Fork. In the collider structure, the
confusing event z is causally related to both S2 and
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S1. Here, no direct causal relationship exists be-
tween S2 and S1, but event S1 is changed to imply
a causal relationship. In the fork structure, both
S2 and S1 are the result of the confusion event z,
and event S1 is changed to imply a causal relation-
ship that does not exist. This creates confusion that
there is a causal relationship between S1 and S2,
even though there is no direct causal relationship
between them.

Prompts of Task 2 As shown in Table 2, to inte-
grate Hallucinated Confounding events, we crafted
sentences encompassing confounders, specifically
Forks and Colliders, drawing upon the principles
of Structural Causal Models (SCMs) (Guo et al.,
2020). These SCMs exert influence on causality,
thereby enabling us to seamlessly introduce con-
founding elements into our narrative. Notably, to
ensure the effectiveness of the confounding, we
permitted the reuse of words.

Confounding Prompt
Fork Write a sentence with a new

factor that affects both S1 and
S2 and confounds the causal
relationship.

Collider Write a sentence with a new
factor that is influenced by
both S1 and S2 and confounds
the causal relationship.

Table 2: A prompt that creates confounding factors in
the causal relationship between S1 and S2

Task 1 and Task 2 highlight the importance
of context in interpreting causality, demonstrat-
ing how linguistically introduced confounders and
temporal interventions can alter the perception of
causal relationships. The fundamental premise of
the CReTIHC is maintaining the arrangement of
sentences according to the temporal order of events,
providing a more challenging and realistic task for
evaluating the causal reasoning abilities of LLMs.

3.1 Self-refining Technique
We needed a process to critically evaluate and re-
vise sentences generated by LLM to obtain a high-
quality causal reasoning dataset. Inspired by the
self-refinement method (Madaan et al., 2023), we
integrated self-refining the sentences generated by
LLM and rewriting inappropriate sentences into
the data collection process.

The self-feedback step determines whether the
generated sentences fit the given instructions and
guidelines. If conditions are not met or errors

are found, in the self-refining phase, LLM au-
tonomously rectifies the sentences to suit the di-
rection of the task better. At this time, more fine-
grained sentences can be obtained using the previ-
ously generated results as input to the LLM, along
with an additional prompt and few-shot examples.

This self-refining process is iterative and LLM
continually evaluates and improves its results un-
til it reaches a satisfactory level of accuracy. The
reason for not providing all information as input
from the beginning is based on our experimental ex-
perience that sentences obtained through repeated
operations of inputting the output of LLM are of
higher quality than sentences obtained by providing
a lot of information from the beginning.

Incorporating these self-refining techniques into
your data collection methods will improve the qual-
ity of the text produced. On the other hand, due
to lack of time and cost considerations, we only
repeated this iteration a maximum of three times.
If the final results did not show sufficiently sat-
isfactory results in the self-feedback phase even
after three iterations, they were excluded from the
CReTIHC dataset.

Prompts of Self-refining Self-refining process
is divided into two steps: Self-feedback and self-
refining. In the self-feedback step, the model eval-
uates a generated sentence that follows a sequence
of events, S1 and S2. In the self-refining step, the
model is prompted to rewrite the sentence by intro-
ducing a new confounding factor that either elimi-
nates or establishes a causal relationship between
S1 and S2. This step is executed when the quality
of the sentence generated through the previous self-
feedback is low. Sentences that have gone through
self-refining are used as input to the self-feedback
step again iteratively. An example of a prompt used
for self-refining is in Appendix B.

4 Experiments

Our proposed CReTIHC dataset introduces the
task of identifying all three factors (Enhance,
Weaken, Irrelevance) involved in a causal rela-
tionship. When appearing an event between two
chronologically ordered events, S1 and S2, it is a
matter of determining how that event affects the
existing causal relationship between S1 and S2. A
total of 5 lines of sentences are given in one sample;
the S1 and S2 events are fixed, and the task is to de-
termine how each of the three sentences, A1 to A3,
affects the causal relationship between the previous
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Accuracy F1
True False None

GPT-3 0.671 0.736 0.733 0.501
ChatGPT 0.527 0.664 0.539 0.331

Table 3: Quantitative evaluation results of LLMs

two events. To exclude the influence of sentence or-
der of prompts, the positions of Enhance, Weaken,
and Irrelevance were randomly mixed.

• True: Enhancing a causal relationship be-
tween S1 and S2.

• False: Weakening a causal relationship be-
tween S1 and S2.

• None: Irrelevance = Not changing a causal
relationship between S1 and S2.

LLM Evaluation In our experiments using 1,000
sentences from the CReTIHC dataset, even ad-
vanced LLMs like GPT-3 and GPT-3.5 struggled to
accurately identify causal relationships, as shown
in Table 3 In particular, the accuracy of determin-
ing whether the causal relationship has been weak-
ened or has no effect on the causal relationship is
lower than the accuracy of determining whether the
causal relationship has been strengthened. These
results support the hypothesis that language models
trained on word occurrence probabilities have diffi-
culties distinguishing whether co-occurring words
have a causal relationship, especially in the pres-
ence of temporal interventions and hallucinated
confounding. These results highlight the potential
of the CReTIHC dataset in causal inference. Our
dataset allows us to measure the strength of causal
relationships using ranking methods, opening new
avenues for research in this field. The detailed
version and parameters of the model used in the
evaluation are in the Appendix A.

Human Evaluation We conducted a human eval-
uation of 100 samples from the CReTIHC dataset.
Four evaluators were provided with the same
prompts as those used in the LLM, and they were
tasked with assessing causality between sentences,
with labels True, False, and None. The evaluators
weren’t informed about the actual labels but were
asked to identify samples with causal inference
errors. The human evaluators achieved an aver-
age accuracy of 0.895 on the CReTIHC dataset.
They excelled at identifying strengthened causal
relationships but were less accurate with weakened
or irrelevant ones. The Table 4 summarizes the

results from a sampled set of 100 problems (a total
of 300 causal reasoning assessments):

Evaluator TRUE FALSE None
Human A 0.96 0.87 0.81
Human B 0.92 0.91 0.89
Human C 0.92 0.85 0.88
Human D 0.97 0.89 0.88
Average 0.94 0.88 0.865

Table 4: Experiments with human evaluators

Post-experiment feedback emphasizes that exter-
nal knowledge or personal experience sometimes
influences judgment. There was some confusion
among some evaluators about the distinction be-
tween weakened and nonexistent causal relation-
ships, resulting in 2.3% of the sentences being re-
jected. To measure the consistency of agreement
between raters, Fleiss’ kappa coefficient3 was cal-
culated, resulting in a score of 0.7579. This sug-
gests that there was considerable agreement be-
tween the raters.

5 Conclusions

The significance of causal reasoning in language
understanding cannot be overstated. Our research
has sought to reflect the complexity of real-world
causal reasoning by enhancing an existing com-
monsense causal reasoning dataset with temporal
interventions and hallucinated confoundings. The
CReTIHC dataset, rich with continuous event se-
quences and confounding variables, can offer a
more rigorous and holistic exploration of causal
relationships in language. Our approach mirrors
real-world causal reasoning scenarios and has lever-
aged LLMs to generate comprehensive datasets.
This underscores the potential of LLMs in enhanc-
ing various tasks in NLP and highlights the need
for models that can efficiently learn from small
amounts of data and understand causal relation-
ships as adeptly as humans do. While we acknowl-
edge that a language model trained on our dataset
may not fully resolve causal inferences, we believe
that our work with the CReTIHC benchmark per-
formance measurements contributes to the ongoing
journey toward full causal understanding by ma-
chines. In conclusion, our research underscores the
importance of causal reasoning in language under-
standing and paves the way for future research in
this critical area.

3https://en.wikipedia.org/wiki/Fleiss%27_kappa
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Limitations

While our study presents an innovative approach
to augmenting the causal reasoning capabilities of
LLMs, it is important to acknowledge its inherent
limitations.

Firstly, our dataset is derived from the e-CARE
dataset, which may limit scenario diversity and
potentially contain biases or typos from the source
data.

Secondly, the self-refinement technique embed-
ded in our methodology, although beneficial in en-
hancing sentence quality, is not infallible and may
not consistently yield optimal refinements. Due to
resource constraints, we limited the iterative pro-
cess to a maximum of three rounds.

Thirdly, we assessed GPT-4’s performance and
achieved a high accuracy of 0.92. However, we sus-
pect this result may stem from circular evaluation,
where the model is assessed using data it generated
rather than truly reflecting GPT-4’s inference capa-
bilities. This raises questions about the suitability
of our dataset for evaluating GPT-4.

Lastly, our study primarily focuses on tasks in
the English language. The generalizability of our
findings to other languages remains an open ques-
tion.

Going forward, our objectives include expanding
the CReTIHC dataset by incorporating a broader
spectrum of causal scenarios. We also plan to
develop more sophisticated self-refinement tech-
niques capable of iteratively adjusting sentence
quality and difficulty beyond current limitations.
Furthermore, we remain open to post-release col-
laboration with human annotators to address any ad-
ditional errors or issues that may arise after dataset
publication.

Ethics Statement

Our research uses LLMs and does not directly in-
volve human subjects or personal data. The devel-
opment and use of LLMs can have serious social
implications, including the potential for misuse to
create misleading or harmful content. To alleviate
these concerns, we have focused and worked on im-
proving the causal inference capabilities of LLM,
which can contribute to more accurate and reliable
results. We also inspected the data for any social
bias or harmful expressions that may have been
included. Our dataset, CReTIHC, is publicly avail-
able and can be used by other researchers to further
enhance the capabilities of LLM. We encourage

the responsible use of our research findings and
datasets.
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To evaluate the causal inference performance
of the LLM, zero-shot performance was measured
on the dataset. Specifically, the text-davinci-003
model based on GPT-3, ChatGPT (gpt-3.5-turbo),
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and GPT-4 model were used for this purpose. The
API and all parameters used default values except
those shown in the Table 5.

Type Version & Value
GPT-3 4 text-davinci-003
ChatGPT 5 gpt-3.5-turbo-0301
GPT-4 6 gpt-4-0314
temperature 0.0
top_p null

Table 5: Details of the ChatGPT Model

B Prompts of Self-refining

Step Prompt
Self-Feedback Answer the sentence given af-

ter S2 based on the conditions
below. Response ’True’ if
all of the conditions below
are met, and ’False’ if any
of the following condition is
not met: Condition 1. Does a
sentence enhance/weaken the
causal relationship between
S1 and S2? Condition 2. Is a
sentence an event located be-
tween S1 and S2?

Self-Refining For the given sentence
after S2, rewrite the sen-
tence by adding a new
confounding factor to
make/eliminate/confuse the
causal relationship between
S1 and S2. Never use words
or phrases that have already
been used, and keep them
short no more than 10 words.

Table 6: Prompt to self-feedback whether the generated
sentence meets the appropriate conditions and correct
and select the sentence

C Prompts for Experiments

In our experiments, we utilized the following
prompt for the LLMs:

"Here are five sentences: S1, S2, A1, A2, and
A3. S1 and S2 depict sequential events. Your
task is to determine which among A1, A2, and A3
undermines the causal relationship between S1 and

S2, and which one strengthens it. Remember that
A1, A2, or A3 might be unassociated with S1 and
S2. You should pinpoint one sentence from A1 to
A3 that amplifies the link between S1 and S2, and
another sentence from A1 to A3 that impedes this
connection.

Answer ’True’ if A# strengthens the causal re-
lation between S1 and S2. Answer ’False’ if A#
weakens causality between S1 and S2. Answer
’None’ if A# clearly does not affect the causation
between S1 and S2.

Please assess A1, A2, and A3 individually based
on their relevance to S1 and S2. Don’t be ver-
bose. Only return results among "True", "False" or
"None". Do not generate any further explanation."

This prompt was designed to encourage the LLM
to critically evaluate the relationship between the
given sentences and make a determination about the
nature of the causal relationship. We’ve used some
paraphrasing so that the prompts don’t overlap too
closely with the sentences for creating the dataset.

D Details of CReTIHC dataset

From the e-CARE training set, a total of 14.9K
sets of initial datasets were collected for causal-
ity evaluation. Of these, about 47% were filtered
through the self-refining process, and as a result of
additional filtering through the final manual work
of annotators, the CReTIHC dataset consisted of
2,638 causal inference test sets. The criteria pro-
vided as a filtering guide for annotators are:

1. In the case of a sentence that refers the causal
relationship by directly using the sentence
number ’S1’ or ’S2’ (e.g "S1 and S2 do not
have a direct relationship.")

2. In case of multiple sentences instead of a sin-
gle sentence

3. In case of one instance set is incompletely cre-
ated (if any of S1, S2, Enhance, Weaken, or Ir-
relevance is missing): Most of these cases are
caused of OpenAI API error or usage quota
limit.

4. In case of sentences rejected by human anno-
tators due to broken text encoding or inappro-
priate.

Statistics of the total data are in Table 7.
We also rectified errors in the e-CARE dataset.

Although LLM is robust to small typos, in subtle
tasks such as causal inference, even minor differ-
ences in words could have a large impact on causal
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Basic Statistics CReTIHC
# of Test-case 2,638
# of Total Sentences 14,565
# of Unique Sentences 13,324
- Average length 52.6
# of Words 126K
# of Unique Words 11K

Table 7: Statistics for CReTIHC dataset

relationships. For example, an event that has an
effect on Tomy may not have an effect on Tony.
Even errors that could be overlooked by humans
were a major drawback of the CReTIHC dataset
generated from LLM. Therefore, we modified the
original data to ensure accuracy and consistency.
Of the 14,028 sentences in our dataset that directly
corresponded to e-CARE, 976 were meticulously
edited to address spelling errors.

E Samples of CReTIHC dataset

The CReTIHC dataset consists of six columns. The
first column, ’IDX’, denotes the individual instance
index within the CReTIHC dataset. The second
and third columns, ’S1’ and ’S2’, represent two
sequential events from e-CARE. The fourth col-
umn, ’TRUE’, contains events that strengthen the
causal relationship between S1 and S2. The fifth
column, ’FALSE’, includes events that weaken this
causal relationship. The sixth column, ’NONE’,
introduces confounding factors that add ambiguity
to the causal relationship between S1 and S2.
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IDX S1 S2 TRUE FALSE None
1 There is a

light rain today.
Precipitation
reaches soil
surfaces.

The roots of
many plants are
not moistened
by rain.

The plants’ roots
are deep, beyond
the reach of light
rain.

The roots of
the majority of
plants are very
shallow.

The gardener’s
watering sched-
ule is adjusted
according to
the weather
forecast.

2 Susan wants to
buy a restricted
pesticide.
Rotenone is a
restricted-use
pesticide.

She bought
rotenone.

She was granted
permission
to purchase
restricted-use
pesticides.

Rotenone’s use
restrictions were
recently lifted.

Local farming
communities rig-
orously review
permits to pur-
chase rotenone
pesticides.

3 He greeted the
orcas in the wa-
ter. Orcas are
very social ani-
mals.

The orcas
spouted water to
respond to him.

TThe man is
good at imitat-
ing the sounds
of killer whales.

The orcas were
simply expelling
water as part of
their breathing.

A sudden
wave crashed,
startling both
the man and the
orcas.

4 Tom eats a lot of
eggs every day.

His hatchery
can produce
hundreds of
millions of
fertilized eggs
every year.

Tom’s high
egg consump-
tion fuels his
hatchery’s
production.

Tom’s egg
consumption
is unrelated to
his hatchery’s
output.

Gallstones are
lumps com-
posed mainly of
cholesterol.

5 Tom eats a lot
of eggs every
day. Gallstones
are lumps com-
posed mainly of
cholesterol.

The cholesterol
content in his
body is ex-
tremely high, so
he suffers from
gallstones.

He’s gallstones
are a direct re-
sult of his di-
etary choices.

Tom is also
taking medica-
tion to lower
his cholesterol
levels.

Jack’s doctor
pointed out his
habit of eating a
lot of eggs.

... ... ... ... ... ...

Table 8: Examples of CReTIHC dataset
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