
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 10344–10354
December 6-10, 2023 ©2023 Association for Computational Linguistics

On the Dimensionality of Sentence Embeddings

Hongwei Wang, Hongming Zhang, Dong Yu
Tencent AI Lab Seattle

{hongweiw, hongmzhang, dyu}@global.tencent.com

Abstract

Learning sentence embeddings is a fundamen-
tal problem in natural language processing.
While existing research primarily focuses on
enhancing the quality of sentence embeddings,
the exploration of sentence embedding dimen-
sions is limited. Here we present a comprehen-
sive and empirical analysis of the dimensional-
ity of sentence embeddings. First, we demon-
strate that the optimal dimension of sentence
embeddings is usually smaller than the default
value. Subsequently, to compress the dimen-
sion of sentence embeddings with minimum
performance degradation, we identify two com-
ponents contributing to the overall performance
loss: the encoder’s performance loss and the
pooler’s performance loss. Therefore, we pro-
pose a two-step training method for sentence
representation learning models, wherein the en-
coder and the pooler are optimized separately
to mitigate the overall performance loss in low-
dimension scenarios. Experimental results on
seven STS tasks and seven sentence classifi-
cation tasks demonstrate that our method sig-
nificantly improves the performance of low-
dimensional sentence embeddings.

1 Introduction

Learning sentence representation is a fundamental
problem in natural language processing. Sentence
embeddings represent sentences as fixed-length
vectors, which can be used in various downstream
tasks, such as semantic textual similarity (STS)
(Agirre et al., 2012, 2013; Marelli et al., 2014), in-
formation retrieval (Mitra et al., 2017; Karpukhin
et al., 2020; Thakur et al., 2021), and sentiment
analysis (Pang and Lee, 2005; Hu and Liu, 2004;
Pang and Lee, 2004).

Existing work usually focuses on improving
the quality of sentence embeddings by introduc-
ing novel model architectures or training strategies
(Reimers and Gurevych, 2019; Liu et al., 2021;
Gao et al., 2021; Chuang et al., 2022; Su et al.,

The old
poolerPooler

[CLS] Tok 1 Tok 2 ... Input
sentence

𝐸!"# 𝐸$ 𝐸%

𝐶 𝑇$ 𝑇%

...

...

Sentence Encoder

Tok N

𝐸&

𝑇&

𝑑-dim
(𝑑 is customizable) 𝐷-dim (768 or 1024)

Figure 1: The proposed architecture of a sentence repre-
sentation learning model. The dimension of the pooler’s
fully connected layer is changed from D×D to D× d,
where D is the hidden state dimension (768 for base
models and 1,024 for large models), and d is the cus-
tomizable sentence embedding dimension. The remain-
ing part of the model (sentence encoder) is unchanged.

2022). However, the exploration of sentence em-
bedding dimensions remains limited. These sen-
tence representation learning models typically em-
ploy the default dimension of the model’s hidden
states as the dimension of sentence embeddings
(e.g., 768 for BERTbase-like models and 1,024 for
BERTlarge-like models). Nonetheless, the dimen-
sion plays a critical role in sentence embeddings,
and many research questions regarding its impact
on sentence embeddings remain unanswered. For
instance, does the default dimension yield the best
performance? Can the dimension of sentence em-
beddings be reduced to mitigate time and memory
burdens in practical applications? Furthermore,
how can we maintain the performance of sentence
embeddings when their dimension is reduced?

In this paper, we aim to answer the above ques-
tions through a comprehensive and empirical study
of the dimensionality of sentence embeddings. Un-
like conventional post-processing dimension reduc-
tion methods, we propose a direct modification of
the output dimension of the pooler in sentence rep-
resentation learning models, as illustrated in Figure

10344

1. This approach enables us to generate sentence
embeddings of any desired dimension while im-
posing minimal computational overhead. Subse-
quently, we evaluate sentence embeddings with var-
ious dimensions across various downstream tasks.
The findings indicate that the optimal dimension
for sentence embeddings tends to be smaller than
the default value used in the literature.

Our findings also indicate a significant decline
in the performance of sentence embeddings when
the dimension is reduced beyond the optimal value.
Therefore, we investigate whether the model’s per-
formance can be sustained in these low-dimension
scenarios. This allows us to utilize sentence embed-
dings with even smaller dimensions in practical ap-
plications to reduce time and memory overhead fur-
ther. Interestingly, we find that the model’s perfor-
mance deterioration in low-dimension scenarios is
not solely attributed to the decrease of the pooler’s
output dimension, but also to the degradation in
the quality of the sentence encoder’s output. As a
result, the performance loss can be divided into two
components: the loss caused by the encoder and the
loss caused by the pooler. We then propose a two-
step training algorithm to mitigate the two aspects
of the performance loss separately. First, on the
encoder side, we replace the current “pool-trained”
encoder with a “well-trained” one. To achieve this,
we train multiple models with different pooler’s
output dimensions and select the best encoder to
replace the current one. Next, on the pooler side,
since the pooler and the new encoder have not been
trained together, we can fine-tune the pooler on
top of the new encoder. This involves training the
pooler from its current state while keeping the new
encoder frozen, ensuring their compatibility and
improving overall performance.

We conduct experiments on seven STS tasks and
seven classification tasks. Our proposed training
method consistently outperforms all baseline meth-
ods across all tasks, for instance, 1.50% to 4.92%
improvement over the best baseline method on clas-
sification tasks. Remarkably, our method reduces
the dimension of sentence embeddings from 768 to
128 with almost no performance loss (from 76.57%
to 76.46% on STS tasks). In addition, we validate
the effectiveness of the two steps in our proposed
method by showing that their average improvement
is 1.79% and 1.17% respectively when trained with
SimCSE, and 13.16% and 0.83% respectively when
trained with Sentence-BERT, on the STS-B dataset.

The key contributions of this paper are:

• We propose customizing the dimension of sen-
tence embeddings by directly modifying the
output dimension of the pooler.

• We demonstrate that default dimension of sen-
tence embeddings commonly used in litera-
ture is usually suboptimal.

• We discover that the performance loss of low-
dimensional sentence embeddings can be di-
vided into the encoder’s performance loss and
the pooler’s performance loss.

• We propose a two-step training method to re-
duce the two parts of the performance loss
separately.

2 Sentence Embedding Compressor

Existing sentence representation learning models
usually set the dimension of output sentence em-
beddings as the dimension of hidden states D, i.e.,
D = 768 for base models and D = 1, 024 for large
models. However, it is worth noting that the default
dimension may not always be optimal. Traditional
dimension reduction methods, such as Principle
Component Analysis (PCA) (Abdi and Williams,
2010), Isomap (Tenenbaum et al., 2000), and Lo-
cally Linear Embedding (LLE) (Roweis and Saul,
2000), are not suitable for our purpose here due
to the following reasons: (1) Our objective is to
conduct a comprehensive study on the impact of
dimension, whereas these methods can only reduce
dimension rather than increase it; (2) These meth-
ods typically require access to the entire evaluation
set before executing the algorithms, which may
not be feasible in practical scenarios like online or
streaming settings; (3) Utilizing these methods as a
post-processing step will introduce extra computa-
tional overhead, which, to some extent, contradicts
our initial goal of dimension reduction.

We propose a straightforward and efficient ap-
proach to modify the dimension of sentence em-
beddings. As illustrated in the left half of Figure
1, a sentence representation learning model, such
as BERT (Devlin et al., 2018) or RoBERTa (Liu
et al., 2019), usually includes a pooler on top of the
final hidden state of the [CLS] token. This pooler
consists of a fully connected layer and a non-linear
activation function. Initially, the pooler’s purpose
is to condense information from the input sentence
into a fixed-sized representation without changing

10345

the embedding’s dimension. However, we can alter
the output dimension of the fully connected layer
in the pooler from the default D to a customizable
value of d. As a result, the pooler now serves as
a compressor for sentence embeddings. Unlike
conventional dimension reduction techniques, our
method can generate sentence embeddings of any
dimension. Furthermore, it does not require prior
access to the entire evaluation set and has minimal
impact on computational overhead.

3 The Impact of the Dimension of
Sentence Embeddings

We conduct a study to examine the impact of the
dimension of sentence embeddings on the perfor-
mance of various downstream tasks. We select
RoBERTabase (Liu et al., 2019) as the sentence rep-
resentation learning model and made its output di-
mension configurable. We utilize the unsupervised
SimCSE (Gao et al., 2021) as the training method,
which takes an input sentence and predicts itself in
a contrastive objective with dropout used as noise.
Similar to SimCSE, we train the model on one
million randomly sampled sentences from English
Wikipedia, then apply the model to the following
downstream tasks: (1) TREC, a question classifica-
tion dataset containing 500 labeled questions in the
test set with 6 class labels; (2) STS-B, a semantic
textual similarity dataset containing 1,379 sentence
pairs in the test set with 5 similarity grades; (3) CR,
a binary sentiment classification dataset containing
3,773 sentences; (4) MRPC, a binary paraphrase
detection dataset containing 1,726 sentence pairs
in the test set.

The results of the accuracy / Spearman’s correla-
tion of SimCSE-RoBERTabase on the four datasets
are presented in Figure 2. The sentence embed-
ding dimension d ranges from 2,048 to 4, with the
default value being D = 768. As the sentence
embedding dimension increases from 768, the per-
formance consistently remains stable across all four
datasets. However, when the dimension decreases
from 768, we observe distinct patterns in the per-
formance curves: The performance on TREC (the
red curve) continuously decreases, and the perfor-
mance on STS-B and CR (the yellow and the blue
curves) initially remains stable, then drops sharply.
Conversely, the performance on MRPC (the green
curve) remains consistently stable throughout.

It can be concluded that the optimal1 dimen-
1Although there is no strict definition for “optimal”, it can

2048 1024 768 512 256 128 64 32 16 8 4
Sentence embedding dim d

0

20

40

60

80

100

Ac
c

/ S
pe

ar
m

an
 c

or
r.

TREC
STS-B
CR
MRPC

Figure 2: The results of accuracy / Spearman’s correla-
tion of SimCSE-RoBERTabase on four different datasets.
The sentence embedding dimension d is varied from
2,048 to 4 (the default value is D = 768).

sion of sentence embeddings varies across differ-
ent downstream tasks. Specifically, the optimal
dimensions for TREC, STS-B, CR, and MRPC are
768, 256, 256, and 16, respectively. One possible
explanation for this variation is that downstream
tasks exhibit different levels of difficulty, requir-
ing varying amounts of information to be stored
in embeddings to achieve the best performance.
This observation motivates further exploring the di-
mensionality of sentence embeddings, particularly
to enhance model performance in low-dimension
scenarios.

4 The Proposed Approach

4.1 Performance Loss Decomposition

According to the result presented in Figure 2, the
performance of sentence embeddings on most tasks
declines as their dimension decreases. The primary
reason for the performance loss is that sentence
embeddings become too short to retain sufficient
information for downstream tasks. Nevertheless,
given that the entire model is trained end-to-end,
it is intriguing to examine whether the encoder
component is affected when the output dimension
of the pooler decreases. Therefore, we denote the
final hidden state of [CLS] as the “output of the
encoder” and utilize it as the sentence embedding
for downstream tasks.

The results of using the encoder’s output and the
pooler’s output as sentence embeddings on the STS-
B dataset are presented in Figure 3. Interestingly,
when the pooler’s output dimension d decreases,
the encoder’s performance consistently declines for
all four models, even though the dimension of the
encoder’s output remains unchanged. This finding

generally be understood as the dimension that maintains the
best performance while being as small as possible.

10346

768 512 256 128 64 32 16 8 4
Pooler's output dim d

0

20

40

60

80

100
Sp

ea
rm

an
 c

or
r.

output of the encoder
output of the pooler

(a) BERTbase

768 512 256 128 64 32 16 8 4
Pooler's output dim d

0

20

40

60

80

100

Sp
ea

rm
an

 c
or

r.

output of the encoder
output of the pooler

(b) BERTlarge

(c) RoBERTabase

768 512 256 128 64 32 16 8 4
Pooler's output dim d

0

20

40

60

80

100

Sp
ea

rm
an

 c
or

r.

output of the encoder
output of the pooler

(d) RoBERTalarge

Figure 3: The results of using the output of the encoder
(red curves) and the output of the pooler (blue curves) as
sentence embeddings on the STS-B dataset. The train-
ing method is SimCSE and the sentence encoders are
BERTbase, BERTlarge, RoBERTabase and RoBERTalarge,
respectively. Figure 3c illustrates that the performance
loss can be divided into the performance loss of the
encoder and the performance loss of the pooler.

suggests that the performance loss is not solely
attributed to the decrease of the pooler’s output
dimension but also to a deterioration in the quality
of the encoder’s output.

Figure 3c illustrates that the performance loss
can thus be divided into two components: perfor-
mance loss caused by the encoder and performance
loss caused by the pooler. This decomposition of
performance loss enables an in-depth understand-
ing of the model’s behavior in low-dimensional
scenarios. Furthermore, it provides valuable in-
sights into strategies that can improve the model’s
performance when working with smaller sentence
embedding dimensions: By separately addressing
the performance loss of the encoder and the pooler,
we can effectively enhance the performance of the
entire model and subsequently combine the two
modules to achieve better outcomes.

4.2 Reducing Performance Loss of the
Encoder

Figure 3 indicates that the encoder’s performance
declines noticeably as the pooler’s output dimen-
sion d decreases. It is worth noting that the en-
coder’s architecture remains unchanged regardless
of d. As a result, we can easily replace a “pool-
trained” encoder with a “well-trained” one to eval-
uate if the model’s overall performance can be en-
hanced. We conduct end-to-end training of the

en
co

de
r 7

68

en
co

de
r 5

12

en
co

de
r 2

56

en
co

de
r 1

28

en
co

de
r 6

4

en
co

de
r 3

2

en
co

de
r 1

6

en
co

de
r 8

en
co

de
r 4

Encoder

no pooler

pooler768

pooler512

pooler256

pooler128

pooler64

pooler32

pooler16

pooler8

pooler4

Po
ol

er

80.2 80.5 80.8 79.8 80.5 79.5 77.1 67.2 45.8

79.6 80.2 80.1 79.7 80.4 79.0 77.3 67.3 46.1

79.0 79.2 79.3 79.1 80.0 79.0 76.9 66.7 45.8

79.3 79.6 79.6 78.6 79.6 78.5 76.4 66.9 45.7

78.0 78.7 78.7 78.2 79.2 78.5 75.8 65.7 47.0

76.7 77.4 77.9 76.3 77.7 76.7 74.1 65.5 44.1

73.8 73.8 74.8 74.2 74.6 74.0 73.0 63.6 44.9

69.0 68.7 70.3 70.8 72.6 71.4 65.8 62.1 44.0

61.3 59.7 60.3 59.0 61.0 60.0 58.8 51.7 39.3

45.6 45.8 45.7 44.0 47.9 43.2 46.5 38.8 21.9

30

40

50

60

70

80

Figure 4: The results of Spearman’s correlation of all
possible combinations of encoders and poolers on the
STS-B dataset. See Section 4.2 for details.

SimCSE-RoBERTabase using different pooler out-
put dimensions d (ranging from 768 to 4). This
results in a model consisting of encoderd and
poolerd. We then combine each possible encoderi
and poolerj , and utilize the new model encoderi +
poolerj to generate sentence embeddings.

In Figure 4, each cell in the heatmap represents
the Spearman’s correlation of a combined model
on the STS-B dataset. Replacing the encoder with
a superior one can usually substantially enhance
the model’s overall performance. For instance,
the initial performance of the end-to-end training
model with d = 16 (encoder16 + pooler16) is 65.8,
but it can be further elevated to 72.6 by replacing
encoder16 with encoder64.

We thus propose a method to reduce the perfor-
mance loss of the encoder, which is illustrated in
Figure 5a. Given the target dimension d, we first
train a sentence representation learning model with
the pooler’s output dimension being d, which con-
sists of encoderd and poolerd. Meanwhile, we train
multiple models with other pooler’s output dimen-
sions (e.g., 512, 256, ...). From these models, we
select the dimension opt that yields the optimal per-
formance for encoderopt on a validation set. Lastly,
we replace the original encoderd with encoderopt
to improve the overall performance.

4.3 Reducing Performance Loss of the Pooler

Unlike the encoder, replacing poolerd with a dif-
ferent poolerd′ is not feasible since the output di-
mension of the pooler must be exactly the target
dimension d. It is important to note that poolerd is

10347

𝑑-dim

Encoder𝑑

Pooler𝑑

1. Train a model with
pooler’s output dim = 𝑑

Encoder𝑜𝑝𝑡

3. Replace encoder𝑑
with encoder𝑜𝑝𝑡

𝑜𝑝𝑡-dim

Encoder𝑜𝑝𝑡

Pooler𝑜𝑝𝑡

2. Train a model with pooler’s
output dim = 𝑜𝑝𝑡𝑖𝑚𝑎𝑙

Pooler𝑑

Replace

Train Train

𝑑-dim

(a) Reducing performance loss of the encoder

1. Freeze encoder𝑜𝑝𝑡 and train pooler𝑑 2. Get the new pooler𝑑

Encoder𝑜𝑝𝑡

Pooler𝑑

𝑑-dim

Fine-tune

Freeze Encoder𝑜𝑝𝑡

New
pooler𝑑

𝑑-dim

(b) Reducing performance loss of the pooler

Figure 5: Illustration of reducing performance loss of
the encoder and the pooler for a sentence representation
learning model.

trained jointly with encoderd rather than the current
encoderopt, which implies that the parameters of
poolerd may not be optimal for encoderopt. There-
fore, as illustrated in Figure 5b, we freeze the pa-
rameters of encoderopt and only fine-tune poolerd,
until the model achieves the optimal performance.

Here, we would like to emphasize the following
points: (1) The parameters of encoderopt should
remain unchanged, as encoderopt is already the op-
timal encoder. If encoderopt is fine-tuned together
with poolerd, we would revert to the initial end-
to-end training scenario, which has been shown to
yield suboptimal performance. (2) Poolerd should
not be trained from scratch with randomly initial-
ized parameters but rather fine-tuned starting from
its current parameters, as it provides an excellent
starting point. Our experimental results also vali-
date that fine-tuning from the current parameters
outperforms training from randomly initialized pa-
rameters.

4.4 A Two-Step Training Algorithm
Our proposed two-step training approach is out-
lined in Algorithm 1. The algorithm consists of
two steps. In the first step, the primary objective
is to acquire poolerd (line 2) and the optimal en-
coder encoderopt (line 6). Subsequently, the sec-
ond step involves fine-tuning poolerd while keeping
encoderopt frozen (line 8).

The time complexity analysis of Algorithm 1 is
as follows. We use C to denote the time required
for training the entire model M once. In step 1,
we train the model M for a total of |D|+ 1 times,

Algorithm 1: Two-Step Training Approach
Input: An unsupervised training corpus T , a

validation dataset E, the target dimension d, a
base sentence representation learning model
M with customizable output dimension;

Output: A well-trained sentence representation
learning model with output dimension d;

// Step 1: Reducing the encoder’s loss
1 Determine the set of candidate dimensions D;
2 Train M with out_dim = d on T and obtain poolerd;
3 for d′ ∈ D do
4 Train M with with out_dim = d′ on T and

obtain encoderd′ ;
5 Evaluate encoderd′ on E;

6 Select the best encoder from {encoderd′}d′∈D and
denote it as encoderopt;

// Step 2: Reducing the pooler’s loss
7 Concatenate encoderopt and poolerd;
8 Fine-tune poolerd on T with encoderopt frozen, and

obtain new-poolerd;

9 return encoderopt + new-poolerd

resulting in a complexity of |D|C. The time com-
plexity of the encoder evaluation is negligible com-
pared to the training process. In step 2, the encoder
is frozen, and only the pooler undergoes training.
Since the pooler is merely a fully connected layer,
while the encoder is typically much more complex
than the pooler, the fine-tuning time for the pooler
is negligible compared to C. Therefore, the overall
time complexity of Algorithm 1 is |D|C.

Our algorithm generally requires more running
time when the candidate dimension set D is larger.
However, a larger pool of D will also increase the
probability that encoderopt performs better, thereby
improving the final performance.

5 Experiments

5.1 Experimental Setup
We evaluate our proposed two-step training algo-
rithm on two types of datasets:

• STS datasets. We include seven STS datasets
in our experiments: STS 2012-2016 (Agirre
et al., 2012, 2013, 2014, 2015, 2016), STS
Benchmark (Cer et al., 2017), and SICK-
Relatedness (Marelli et al., 2014). Each
dataset consists of sentence pairs and their
corresponding ground-truth similarity scores.
We use Spearman’s correlation to evaluate the
predicted results of our method and all base-
line methods on the test set.

• Sentence classification datasets. These in-
cludes MR (Pang and Lee, 2005), CR (Hu

10348

Pooler’s output dim d 768 512 256 128 64 32 16 8

Encoderd + poolerd 79.62 79.22 79.11 78.17 77.72 74.02 65.82 51.72(end-to-end training)

Encoderopt + poolerd 80.08 79.26 79.11 78.66 77.94 74.78 69.62 60.27
(After step 1) +0.46 +0.04 +0.00 +0.49 +0.22 +0.76 +3.80 +8.55

Encoderopt + new-poolerd 80.49 80.25 79.32 79.93 78.03 75.20 71.71 64.15
(After step 2) +0.41 +0.99 +0.21 +1.27 +0.09 +0.42 +2.09 +3.88

Table 1: The results of Spearman’s correlation (in %) of our proposed algorithm on the STS-B dataset using the
contrastive loss in SimCSE as the training objective. The base model is RoBERTabase. (1) The first block is the
results of end-to-end training. (2) The second block results from step 1 of our proposed algorithm. The numbers in
the second line are the absolute improvement over the first block. (3) The third block results from step 2 of our
proposed algorithm. The numbers in the second line are the absolute improvement over the second block. opt = 256
for this experiment according to the first row of Figure 4.

Pooler’s output dim d 768 512 256 128 64 32 16 8

Encoderd + poolerd 70.12 69.92 63.80 60.12 56.51 52.84 49.49 39.29(end-to-end training)

Encoderopt + poolerd 73.50 69.92 73.34 73.53 72.50 71.46 68.36 64.78
(After step 1) +3.38 +0.00 +9.54 +13.41 +15.99 +18.62 +18.87 +25.49

Encoderopt + new-poolerd 73.61 70.14 73.95 73.81 73.12 72.88 70.58 65.92
(After step 2) +0.11 +0.22 +0.61 +0.28 +0.62 +1.42 +2.22 +1.14

Encoderd (poolerd used 73.47 73.83 66.66 63.32 61.69 57.45 56.42 47.37only in training)

Table 2: The results of Spearman’s correlation (in %) of our proposed algorithm on the STS-B dataset using the
softmax classification loss in Sentence-BERT as the training objective. The first three blocks are similar as in Table
1. The last block is the result of using encoderd + poolerd for end-to-end training but only encoderd for inference.
The base model is RoBERTabase. opt = 512 for this experiment according to the last block.

and Liu, 2004), SUBJ (Pang and Lee, 2004),
MPQA (Wiebe et al., 2005), SST (Socher
et al., 2013), TREC (Voorhees and Tice,
2000), and MRPC (Dolan and Brockett, 2005).
A logistic regression classifier is trained on
top of (frozen) sentence embeddings. Each
dataset consists of sentences and their class
labels. Accuracy is used as the evaluation
metric. We follow default configurations from
SentEval2.

We use three traditional dimension reduction
methods as baseline methods, including Princi-
ple Component Analysis (PCA), Isomap (Tenen-
baum et al., 2000), and Locally Linear Embedding
(LLE) (Roweis and Saul, 2000). PCA is a linear
dimension reduction method, while Isomap and
LLE are nonlinear. We use the embeddings of the
first 2,000 sentences from the unsupervised English
Wikipedia (Gao et al., 2021) as training data for
these models. In addition, we also compare our

2https://github.com/facebookresearch/SentEval

method to the direct end-to-end training method
using SimCSE (Gao et al., 2021).

5.2 Result of the Proposed Approach

The results of Spearman’s correlation for our pro-
posed method on the STS-B dataset are presented
in Tables 1 and 2. We select RoBERTabase as the
base model for both experiments. Table 1 presents
the result of using the contrastive loss in SimCSE
as the training objective (see Section 3 for train-
ing details). Table 2 presents the result of using
the softmax classification loss in Sentence-BERT
as the training objective. Specifically, following
Sentence-BERT, we use SNLI and MNLI datasets
as the training data. For a pair of premise and hy-
pothesis in SNLI/MNLI denoted as u and v, we
first calculate their sentence embeddings u and v,
and then concatenate u, v, and u− v, followed by
a 3-way softmax classifier. The pooling function
is cls. The batch size is 64. Other hyperparame-
ters are the same as reported in the Sentence-BERT
paper.

10349

https://github.com/facebookresearch/SentEval

Methods STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

d = 768 (w/o dimension reduction)
SimCSE-RoBERTabase 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57

d = 128
PCA 65.79 76.83 67.84 76.99 74.93 74.73 62.22 71.33

Isomap 51.55 56.97 45.52 53.17 56.01 49.26 51.36 51.98
LLE 38.54 45.41 34.76 42.42 45.69 40.22 42.15 41.31

SimCSE-RoBERTabase w/ end-to-end training 69.10 79.69 70.80 78.70 79.66 78.17 68.32 74.92
SimCSE-RoBERTabase w/ two-step training 70.15 80.66 72.38 81.74 80.62 79.93 69.77 76.46

d = 64
PCA 65.94 75.81 66.72 75.97 73.78 73.08 60.46 70.25

Isomap 49.69 54.85 43.25 49.90 53.99 46.82 49.32 49.69
LLE 33.54 42.57 32.38 38.78 40.24 36.40 37.04 37.28

SimCSE-RoBERTabase w/ end-to-end training 66.29 78.76 70.55 80.18 78.33 77.72 67.85 74.24
SimCSE-RoBERTabase w/ two-step training 68.73 80.34 71.63 79.90 79.61 78.03 68.62 75.27

d = 32
PCA 65.04 72.92 64.14 73.16 71.31 69.15 58.08 67.69

Isomap 46.36 50.89 40.23 45.92 51.00 44.61 47.00 46.57
LLE 32.33 35.37 24.99 30.81 35.84 32.37 33.09 32.11

SimCSE-RoBERTabase w/ end-to-end training 63.33 77.71 66.67 76.06 76.23 74.02 67.22 71.61
SimCSE-RoBERTabase w/ two-step training 67.89 77.80 69.77 77.66 77.38 75.20 68.26 73.42

d = 16
PCA 62.75 67.67 59.97 68.13 67.23 63.46 55.53 63.53

Isomap 42.44 44.79 34.57 42.42 45.63 40.33 43.43 41.94
LLE 28.55 33.95 23.66 29.67 34.13 30.82 32.01 30.40

SimCSE-RoBERTabase w/ end-to-end training 54.16 67.31 55.85 63.92 70.70 65.82 63.64 63.06
SimCSE-RoBERTabase w/ two-step training 64.82 75.16 65.32 74.87 74.25 71.71 66.15 70.33

d = 8
PCA 53.31 56.66 51.23 59.86 60.52 52.58 49.85 54.86

Isomap 38.54 39.11 30.79 39.32 41.48 35.94 37.98 37.59
LLE 30.01 33.85 22.86 33.06 37.88 28.66 33.50 31.40

SimCSE-RoBERTabase w/ end-to-end training 50.92 51.26 43.27 59.03 58.84 51.72 58.03 53.30
SimCSE-RoBERTabase w/ two-step training 60.89 65.25 59.01 65.86 66.84 64.15 59.61 63.09

Table 3: The results of Spearman’s correlation (in %) on seven STS datasets. Each block corresponds to a specific
dimension of sentence embeddings. The highest numbers across all methods are highlighted.

In Tables 1 and 2, the first block shows the results
of encoderd + poolerd, representing the end-to-end
training approach. In the second block, we present
the results of encoderopt + poolerd, corresponding
to step 1 of our proposed algorithm. The third block
results from encoderopt + new-poolerd, correspond-
ing to step 2 of our proposed algorithm. In addition,
in Table 2, we also present the result of Encoderd as
the last block, in which encoderd + poolerd is used
in end-to-end training but only encoderd is used in
inference. Note that opt = 256 in Table 1 while
opt = 512 in Table 2. The absolute improvement
achieved by step 1 and step 2 is also presented.

We observe that step 1 and step 2 of our method
both yield significant enhancement to the model’s
performance. The average absolute improvement
achieved by step 1 and step 2 is 1.79% and 1.17%
respectively using SimCSE, and is 13.16% and
0.83% respectively using Sentence-BERT. Notably,
the improvement brought about by step 1 surpasses

that of step 2 for two primary reasons. First, step 2
faces a greater challenge in improving the model
since step 1 has already substantially enhanced
its performance. Second, the encoder is typically
more complicated than the pooler, which offers
greater potential for step 1 to improve the perfor-
mance. Moreover, the improvement is particularly
pronounced when the dimension d is smaller, as
the model has more room for improvement in low-
dimensional scenarios.

5.3 Comparison with Baseline Methods

The results of comparing with baseline methods
on STS tasks and classification tasks are presented
in Tables 3 and 4, respectively. Each block corre-
sponds to a specific dimension of sentence embed-
dings. We do not show the results of d = 512 and
d = 256 because their results are quite close to
d = 768. It is evident that our method consistently
achieves the best performance across almost all

10350

Methods MR CR SUBJ MPQA SST TREC MRPC Avg.

d = 768 (w/o dimension reduction)
SimCSE-RoBERTabase 81.04 87.74 93.28 86.94 86.60 84.60 73.68 84.84

d = 128
PCA 72.76 79.93 84.33 79.03 76.93 68.00 62.13 74.73

Isomap 58.82 65.46 72.20 68.03 57.39 31.20 67.13 60.03
LLE 58.07 65.41 69.64 68.99 57.66 28.00 66.49 59.18

SimCSE-RoBERTabase w/ end-to-end training 77.52 84.40 89.99 81.86 82.26 75.20 72.64 80.55
SimCSE-RoBERTabase w/ two-step training 79.00 84.11 91.20 84.35 83.69 80.00 73.91 82.32

d = 64
PCA 70.69 78.29 80.46 76.28 73.69 56.80 61.20 71.06

Isomap 58.06 64.85 70.41 67.61 58.98 32.60 67.36 59.98
LLE 55.90 63.81 64.75 68.98 55.52 24.80 66.49 57.18

SimCSE-RoBERTabase w/ end-to-end training 72.82 79.31 84.65 77.82 76.55 65.40 73.28 75.69
SimCSE-RoBERTabase w/ two-step training 76.52 83.66 90.24 80.90 81.93 75.60 75.42 80.61

d = 32
PCA 66.02 74.02 76.44 71.63 71.22 48.20 64.28 67.40

Isomap 57.96 66.67 71.15 68.68 58.05 34.00 67.07 60.51
LLE 52.98 63.79 64.01 68.77 53.21 22.60 66.49 55.98

SimCSE-RoBERTabase w/ end-to-end training 72.15 78.67 79.53 77.10 74.42 58.80 72.32 73.28
SimCSE-RoBERTabase w/ two-step training 73.68 78.97 86.49 76.30 75.56 69.60 73.91 76.36

d = 16
PCA 62.21 72.19 74.84 70.71 66.06 40.80 65.72 64.65

Isomap 53.69 65.59 68.60 68.83 58.81 34.20 66.03 59.39
LLE 52.86 63.76 62.18 68.77 51.95 20.20 66.61 55.19

SimCSE-RoBERTabase w/ end-to-end training 65.07 70.86 80.65 74.19 68.31 54.00 70.39 69.07
SimCSE-RoBERTabase w/ two-step training 69.21 74.68 84.24 74.09 73.37 59.20 73.33 72.59

d = 8
PCA 58.85 67.82 67.98 66.61 63.70 36.60 64.16 60.82

Isomap 55.17 65.40 67.16 68.96 61.29 27.00 66.84 58.83
LLE 50.16 63.76 60.98 68.77 50.19 18.80 66.49 54.16

SimCSE-RoBERTabase w/ end-to-end training 66.50 69.96 77.62 72.26 70.18 44.20 69.97 67.24
SimCSE-RoBERTabase w/ two-step training 66.55 71.07 78.74 73.38 68.59 51.00 71.83 68.74

Table 4: The results of accuracy (in %) on seven sentence classification datasets. Each block corresponds to a
specific dimension of sentence embeddings. The highest numbers across all methods are highlighted.

cases. For example, when d = 32, our method out-
performs the best traditional dimension reduction
method by 5.73% and 8.96% on average for STS
tasks and classification tasks, respectively. Sim-
ilar to Table 1, the improvement becomes more
significant when the dimension decreases.

It is exciting to observe that our method ex-
hibits minimal performance degradation when d
decreases from 768 to 128 (from 76.57% to 76.46%
on STS tasks), indicating that sentence embeddings
can be effectively compressed to just 1/6 of the
original size with almost no loss in performance.
We also observe that, despite being a linear di-
mension duction method, PCA consistently outper-
forms the other two nonlinear dimension reduction
methods.

6 Related Work

Sentence Representation Learning
Researchers have proposed numerous methods

for sentence representation learning. For exam-
ple, SBERT (Reimers and Gurevych, 2019) uses
siamese and triplet network structures to derive se-
mantically meaningful sentence embeddings that
can be compared using cosine-similarity. DPR
(Karpukhin et al., 2020) uses embeddings for in-
formation retrieval, which are learned from a small
number of questions and passages by a simple dual-
encoder framework. SimCSE (Gao et al., 2021)
takes an input sentence and predicts itself in a
contrastive objective with dropout used as noise.
Building upon SimCSE, DiffCSE (Chuang et al.,
2022) and ESimCSE (Wu et al., 2021) further en-
hance the method by improving the sampling ap-
proach. InstructOR (Su et al., 2022) embeds every
text together with instructions explaining the use
case, which can generate text embeddings for differ-
ent downstream tasks and domains without further
training. However, these works overlook the study
of how the dimension of sentence embeddings im-

10351

pacts the model’s performance. In contrast, our
work focuses on enhancing the performance of sen-
tence embeddings in low-dimensional scenarios.
Our proposed training algorithm can be employed
in conjunction with any Transformers-based lan-
guage models and the aforementioned sentence
representation learning methods.

Dimension Reduction
Dimension reduction is a technique that reduces the
number of features in a dataset while preserving the
essential information. For instance, PCA (Abdi and
Williams, 2010) is a linear dimensionality reduc-
tion technique that finds a new set of uncorrelated
variables (principal components) by projecting the
data onto a lower-dimensional subspace while max-
imizing the variance. Isomap (Tenenbaum et al.,
2000) is a nonlinear dimensionality reduction algo-
rithm that preserves the geodesic distances between
data points, creating a low-dimensional embedding
that captures the intrinsic structure of the data man-
ifold. LLE (Roweis and Saul, 2000) is a nonlin-
ear dimensionality reduction method that seeks to
preserve local relationships between neighboring
data points, constructing a lower-dimensional rep-
resentation based on linear combinations of these
neighbors. However, as discussed earlier, these
traditional dimension reduction methods are not
suitable for our task as they require access to the
entire evaluation set in advance and they introduce
additional computation cost. Another related work
is (Yin and Shen, 2018), which theoretically studies
the optimal dimension of word embeddings.

7 Conclusion

This paper presents a comprehensive and empirical
study on the dimensionality of sentence embed-
dings. First, we propose customizing the dimen-
sion of sentence embeddings by directly modify-
ing the pooler’s output dimension. Subsequently,
we demonstrate that the default dimension (768 or
1,024) of sentence embeddings commonly used in
the literature are usually suboptimal. To enhance
the performance of low-dimensional sentence em-
beddings, we decompose the performance loss into
the encoder’s loss and the pooler’s loss. We then in-
troduce a two-step training method that separately
addresses the two parts of the performance loss. Ex-
perimental results demonstrate that our proposed
training method consistently enhances the perfor-
mance of sentence embeddings with low dimen-
sions across all tasks.

Limitations

In this paper, we aim to thoroughly comprehend the
dimensionality of sentence embeddings, focusing
primarily on empirical and experimental aspects.
However, note that there remain unanswered ques-
tions concerning the dimension of sentence em-
beddings, especially from a theoretical perspective,
which we leave as future work.

Firstly, Figure 3 illustrates that reducing the out-
put dimension of the pooler leads to worse perfor-
mance of the encoder. One possible explanation is
that when the dimension is too small, sentence em-
beddings are unable to capture all the information
in sentences, resulting in an inadequate represen-
tation of sentences. Consequently, the quality of
the back-propagated signal from the pooler dimin-
ishes, which hinders the effective training of the
encoder. However, a theoretical understanding of
this phenomenon is currently lacking.

Secondly, as depicted in Figure 4, replacing
the current encoder encoderd with a “well-trained”
encoderopt improves the performance of poolerd’s
output. It should be noted that encoderopt and
poolerd are not trained jointly, which implies that
the output embedding space of encoderopt and
the input embedding space of poolerd are not
aligned. This suggests that a simple concatena-
tion of encoderopt and poolerd might not produce
embeddings with physical meaning. However, ex-
perimental results demonstrate the effectiveness of
this substitution strategy. The exact reason behind
the improvement remains unknown.

Lastly, an intriguing relationship exists between
PCA and the pooler of language models. While
PCA applies a linear transformation to sentence
embeddings, the pooler applies a linear transforma-
tion followed by a nonlinear function (tanh in our
model). Notably, we also experiment with remov-
ing the nonlinear function from the pooler, and find
that the model’s performance did not significantly
change. Therefore, the pooler can be considered
as a rough approximation of a PCA layer, and we
indeed discover that PCA is the most effective di-
mension reduction approach among the baseline
methods. Given that the linear transformation in
PCA aims to project data onto a low-dimensional
space while maximizing the variance, it is intrigu-
ing to investigate how the pooler projects sentence
embeddings and whether a theoretical connection
exists between the linear transformation in PCA
and the pooler.

10352

References
Hervé Abdi and Lynne J Williams. 2010. Principal

component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer,
Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Inigo Lopez-Gazpio, Montse Maritxalar, Rada Mi-
halcea, et al. 2015. Semeval-2015 task 2: Semantic
textual similarity, english, spanish and pilot on inter-
pretability. In Proceedings of the 9th international
workshop on semantic evaluation (SemEval 2015),
pages 252–263.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel M
Cer, Mona T Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In SemEval@ COLING,
pages 81–91.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez Agirre, Rada Mihalcea, German
Rigau Claramunt, and Janyce Wiebe. 2016. Semeval-
2016 task 1: Semantic textual similarity, monolin-
gual and cross-lingual evaluation. In SemEval-2016.
10th International Workshop on Semantic Evalua-
tion; 2016 Jun 16-17; San Diego, CA. Stroudsburg
(PA): ACL; 2016. p. 497-511. ACL (Association for
Computational Linguistics).

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A
pilot on semantic textual similarity. In * SEM 2012:
The First Joint Conference on Lexical and Compu-
tational Semantics–Volume 1: Proceedings of the
main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval 2012), pages 385–
393.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. * sem 2013 shared
task: Semantic textual similarity. In Second joint
conference on lexical and computational semantics
(* SEM), volume 1: proceedings of the Main confer-
ence and the shared task: semantic textual similarity,
pages 32–43.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo,
Yang Zhang, Shiyu Chang, Marin Soljačić, Shang-
Wen Li, Wen-tau Yih, Yoon Kim, and James
Glass. 2022. Diffcse: Difference-based contrastive
learning for sentence embeddings. arXiv preprint
arXiv:2204.10298.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep

bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing
(IWP2005).

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Fangyu Liu, Ivan Vulić, Anna Korhonen, and Nigel
Collier. 2021. Fast, effective, and self-supervised:
Transforming masked language models into univer-
sal lexical and sentence encoders. arXiv preprint
arXiv:2104.08027.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A sick cure for the evaluation of composi-
tional distributional semantic models. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 216–
223.

Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017.
Learning to match using local and distributed repre-
sentations of text for web search. In Proceedings of
the 26th international conference on world wide web,
pages 1291–1299.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. arXiv preprint cs/0409058.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. arXiv preprint cs/0506075.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Sam T Roweis and Lawrence K Saul. 2000. Nonlinear
dimensionality reduction by locally linear embedding.
science, 290(5500):2323–2326.

10353

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Hongjin Su, Jungo Kasai, Yizhong Wang, Yushi Hu,
Mari Ostendorf, Wen-tau Yih, Noah A Smith, Luke
Zettlemoyer, Tao Yu, et al. 2022. One embedder, any
task: Instruction-finetuned text embeddings. arXiv
preprint arXiv:2212.09741.

Joshua B Tenenbaum, Vin de Silva, and John C
Langford. 2000. A global geometric framework
for nonlinear dimensionality reduction. science,
290(5500):2319–2323.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. Beir:
A heterogenous benchmark for zero-shot evalua-
tion of information retrieval models. arXiv preprint
arXiv:2104.08663.

Ellen M Voorhees and Dawn M Tice. 2000. Building a
question answering test collection. In Proceedings
of the 23rd annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 200–207.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions
in language. Language resources and evaluation,
39:165–210.

Xing Wu, Chaochen Gao, Liangjun Zang, Jizhong Han,
Zhongyuan Wang, and Songlin Hu. 2021. Esimcse:
Enhanced sample building method for contrastive
learning of unsupervised sentence embedding. arXiv
preprint arXiv:2109.04380.

Zi Yin and Yuanyuan Shen. 2018. On the dimensionality
of word embedding. Advances in neural information
processing systems, 31.

10354

