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Abstract

Recently, prompt-based generative frameworks
have shown impressive capabilities in sequence
labeling tasks. However, in practical dialogue
scenarios, relying solely on simplistic tem-
plates and traditional corpora presents a chal-
lenge for these methods in generalizing to un-
known input perturbations. To address this
gap, we propose a multi-task demonstration-
based generative framework for noisy slot fill-
ing, named DemoNSF. Specifically, we in-
troduce three noisy auxiliary tasks, namely
noisy recovery (NR), random mask (RM),
and hybrid discrimination (HD), to implic-
itly capture semantic structural information
of input perturbations at different granulari-
ties. In the downstream main task, we de-
sign a noisy demonstration construction strat-
egy for the generative framework, which ex-
plicitly incorporates task-specific information
and perturbed distribution during training and
inference. Experiments on two benchmarks
demonstrate that DemoNSF outperforms all
baseline methods and achieves strong gener-
alization. Further analysis provides empirical
guidance for the practical application of gen-
erative frameworks. Our code is released at
https://github.com/dongguanting/Demo-NSF.

1 Introduction

The slot filling (SF) task in the goal-oriented dialog
system aims to identify task-related slot types in
certain domains for understanding user utterances.
Recently, traditional discriminative and generative
models (Liu and Lane, 2015, 2016; Goo et al.,
2018; Niu et al., 2019; He et al., 2020a; Yan et al.,
2021a; Wang et al., 2022b; Hao et al., 2023) have
shown remarkable ability in slot filling. Despite
their powerful capabilities, the high performance of
these models heavily depends on the consistency of
data distribution between the training and test sets.

∗The first two authors contribute equally. Weiran Xu is
the corresponding author.

Task-oriented Dialog System

 
Input ： Please go to NYC by 12:30.
Label ： NYC is NAME, 12:00 is ARRIVE
 
Input ： I need to go to New Your City bye twelve thirty.
Label ： City is ORGANIZATION, twelve thirty is NUMBER 

Input ： I need to arrive at New Yourk Citty by 12,30.
Label ： 12 is ARRIVE, 30 is DATE

 Perturbations

Simplify

Speech

Typos

Original Utterance                           
Input ：I need to go to New York City by 12:30.
Label ：New York City is ORGANIZATION,11:15 is ARRIVE. 

Figure 1: The impact of diverse input perturbations on
the slot filling system in real scenarios.

When faced with the uncertainty and diversity of
human language expression (Wu et al., 2021), these
perturbations significantly impact the SF model’s
generalization ability, thereby hindering its appli-
cation in practical dialogue scenarios.

In real dialogue systems, models often encounter
a wide range of input perturbations and errors made
by humans. As illustrated in Figure 1, users may in-
teract with the dialogue system in ways that deviate
from the standard input format and even simplify
their queries to convey the same intent, all due to di-
verse human expression habits. Furthermore, errors
originating from the upstream input system may in-
troduce disturbances to the downstream model (e.g.
Typos from keyboard input, Speech errors from
ASR systems). Existing slot filling models are typ-
ically pre-trained and fine-tuned on perturbation-
free datasets, leading to decreased performance
when confronted with such situations.

Recently, existing studies (Wu et al., 2021;
Moradi and Samwald, 2021a; Gui et al., 2021) have
explored the issue of robustness. However, these
methods are mainly designed for particular pertur-
bations, limiting generalization ability to unknown
perturbations. To capture the noisy semantic struc-
ture, PSSAT and CMDA (Dong et al., 2022a; Guo
et al., 2023) further introduce additional corpus
and generative models. Nevertheless, this approach
carries the risk of introducing extra noise and in-
creasing computing resource consumption. While
Large language models (Brown et al., 2020; Tou-
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vron et al., 2023; OpenAI, 2023) and prompt-based
methods (Lu et al., 2022; Xie et al., 2022b) have
achieved strong performance on information ex-
traction, the exploration of these generative frame-
works on diverse input perturbations remains a
blank area, hindering their application in realistic
task-oriented dialogue systems.

To address this limitation, we propose a multi-
task demonstration-based generative framework for
noisy slot filling tasks, named DemoNSF. Specifi-
cally, we design three noisy auxiliary tasks, namely
noisy recovery (NR), random mask (RM), and hy-
brid discrimination (HD), to boost the performance
against input perturbations in different levels. NR
aims to capture the mapping relationship between
fine-grained noisy and clean data. RM implic-
itly learns the slot entity distribution of perturbed
data during the process of mask infilling. HD as-
sists generative models consider global information
while implicitly capturing the semantic character-
istics unique to perturbed data. In the downstream
process, we formulate the SF task as a sequence-to-
sequence generation guided by noisy task demon-
strations. In detail, DemoNSF selects a semanti-
cally similar example for each query from a noisy
candidate pool, converts it into a natural demonstra-
tion sentence, and encodes the demonstration along
with the input text by integrating noisy semantic in-
formation. With the boost of noisy auxiliary tasks
and demonstrations, DemoNSF learns the semantic
structure of perturbations from both explicit and
implicit levels. Our contributions are three-fold:

1) To the best of our knowledge, we are the first
to comprehensively investigate the effects of di-
verse input perturbations on generative frameworks
in slot filling tasks and further validate the vulnera-
bility of existing prompt-based generative methods
when confronted with different human expressions.

2) We propose a simple but unified multi-task
demonstration-based generative framework, which
includes three novel noisy auxiliary tasks and a
noisy demonstration construction strategy, to en-
hance the model’s robustness and adaptability to
perturbed inputs in real-world dialogue scenarios.

3) Experiments on two benchmarks demonstrate
that our method outperforms all baseline methods
and achieves strong generalization. The extensive
analysis also provides empirical guidance for the
practical application of generative frameworks.

2 Method

In this section, we introduce the overall frame-
work of our proposed DemoNSF. We first briefly
describe the problem definition against input per-
turbations in the slot filling task. Next, we propose
three distinctive noisy auxiliary tasks for diverse
perturbations. Finally, we present a novel noisy
demonstration construction strategy. We will intro-
duce these in the following subsections1.

2.1 Problem Definition
Given an input utterance X = {x1, x2, . . . , xN}
and its corresponding slot type set S =
{s1, ..., sm}, the slot filling task aims to extract all
the entities in X . For the noisy slot filling task, we
formulate the input perturbation process in the real
scenario as [(X ′, S′) = P(X,S)], The model’s ro-
bustness is evaluated on the perturbed test dataset
{(X ′, Y ′)} but with no access to the input pertur-
bation process P(·) or perturbed data during the
training phase. In this paper, We use Dclean, Daug,
and Dtest to denote clean data, augmented data,
and test data.

2.2 Multi-level Data Augmentation
Figure 2 demonstrates how we construct our noisy
candidate pool using NLPAug (Ma, 2019), enabling
the input utterance of the clean training set into an
augmented dataset comprising three distinct levels:
character-level, word-level, and sentence-level
augmentation. Specifically, at the character level,
we incorporate random operations such as character
addition, deletion, and substitution within a token,
governed by a probability parameter denoted as p.
Moving to the word level, we introduce random
word deletion, insertion, and replacement, along
with the substitution of words with homophones
within a sentence, again governed by the proba-
bility parameter p2. Furthermore, at the sentence
level, we substitute sentences with synonymous
alternatives.

2.3 Noisy Auxiliary Tasks
The performance of the noisy slot filling task highly
depends on the prior knowledge of the distribution
of input perturbations. In this section, we introduce
three novel noisy auxiliary tasks:

Noisy Recovery (NR). Given a character-level
augmented utterance Xaug

char = {x1, x2, ..., xaugm ,

1Training, and Inference can be found in Appendix
2p is an empirical parameter, we set it to 0.3
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Data Augmentation

Instruction: Noisy Recovery
Aug.Input: How about a mAspum?

Instruction: Random Mask
Aug.Input: How about a <extra_id>?

Instruction: Hybrid Discrimination
Aug.Input: What about going to the 
museum？

Output:
How about a museum?

Output: 
The mask token is museum.

Output: 
It's a sentence-level noisy 
sentence.

Generative 
Model

Noisy Auxiliary Task Pre-training 
Original Sentence: How about a museum?         Label: [museum] is a [TYPE] slot. 

Demonstration-based Fine-Tuning

Input Utterance: 
How about a museum?

Demonstrations: 
What about a cinema? 
[cinema] is a [TYPE] slot.
...

Demonstrations: 
What about a cinema? 
[cinema] is a [TYPE] slot.
...
Input Utterance: 
How about a museum?

[museum] is a [TYPE] slot.

Top k

Clean 
data

Augmented
data SBERT

Generative 
Model

Augmented
data

Clean 
data

Character-level

Word-level

Sentence-level

Figure 2: The overall architecture of our proposed approach DemoNSF.

..., xN}, where xaugm represents the augmented to-
ken with character-level augmentation, the objec-
tive of the NR task, as illustrated in Figure 2, is
to restore Xaug

char to its corresponding clean utter-
ance X . This task enables the model to capture the
mapping relationship between fine-grained input
perturbations and their clean equivalents, thereby
enhancing the model’s capability to represent fine-
grained noisy data. Hence, the loss function can be
formulated as:

LNR =
1

B

B∑

j=1

N∑

i=1

CE(Xji, X
aug
char,ji) (1)

where B and N denote the batch size and sequence
length, respectively.

Random Mask (RM). Inspired by the concept
of masked language modeling (MLM) introduced
in BERT (Devlin et al., 2019), we present our
random mask-filling task. Specifically, given an
utterance in Daug, we randomly mask one en-
tity with the special [MASK] symbol, resulting in
Xaug

mask = {xaug1 , ..., [MASK], ..., xaugN }. We aim
to restore the [MASK] token to its original value.
The mask-filling procedure enables the model to
implicitly incorporate the semantic distribution of
slot entities within the perturbed data. Hence, the
loss function of the RM task can be defined as:

LRM =
1

B

B∑

j=1

CE(ym, P ([MASK])) (2)

where ym denotes the original token and [MASK]
represents the logits of [MASK] token.

Hybrid Discrimination (HD). To further ad-
dress coarse-grained input perturbations, we pro-
pose the HD task. In detail, we combine Dclean and

Daug to create a mixed dataset, denoted as Dmix.
We randomly select utterances from Dmix and as-
sign distinct labels based on whether the chosen
utterance is clean or has different levels of pertur-
bation. As shown in Figure 2, the generative model
can implicitly capture the unique semantic distri-
bution of perturbed data while considering global
information by discriminating between inputs with
and without perturbation. The loss function LHD

is the same as LNR.

Therefore, the overall loss function L is defined
as:

L = αLNR + βLRM + γLHD (3)

where α, β, and γ represent the weights of NR,
RM, and HD task loss functions, respectively.

2.4 Noisy Demonstration Construction

Different from prior demonstration-based work
(Min et al., 2022), we select examples s from Daug

instead of Dclean for each input X to incorporate
perturbed semantic information into the model.
For retrieval, we employ SBERT (Reimers and
Gurevych, 2019) which independently produces
[CLS] embeddings for both X and s, and compute
their similarity scores to rank s. Subsequently, we
select the top-k examples to construct the noisy
demonstrations X̂ and concatenate them with the
input X to form the complete input [X̂;X]. Our
demonstration template is shown below:

"Demonstrations: [Retrieved Noisy Utter-
ances]. [Text Span] is [Slot Type]. Input Utter-
ance: [Original Input]."
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Methods Clean
Sentence-level Character-level Word-level

Perturbed-Avg.
Verbose Paraphrase Simplification Typos Speech

GPT2 95.37 80.52 85.66 82.98 60.19 77.78 77.43
BART 95.28 77.87 82.72 82.95 53.90 73.57 74.20
T5 95.49 81.34 89.13 83.73 62.43 81.13 79.55
BARTNER 94.88 78.00 88.55 85.04 65.37 72.65 77.93
LightNER 95.30 78.85 87.65 84.90 57.68 71.61 76.14
InstructionNER 95.67 81.57 88.45 85.29 65.34 80.13 80.16
DemoNSF(GPT2) 95.66(±0.4) 81.95(±0.3) 87.63(±1.1) 87.02(±0.2) 69.75(±0.3) 86.31(±0.7) 82.53(±0.5)
DemoNSF(BART) 95.71(±1.3) 78.83(±0.7) 88.29(±0.8) 86.01(±0.7) 65.60(±0.3) 82.48(±0.4) 80.24(±1.1)
DemoNSF(T5) 95.72(±0.5) 82.37(±1.2) 89.98(±1.1) 89.49(±0.7) 76.63(±0.5) 87.55(±0.7) 85.20(±0.9)

Table 1: F1 scores with standard deviations under 5 different input perturbations on RADDLE.

Methods
Char+Word Char+Sen Word+Sent Char+Word+Sen
Ent.+Sub. Ent.+App. App.+Sub. Ent.+Sub.+App.

BART 58.00 47.27 50.28 38.36
T5 57.44 56.79 73.47 47.93
BARTNER 54.83 49.10 58.92 42.25
LightNER 42.34 35.82 45.44 27.00
InstructionNER 57.87 58.89 74.45 50.75

Ours(BART) 61.27(±0.5) 51.26(±0.9) 68.72(±0.5) 44.27(±0.9)
Ours(T5) 63.59(±0.3) 63.94(±1.2) 77.69(±0.7) 55.12(±0.3)

Table 2: F1 scores with standard deviations under 4
kinds of mixed perturbations on SNIPS.

3 Experiment

3.1 Datasets

Based on RADDLE (Peng et al., 2021) and SNIPS
(Coucke et al., 2018), we adopt the evaluation set
provided by Dong et al., which includes two differ-
ent perturbation settings. For single perturbations
setting, we include five types of noisy utterances
(character-level: Typos, word-level: Speech, and
sentence-level: Simplification, Verbose, and Para-
phrase) from RADDLE. For mixed perturbations
setting, we utilize TextFlint (Gui et al., 2021) to
introduce character-level perturbation (EntTypos),
word-level perturbation (Subword), and sentence-
level perturbation (AppendIrr) and combine them
to get a mixed perturbations dataset3.

3.2 Main Results.

Table 1 shows the main results of DemoNSF and
comparison baselines under a single perturbation
setting. We make the following observations:

(1) When faced with perturbations of different
granularities, generative models suffer severe per-
formance degradation, especially in Typos (GPT2:
35.18% | BART: 41.38% | T5: 33.06%) and Speech
(GPT2: 17.57% | BART: 21.71% | T5: 14.36%),
which indicates that generative models have poor
robustness against fine-grained perturbations.

3Due to space limitations, detailed experimental settings
(Baselines, Datasets..) can be found in the Appendix B.1.

Figure 3: Performance comparison of different types of
demonstrations

(2) DemoNSF(T5) shows remarkable superior-
ity under different kinds of input perturbations
while maintaining the best performance on the
clean test data. For the fine-grained perturbations
, our method achieves a significant improvement
of 11.29% and 7.42% in Typos and Speech com-
pared with InstructionNER. DemonNSF maintains
strong performance for coarse-grained perturba-
tions, especially with a 4.2% improvement in Sim-
plification. These results clearly demonstrate that
DemonNSF effectively captures the mapping rela-
tionship between fine-grained noisy and clean data
while also considering the ability to generalize to
coarse-grained global semantic perturbations.

(3) DemonNSF is a plug-and-play method
that can achieve good results on different back-
bones. Specifically, we replace the backbone with
BART/GPT and also get the good performances
compared with the corresponding baseline. The re-
sults of the backbone ablation further demonstrate
our approach remarkably enhances the robustness
of generative models when facing perturbations.

3.3 Mixed Perturbations Scenario.

In real dialogue scenarios, mixed perturbations of-
ten appear in one utterance simultaneously. To fur-
ther verify the effectiveness of DemoNSF in more
realistic scenarios, we conduct the mixed perturba-
tions experiment. As shown in Table 2, DemoNSF
significantly outperforms other baselines in all
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Methods Clean
Sentence-level Character-level Word-level

Perturbed-Avg.
Verbose Paraphrase Simplification Typos Speech

Text-davinci-003 43.09 34.26 39.34 38.42 40.12 37.18 38.54
ChatGPT 71.43 40.65 60.00 55.56 65.54 55.56 57.21
ChatGPT + Clean Demos 71.31 61.01 57.81 53.43 65.03 61.71 62.32
ChatGPT + Aug Demos 68.21 65.04 70.56 58.82 73.03 63.77 68.34
ChatGPT + Mixed Demos 76.92 58.73 68.26 58.61 74.19 57.78 65.36

Table 3: The evaluation on ChatGPT under 5 different input perturbations on Raddle.

two-level perturbations, especially achieving over
63% F1-score in fine-grained mixed perturbations.
Even with the joint interference of 3 perturbations,
DemoNSF can still maintain a 4.37% improvement
compared with baseline, which further validates
the stability of DemoNSF in challenging settings.

3.4 Impact of Different Demonstrations.
Figure 3 shows the impact of the number of dif-
ferent types of demonstrations under single per-
turbations. We have the following findings: (1)
DemoNSF exhibits a significant performance gain
with only two augmented samples while its perfor-
mance severely decreases as the number increases.
This may be because diverse augmented instances
can help the model explicitly fuse noisy seman-
tic distribution (Xie et al., 2022a) while the sam-
ple diversity exceeding a certain threshold may
even bring additional noise. (2) Clean demonstra-
tions only bring slightly improves as the number
increases, which indicates that clean samples only
provide some task general information(e.g. entity
distributions, slot-value mapping) for prompting.
(3) Retrieved demonstrations from the mixed data
pool show a stable performance gain, which fur-
ther confirms the mutual promotion between noisy
semantic distribution and task general information,
and provides guidance for the robustness of prompt-
based generative models.

3.5 The ICL Evaluation on ChatGPT.
In order to further validate the effectiveness of our
noisy demonstration strategy on the large-scale
generative framework, we conduct experiments
on ChatGPT and Text-davinci-003 (Brown et al.,
2020). We directly use them to do inference based
on in-context learning (ICL) (Dong et al., 2022b;
Brown et al., 2020; Min et al., 2022) on RADDLE,
which means language models make predictions
only based on the conditioned demonstration ex-
amples without any training samples.

Table 3 illustrates the overall results of Chat-
GPT under 5 different single perturbations. We
draw the following findings: (1) ChatGPT and

Text-davinci-003 perform poorly on diverse input
perturbations, which far behind the finetune SOTA
methods (DemoNSF, Instruction NER) presented
in Table 1. The possible reason is that large lan-
guage models are usually pre-trained on the large-
scale general training corpus, making it difficult to
adapt well to specific domain perturbation data in
a zero-shot setting. (2) Compared with baselines
and traditional clean demonstration retrieval meth-
ods, selecting instances from both the augmented
and mixed demonstration candidate pools can sig-
nificantly improve the overall performance. This
finding is consistent with our conclusion in the sec-
tion 3.4, proving the effectiveness of incorporating
noisy semantic structures in addressing input per-
turbations. (3) From the perspective of different
perturbations, both two types of noisy demonstra-
tion strategies show significant improvements in
fine-grained perturbations (over 8% improvement
in Typos). However, the improvement is not ob-
vious in coarse-grained perturbations, especially
in speech errors. This phenomenon indicates that
noisy demonstrations are more suitable for fitting
the distribution of fine-grained perturbations, while
there is still much room for improvement in coarse-
grained perturbations that severely disrupt the con-
textual semantics and slot mentions of the original
input. This finding poses further challenges for
exploring the robustness of large language models,
which will also be the focus of our future research.

4 Conclusion

In this paper, we propose a unified multi-task
demonstration-based generative framework for
noisy slot filling tasks. Specifically, we introduce
three novel noisy auxiliary tasks and a noisy demon-
stration construction strategy for the generative
framework, which aims to learn the semantic struc-
ture of perturbations from both explicit and implicit
levels. Experiments on two benchmarks show the
effectiveness of DemoNSF, Further analysis pro-
vides empirical guidance for the practical applica-
tion of the generative framework.
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Limitations

In order to capture semantic structural information
of input perturbations at different granularities, we
introduce three novel noisy auxiliary tasks in the
pre-training stage, which may consume more GPU
memory than traditional methods. This drives us to
further improve the overall memory efficiency of
the framework. Also, our method mainly focuses
on the slot filling task. However, we believe it
is possible to extend our work to other scenarios,
such as few-shot settings, and zero-shot settings.
We also reserve them for our future research.
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A Method Details

A.1 Training and Inference

For the multi-level data augmentation, we utilize
NLPAug (Ma, 2019) to construct a noisy candidate
data pool from the clean data pool at different levels.
During the upstream pre-training stage, we adopt a
multi-task training strategy, where the overall loss
function is denoted as (13).

In the downstream demonstration-based fine-
tuning stage, we directly feed the demonstration-
based input [X̂;X] into the model for predic-
tion. During inference, we also employ SBERT
(Reimers and Gurevych, 2019) to retrieve task
demonstrations for test data from Daug, ensuring
consistency between the training and inference
stages.

B Experiment Details

B.1 More Details of Datasets

Based on RADDLE (Peng et al., 2020) and SNIPS
(Coucke et al., 2018), we adhere to the evalua-
tion set provided by PSSAT (Dong et al., 2022a),
which includes two settings: single perturbation
and mixed perturbation.

For a single perturbation setting, RADDLE
serves as a crowd-sourced diagnostic evaluation
dataset that covers a wide range of real-world
noisy texts for dialog systems. PSSAT(Dong et al.,
2022a) extracts each type of noisy utterance (Typos,
Speech, Simplification, Verbose, and Paraphrase)
from RADDLE to build the test data pool. Specif-
ically, Typos occur due to non-standard abbrevia-
tions or keyboard errors, while Speech arises from
recognition and synthesis errors produced by ASR
systems. Simplification refers to users expressing
their intentions using concise words, while Ver-
bose represents users employing redundant words
to convey the same intention. Paraphrase is also
prevalent among users who use different words or
rephrase the text based on their language habits.

For the multi-perturbations setting, we utilize
TextFlint (Gui et al., 2021) toolkit to introduce
character-level noise (EntTypos), word-level noise
(Subword), and sentence-level noise (AppendIrr).
We then combine different types of noisy data to
construct a multi-perturbations evaluation set. The
detailed introduction of these perturbations can be
found in the GitHub repository of TextFlint 4.

4https://www.textflint.io/textflint
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Methods Clean
Sentence-level Character-level Word-level

Perturbed-Avg.
Verbose Paraphrase Simplification Typos Speech

DemoNSF(Backbone) 95.49 81.34 89.13 83.73 62.43 81.13 79.55

+NR 95.17 81.13 88.96 87.98 67.22 82.61 81.58

+RM 95.30 81.04 89.88 86.78 62.31 85.84 81.17

+HD 95.39 81.37 90.36 87.20 64.61 82.66 81.24

+MT 95.82 80.79 89.28 86.89 73.74 84.40 83.02

+CleanDemos 95.37 80.28 88.91 85.94 69.00 84.62 81.75

+MixDemos 95.90 80.04 90.71 87.19 71.23 82.60 82.35

+NoisyDemos 95.08 80.04 90.34 85.39 76.41 85.14 83.46

DemoNSF(Full) 95.72 82.37 89.98 89.49 76.63 87.55 85.20

Table 4: The ablation study results (average F1 score%) on RADDLE. "+" denotes the backbone of DemoNSF with
specific module.

B.2 Baselines

In this paper, we focus on comparing DemoNSF
with multiple state-of-the-art baselines that use a
generative framework, as shown below:
GPT2 (Radford et al., 2019) is a decoder-only
framework model developed by OpenAI 5. It is
designed to generate human-like text by predict-
ing the next word in a given sequence. GPT-2 has
gained popularity for its impressive ability to gen-
erate coherent and contextually relevant text across
various domains and has been used for tasks like
text completion, translation, and creative writing.
BART is a sequence-to-sequence model architec-
ture introduced by Lewis et al. (2019). It combines
both autoregressive and denoising objectives dur-
ing training to learn robust representations of input
sequences.
T5 is a pre-training model proposed by Raffel
et al. (2020). It utilizes the transformer architecture
and transforms various natural language processing
tasks into text-to-text transfer tasks.
BARTNER (Yan et al., 2021b) is a pointer-based
sequence-to-sequence architecture designed for
NER tasks. It converts NER subtasks into a unified
sequence generation task by predicting entities and
their corresponding type indexes in the input sen-
tence.
LightNER (Chen et al., 2022) is a pointer-based
sequence-to-sequence model which builds upon
the BARTNER. It introduces a prompt tuning tech-
nique that incorporates additional parameters into
the attention mechanism.
InstructionNER (Wang et al., 2022b) is a multi-
task instruction-based generative framework specif-
ically designed for addressing few-shot NER tasks.
It redefines the NER task as a natural language

5https://openai.com/

generation problem and introduces descriptive in-
structions and an optional mechanism to enable the
model to understand different tasks and constrain
the output space.

B.3 Implementation Details

In the upstream pre-training stage, we set the batch
size to 32, and our pre-training process typically
takes around 1 hour for 5 epochs. In this paper,
we conduct all the experiments without any hy-
perparameter search. For the multi-task training
strategy, we assign equal weights to three noisy
auxiliary tasks, i.e., set α, β, and γ to 1

3 . The cor-
responding learning rates are set to 1e-5. For the
demonstration-based fine-tuning stage, we also set
the batch size to 32 and the training takes an av-
erage of 2 hours for 5 epochs, while the learning
rates are set to 5e-5. For the selection of demonstra-
tions, we recall the top 2 instances with the highest
similarity score from the noisy candidate pool.

In all experiments, we train and test various
methods using NVIDIA RTX A6000 GPU. To
select the best model, we evaluate the perfor-
mance on the validation set using the F1 metric
every 400 training steps. Experiments in Table
2 and Table 1 use base-version of T5 and BART,
while we also adopt the large-version model in Ta-
ble 5 on single perturbation setting. We retrieve
CleanDemos from Dclean, NoiseDemos from
Daug and MixDemos from Dmix for the ablation
study and the experiments on investigating the im-
pact of the number of demonstrations. We will
release our code after a blind review.
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Methods Clean
Sentence-level Character-level Word-level

Perturbed-Avg.
Verbose Paraphrase Simplification Typos Speech

BART 95.21 79.23 87.20 83.81 57.79 75.65 76.74
T5 95.58 82.12 88.36 85.98 68.25 81.31 81.20
BARTNER 95.30 79.96 90.44 87.24 75.32 76.22 81.84
LightNER 96.02 80.32 90.40 87.97 67.28 75.57 80.31
InstructionNER 95.05 82.01 87.82 85.25 69.75 80.09 80.98
DemoNSF(BART) 95.77(±1.4) 81.25(±0.7) 90.56(±0.1) 88.12(±0.5) 74.20(±0.7) 84.58(±0.3) 83.74(±0.4)
DemoNSF(T5) 95.81(±0.7) 83.77(±0.4) 91.58(±0.6) 89.78(±0.2) 77.70(±1.3) 87.96(±0.9) 86.16(±0.5)

Table 5: F1 scores with standard deviations under 5 different input perturbations on RADDLE. All the models are in
large versions

C More Detailed Experiments

C.1 Ablation Study

We conduct an ablation study to investigate
the characteristics of the main components in
DemoNSF. As shown in Table 4, we have the
following observations: 1) The performance of
the model improves when adding any component,
which demonstrates that every part of our design is
necessary. 2) For the three different granularities
of perturbations, we observe significant improve-
ments in auxiliary tasks specifically designed for
each. Specifically, the NR task learns the map-
ping relationship between character-level pertur-
bations and clean data, resulting in a 4.79% im-
provement in Typos. While the RM task implic-
itly captures the semantic information of slot enti-
ties during the mask-filling procedure. It achieved
about 4.71% improvement under word-level per-
turbations (Speech). As for the HD task, it is able
to capture the unique distribution information of
perturbed data and significantly improves the per-
formance of the model under coarse-grained per-
turbations while maintaining generalization, espe-
cially in Simplification (3.47%). 3) Adopting joint
pre-training tasks (+MT ) results in a noticeable
improvement compared with adding one of them,
which indicates that jointly pre-training objectives
have a mutually reinforcing effect (obtain 3.47%
improvement on average of perturbed data). 4) We
explore the ablation study of three demonstration
retrieval strategies. CleanDemos, MixDemos,
and NoisyDemos represent retrieve demonstra-
tions from Dclean, Dmix and Daug, respectively.
As for MixDemos, We make sure to include both
clean and noisy demonstrations. We find that con-
catenating demonstrations does yield exciting re-
sults on perturbed test data. Specifically, while
MixDemos is able to absorb more diverse data
distributions and performs well on both clean and

perturbed data, the NoisyDemos used in this pa-
per focuses on introducing the distribution infor-
mation of the perturbed data, so that the generative
model can learn the perturbed sentence and slot en-
tity distribution information to the maximum extent
and make it more robust.

C.2 Results on Large-version Model

We compare the performance of DemoNSF with
other baselines on the large-version model (i.e. T5-
large and BART-large). Despite using a model with
a larger parameter size, generative models still ex-
perience a significant decline in performance when
faced with perturbed inputs, especially with fine-
grained perturbations. As shown in Table 5, we
can find that the model’s performance declined by
37.42% for BART and 27.33% for T5 on Typos and
19.56% and 14.27% for BART and T5, respectively
on Speech. Our approach also achieves impres-
sive improvements on both fine-grained and coarse-
grained perturbations. To be specific, DemoNSF
introduces 5.18% F1 improvements on the average
performance of all the perturbations input com-
pared with InstructionNER based on T5 and 1.63%
improvements compared with BARTNER based on
BART.

C.3 Details of Mixed Perturbations

For the mixed perturbations experiment on SNIPS,
we also investigate the performance of DemoNSF
on single perturbation (AppendIrr, Sub, and EntTy-
pos). As shown in Table 6, we obtain similar con-
clusions. Specifically, our approach introduces sig-
nificant improvements in fine-grained perturbations
(e.g. 5.86% on EntTypos). While our approach also
maintains exciting performance on coarse-grained
perturbations (e.g. 2.51% improvements on Ap-
pendIrr).
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Methods Clean Sent Word Char Char+Word Char+Sent Word+Sent Char+Word+Sent
App. Sub. Ent. Ent.+Sub. Ent.+App. App.+Sub. Ent.+Sub.+App.

BART 79.43 65.95 71.20 57.84 58.00 47.27 50.28 38.36
T5 94.12 83.97 85.13 65.90 57.44 56.79 73.47 47.93
BARTNER 86.34 69.33 77.22 62.28 54.83 49.10 58.92 42.25
LightNER 81.39 60.63 70.18 52.59 42.34 35.82 45.44 27.00
InstructionNER 94.69 84.32 84.78 66.93 57.87 58.89 74.45 50.75
DemoNSF (BART) 87.16(±0.7) 76.05(±1.2) 79.56(±1.3) 67.31(±0.2) 61.27(±0.5) 51.26(±0.9) 68.72(±0.5) 44.27(±0.9)
DemoNSF (T5) 94.75(±1.7) 86.83(±0.5) 86.81(±0.2) 72.79(±0.4) 63.59(±0.3) 63.94(±1.2) 77.69(±0.7) 55.12(±0.3)

Table 6: F1 scores with standard deviations under 3 kinds of single perturbations and 4 kinds of mixed perturbations
on SNIPS.

D Related Work

D.1 Slot Filling
Sequence Labeling Paradigm. Initially, the slot
filling task was commonly defined as a sequence
labeling problem. Previous methods can be cate-
gorized into two types: one-stage and two-stage
approaches. Specifically, one-stage approaches
(Bapna et al., 2017; Shah et al., 2019; Lee and
Jha, 2019) conduct slot filling individually for each
slot type. It first generates word-level representa-
tions and the predictions are based on the concate-
nated features for each slot type. However, these
methods only learn the surface mapping between
entities and suffer from multi-prediction problems.
To address these limitations, a branch of two-stage
methods (Liu et al., 2020b; He et al., 2020b; Wang
et al., 2021; Ma et al., 2022; Dong et al., 2023a;
Wang et al., 2022a; Dong et al., 2023b) are pro-
posed. Firstly, a coarse-grained binary sequence
labeling model is used to identify all slot entities
in the utterances. Subsequently, the entity value is
mapped to the representation of the corresponding
slot label in the semantic space in order to classify
slot types effectively.

Generative Framework. Recently, some works
(Wang et al., 2022b) have started to reformulating
NER and slot filling tasks to sequence-to-sequence
(seq2seq) tasks and integrate generative methods.
BARTNER (He et al., 2020c) proposes a pointer-
based seq2seq architecture, which converts the
NER task to a unified sequence generation task and
predicts entities from the input sentences and the
corresponding type indexes LightNER(Chen et al.,
2021) introduces prompt-tuning to the attention
mechanism of BARTNER and achieves promising
improvement in low-resource scenarios. Moreover,
some prompt-based Generative methods (Lu et al.,
2022; Xie et al., 2022b) have achieved strong per-
formance in information extraction. Nevertheless,
their exploration of generative frameworks on di-
verse input perturbations remains a blank area, hin-

dering their application in realistic task-oriented
dialogue systems.

D.2 Input Perturbation Problem

Recently, there has been a growing interest in
enhancing the resilience of NLP systems to in-
put perturbations. Moradi and Samwald (2021b)
present empirical evaluations of the robustness of
various NLP systems against input perturbations
on synthetically generated benchmarks. Namysl
et al. (2020, 2021) focus on the robustness of the
NER model against Optical Character Recognition
(OCR) noise and misspellings. Compared to other
NLP systems, dialogue systems would face more
diverse input noise due to more frequent interac-
tions with users. Fang et al. (2020); Gopalakr-
ishnan et al. (2020) investigate the robustness of
dialogue systems on ASR noise, and Ruan et al.
(2020); Li et al. (2020b); Huang and Chen (2020);
Li et al. (2020a) mainly focus on the ASR-noise-
robustness SLU models in dialogue systems.

Most previous studies (Moradi and Samwald,
2021a; Wu et al., 2021; Liu et al., 2020a) that in-
vestigated this robustness problem predominantly
focused on rule-based synthetic datasets, which do
possess certain limitations. Meanwhile, real-world
dialogue systems encounter a wider range of per-
turbations due to frequent interactions with users.
To further explore this direction, RADDLE (Peng
et al., 2020) offers a crowd-sourced robustness
evaluation benchmark for dialog systems, which
includes various noisy utterances that existed in
real dialogue scenarios. Liu et al. (2020a) intro-
duced Language Understanding Augmentation, a
methodology that incorporates four data augmen-
tation techniques to simulate natural perturbations.
To cope with more complex noisy scenarios, Dong
et al. (2022a); Liu et al. (2023) investigate input per-
turbation problems on discriminative neural mod-
els. In this paper, we mainly focus on the perfor-
mance of generative frameworks on input perturba-
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tion problems.

D.3 Demonstration-based learning
Demonstrations are first introduced by the GPT
series (Radford et al., 2019; Brown et al., 2020),
where a few examples are sampled from train-
ing data and transformed with templates into
appropriately-filled prompts. Based on the task
reformulation and whether the parameters are up-
dated, the existing demonstration-based learning
research can be broadly divided into three cate-
gories: In-context Learning (Brown et al., 2020;
Zhao et al., 2021; Min et al., 2021; Wei et al.,
2022), Prompt-based Fine-tuning (Liang et al.,
2022; Dong et al., 2023c), Classifier-based Fine-
tuning (Lee et al., 2021). However, these ap-
proaches mainly adopt demonstration-based learn-
ing in the fine-tuning that cannot make full use of
the effect of demonstration-based learning.
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